Skip to main content

Abstract

Nanotechnology has already been used for the purpose of the measurement as well as treatment of great number of ophthalmological diseases. The applications of Nanotechnology to Ophthalmology refer to the following: delivery of drugs, peptides and genes, biomedical imaging and diagnostics of distinct disorders of the eye, study of pathogenesis of the eye disease. Regenerative nanomedicine is considered to be a prospective approach for treating retinal degenerations and the second cranial nerve regeneration. Our manuscript included possible different application for ophthalmological drug using nanotechnology. Also, we described the importance of nanotechnology for imaging, diagnostic and monitoring of ocular diseases. Nanobiotechnology for glaucoma treatment, as well as nanoparticles for gene delivery therapy of retinal degenerative disease, is most attractive approach for the ophthalmological treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso MJ, Sánchez A (2003) The potential of chitosan in ocular drug delivery. J Pharm Pharmacol 55:1451–1463

    Article  Google Scholar 

  • Badawi AA, El-Laithy HM, El Qidra RK et al (2008) Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res 31:1040–1049

    Article  Google Scholar 

  • Bayens R, Gurny R (1997) Chemical and physical parameters of tears relevant for the design of ocular drug delivery formulations. Pharm Acta Helv 72:191–202

    Article  Google Scholar 

  • Beeley NR, Rossi JV, Mello-Filho PA et al (2005) Fabrication, implantation, elution, and retrieval of a steroid-loaded polycaprolactone subretinal implant. J Biomed Mater Res A 73:437–444

    Article  Google Scholar 

  • Bejjani R, BenEzra D, Cohen H et al (2005) Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis 11:124–132

    Google Scholar 

  • Bejjani RA, Andrieu C, Bloquel C et al (2007) Electrically assisted ocular gene therapy. Surv Ophthalmol 52(2):196–208

    Article  Google Scholar 

  • Bhisitkul RB, Keller CG (2005) Development of microelectromechanical systems (MEMS) forceps for intraocular surgery. Br J Ophthalmol 89:1586–1588

    Article  Google Scholar 

  • Bloquel C, Bourges JL, Touchard E et al (2006) Non-viral ocular gene therapy: potential ocular therapeutic avenues. Adv Drug Deliv Rev 58:1224–1242

    Article  Google Scholar 

  • Bourges JL, Gautier SE, Delie F et al (2003a) Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci 44:3562–3569

    Article  Google Scholar 

  • Bourges JL, Bloquel C, Thomas A et al (2003b) Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev 58(11):1182–1202

    Article  Google Scholar 

  • Bondì ML, Craparo EF, Giammona G et al (2007) Nanostructured lipid carriers-containing anticancer compounds: preparation, characterization, and cytotoxicity studies. Drug Deliv 14:61–67

    Article  Google Scholar 

  • Bourlais CL, Acar L, Zia H et al (1998) Ophthalmic drug delivery systems—recent advances. Prog Retin Eye Res 17(1):33–58

    Article  Google Scholar 

  • Bucolo C, Maltese A, Drago F (2008) When nanotechnology meets the ocular surface. Expert Rev Ophthalmol 3:325–332

    Article  Google Scholar 

  • Cai X, Conley S, Naash M (2008) Nanoparticle applications in ocular gene therapy. Vision Res 48:319–324

    Article  Google Scholar 

  • Cai X, Nash Z, Conley SM et al (2009) A partial structural and functional rescue of a retinitis pigmentosa model with compacted DNA nanoparticles. PLoS ONE 4:e5290

    Article  Google Scholar 

  • Chu TC, He Q, Potter DE (2002) Biodegradable calcium phosphate nanoparticles as a new vehicle for delivery of a potential ocular hypotensive agent. J Ocul Pharmacol Ther 18:507–514

    Article  Google Scholar 

  • Cohen-Karni T, Timko BP, Weiss LE et al (2009) Flexible electrical recording from cells using nanowire transistor arrays. Proc Natl Acad Sci USA 106:7309–7313

    Article  Google Scholar 

  • Dal Pizzol C, O’Reilly A, Winter E et al (2016) Application of response surface methodology for the technological improvement of solid lipid nanoparticles. J Nanosci Nanotechnol 16(2):47–1238

    Google Scholar 

  • De Campos AM, Diebold Y, Carvalho EL et al (2004) Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm Res 21:803–810

    Article  Google Scholar 

  • De Campos AM, Sanchez A, Alonso MJ (2001) Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm 224:159–168

    Article  Google Scholar 

  • De Kozak Y, Andrieux K, Villarroya H et al (2004) Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur J Immunol 34:12–3702

    Article  Google Scholar 

  • Del Amo EM, Urtti A (2008) Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today 13:135–143

    Article  Google Scholar 

  • De la Fuente M, Csaba N, Garcia-Fuentes M et al (2008a) Nanoparticles as protein and gene carriers to mucosal surfaces. Nanomed 3:845–857

    Article  Google Scholar 

  • De la Fuente M, Seijo B, Alonso MJ (2008b) Novel hyaluronan-based nanocarriers for transmucosal delivery of macromolecules. Macromol Biosci 8:441–450

    Article  Google Scholar 

  • Diebold Y, Calonge M (2010) Applications of nanoparticles in ophthalmology. Prog Retin Eye Res 29:596–609

    Article  Google Scholar 

  • Diebold Y, JarrĂ­n M, Sáez V et al (2007) Ocular drug delivery by liposomeechitosan nanoparticle complexes (LCS-NP). Biomaterials 28:1553–1564

    Article  Google Scholar 

  • Ding XQ, Quiambao AB, Fitzgerald JB et al (2009) Ocular delivery of compacted DNA-nanoparticles does not elicit toxicity in the mouse retina. PLoS ONE 4:e7410

    Article  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478

    Article  Google Scholar 

  • Dresher RP, Irazoqui PP (2007) A compact nanopower low output impedance CMOS operational amplifier for wireless intraocular pressure recordings. Conf Proc IEEE Eng Med Biol Soc 2007:6056–6059

    Google Scholar 

  • Dugan LL, Turetsky DM, Du C et al (1997) Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci USA 94:9434–9439

    Article  Google Scholar 

  • Dugan LL, Lovett EG, Quick KL et al (2001) Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord 7:243–246

    Article  Google Scholar 

  • Edwards A, Prausnitz MR (2001) Predicted permeability of the cornea to topical drugs. Pharm Res 18:1497–1508

    Article  Google Scholar 

  • Elbary AA, Kassem MA, Abou Samra MM et al (2008) Formulation and hypoglycemic activity of pioglitazone-cyclodextrin inclusion complexes. Drug Discov Ther 2(2):94–107

    Google Scholar 

  • Ellis-Behnke RG, Liang YX, You SW et al (2006) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA 103:5054–5059

    Article  Google Scholar 

  • Farjo R, Skaggs J, Quiambao AB (2006) Efficient nonviral ocular gene transfer with compacted DNA nanoparticles. PLoS ONE 1:e38

    Article  Google Scholar 

  • Farjo R, Skaggs J, Quiambao AB et al (2007) Effect of Rds abundance on cone outer segment morphogenesis, photoreceptor gene expression, and outer limiting membrane integrity. J Comp Neurol 504(6):30–619

    Article  Google Scholar 

  • Ferreira L, Karp JM, Nobre L et al (2008a) New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell 3:136–146

    Article  Google Scholar 

  • Ferreira L, Squier T, Park H et al (2008b) Human embryoid bodies containing nano- and microparticulate delivery vehicles. Adv Mater 20:2285–2291

    Article  Google Scholar 

  • Fresta M, Panico AM, Bucolo C et al (1999) Characterization and in-vivo ocular absorption of liposome encapsulated acyclovir. J Pharm Pharmacol 51:565–576

    Article  Google Scholar 

  • Fresta M, Fontana G, Bucolo C et al (2001) Ocular tolerability and in vivo bioavailability of poly(ethylene glycol) (PEG)-coated polyethyl-2-cyanoacrylate nanosphere-encapsulated acyclovir. J Pharm Sci 90(3):97–288

    Article  Google Scholar 

  • Garhwal R, Shady SF, Ellis EJ et al (2012) Sustained ocular delivery of ciprofloxacin using nanospheres and conventional contact lens materials. Invest Ophthalmol Vis Sci 53:1341–1352

    Article  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  Google Scholar 

  • Gulsen D, Chauhan A (2005) Dispersion of microemulsion drops in HEMA hydrogel: a potential ophthalmic drug delivery vehicle. Int J Pharm 292:95–117

    Article  Google Scholar 

  • Gurunathan S, Lee KJ, Kalishwaralal K et al (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials 30:6341–6350

    Article  Google Scholar 

  • Hahn U, Gorka M, Vogtle F et al (2002) Light-harvesting dendrimers: efficient intra- and intermolecular energy-transfer processes in a species containing 65 chromophoric groups of four different types. Angew Chem Int Ed Engl 41(3595–3598):3514

    Google Scholar 

  • Hayashi A, Naseri A, Pennesi ME et al (2009) Subretinal delivery of immunoglobulin G with gold nanoparticles in the rabbit eye. Jpn J Ophthalmol 53:249–256

    Article  Google Scholar 

  • Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    Article  Google Scholar 

  • Hsiue GH, Hsu SH, Yang CC et al (2002) Preparation of controlled release ophthalmic drops, for glaucoma therapy using thermosensitive poly-N-isopropylacrylamide. Biomaterials 23:457–462

    Article  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  Google Scholar 

  • Ideta R, Tasaka F, Jang WD et al (2005) Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer. Nano Lett 5:2426–2431

    Article  Google Scholar 

  • Irache JM, Merodio M, Arnedo A et al (2005) Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. Mini Rev Med Chem 5:293–305

    Article  Google Scholar 

  • Jani PD, Singh N, Jenkins C et al (2007) Nanoparticles sustain expression of Flt intraceptors in the cornea and inhibit injury-induced corneal angiogenesis. Invest Ophthalmol Vis Sci 48:2030–2036

    Article  Google Scholar 

  • Jarvinen K, Jarvinen T, Urtti A (1995) Ocular absorption following topical delivery. Adv Drug Deliv Rev 16:3–19

    Article  Google Scholar 

  • Jiang C, Moore MJ, Zhang X et al (2007) Intravitreal injections of GDNF-loaded biodegradable microspheres are neuroprotective in a rat model of glaucoma. Mol Vis 13:1783–1792

    Google Scholar 

  • Johnson LN, Cashman SM, Kumar-Singh R (2008) Cell-penetrating peptide for enhanced delivery of nucleic acids and drugs to ocular tissues including retina and cornea. Mol Ther 16:14–107

    Article  Google Scholar 

  • JuberĂ­as JR, Calonge M, GĂłmez S et al (1998) Efficacy of topical cyclosporine-loaded nanocapsules on keratoplasty rejection model in the rat. Curr Eye Res 17:39–46

    Article  Google Scholar 

  • Kachi S, Oshima Y, Esumi N et al (2005) Nonviral ocular gene transfer. Gene Ther 12:843–851

    Article  Google Scholar 

  • Kao HJ, Lin HR, Lo YL et al (2006) Characterization of pilocarpine-loaded chitosan/Carbopol nanoparticles. J Pharmacokinet Pharmacodyn 58:179–186

    Google Scholar 

  • Kassem MA, Abdel Rahman AA, Ghorab MM et al (2007) Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm 340:126–133

    Article  Google Scholar 

  • Kayser O, Lemke A, Hernandez-Trejo N (2005) The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 6:3–5

    Article  Google Scholar 

  • Keister JC, Cooper ER, Missel PJ et al (1991) Limits on optimizing ocular drug delivery. J Pharm Sci 80:50–53

    Article  Google Scholar 

  • Kim JH, Kim JH, Kim KW et al (2009) Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology 20:505101

    Article  Google Scholar 

  • Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150

    Article  Google Scholar 

  • Komeima K, Rogers BS, Campochiaro PA (2007) Antioxidants slow photoreceptor cell death in mouse models of retinitis pigmentosa. J Cell Physiol 213:809–815

    Article  Google Scholar 

  • Li H, Tran VV, Hu Y et al (2006) A PEDF N-terminal peptide protects the retina from ischemic injury when delivered in PLGA nanospheres. Exp Eye Res 83:33–824

    Google Scholar 

  • Li VH, Wood RW, Kreuter J et al (1986) Ocular drug delivery of progesterone using nanoparticles. J Microencapsul 3:213–218

    Article  Google Scholar 

  • Losa C, Marchal-Heussler L, Orallo F (1993) Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm Res 10:80–87

    Article  Google Scholar 

  • Mannermaa E, Vellonen KS, Urtti A (2006) Drugtransport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 58:1136–1163

    Article  Google Scholar 

  • Marano RJ, Toth I, Wimmer N et al (2005) Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a long-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity. Gene Ther 12:1544–1550

    Article  Google Scholar 

  • Merodio M, Arnedo A, Renedo MJ et al (2001) Ganciclovir-loaded nanoparticles: characterization and in vitro release properties. Eur J Pharm Sci 12:251–259

    Article  Google Scholar 

  • Merodio M, Espuelas MS, Mirshahi M et al (2002) Efficacy of ganciclovir-loaded nanoparticles in human cytomegalovirus (HCMV)-infected cells. J Drug Target 10:231–238

    Article  Google Scholar 

  • Mo Y, Barnett ME, Takemoto D et al (2007) Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene. Mol Vis 13:746–757

    Google Scholar 

  • Motwani SK, Chopra S, Talegaonkar S et al (2008) Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm 68:513–525

    Google Scholar 

  • Neeley WL, Redenti S, Klassen H et al (2008) A microfabricated scaffold for retinal progenitor cell grafting. Biomaterials 29:418–426

    Article  Google Scholar 

  • Normand N, Valamanesh F, Savoldelli M (2005) VP22 light controlled delivery of oligonucleotides to ocular cells in vitro and in vivo. Mol Vis 11:184–191

    Google Scholar 

  • Nygaard UC, Hansen JS, Samuelsen M et al (2009) Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicol Sci 109:113–123

    Article  Google Scholar 

  • Paasonen L, Laaksonen T, Johans C et al (2007) Gold nanoparticles enable selective light-induced contents release from liposomes. J Control Release 122:86–93

    Article  Google Scholar 

  • Pan T, Brown JD, Ziaie B (2006) An artificial nano-drainage implant (ANDI) for glaucoma treatment. Conf Proc IEEE Eng Med Biol Soc 1:3174–3177

    Google Scholar 

  • Panessa-Warren BJ, Maye MM, Warren JB et al (2009) Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure. Environ Pollut 157:1140–1151

    Article  Google Scholar 

  • Paolicelli P, de la Fuente M, Sánchez A et al (2009) Chitosan nanoparticles for drug delivery to the eye. Expert Opin Drug Deliv 6:239–253

    Article  Google Scholar 

  • Park K, Chen Y, Hu Y et al (2009) Nanoparticle-mediated expression of an angiogenic inhibitor ameliorates ischemia-induced retinal neovascularisation and diabetes-induced retinal vascular leakage. Diabetes 58:1902–1913

    Article  Google Scholar 

  • Pignatello R, Bucolo C, Ferrara P et al (2002) Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci 16:53–61

    Article  Google Scholar 

  • Pot SA, Liliensiek SJ, Myrna KE et al (2010) Nanoscale topography-induced modulation of fundamental cell behaviors of rabbit corneal keratocytes, fibroblasts, and myofibroblasts. Invest Ophthalmol Vis Sci 51:1373

    Article  Google Scholar 

  • Prow TW (2010) Toxicity of nanomaterials to the eye. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:317–333

    Article  Google Scholar 

  • Prow TW, Bhutto I, Grebe R et al (2008) Nanoparticle-delivered biosensor for reactive oxygen species in diabetes. Vision Res 48:478–485

    Article  Google Scholar 

  • Prow T, Grebe R, Merges C et al (2006a) Nanoparticle tethered antioxidant response element as a biosensor for oxygen induced toxicity in retinal endothelial cells. Mol Vis 12:616–625

    Google Scholar 

  • Prow T, Smith JN, Grebe R et al (2006b) Construction, gene delivery, and expression of DNA tethered nanoparticles. Mol Vis 12:606–615

    Google Scholar 

  • Raju HB, Goldberg JL (2008) Nanotechnology for ocular therapeutics and tissue repair. Expert Rev Ophthalmol 3:431–436

    Article  Google Scholar 

  • Reimer P, Ferucarbotran Balzer T (2003) (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13:1266–1276

    Google Scholar 

  • Sakai T, Kuno N, Takamatsu F et al (2007) Prolonged protective effect of basic fibroblast growth factor-impregnated nanoparticles in Royal College of Surgeons rats. Invest Ophthalmol Vis Sci 48:3381–3387

    Article  Google Scholar 

  • Sakai T, Kohno H, Ishihara T et al (2006) Treatment of experimental autoimmune uveoretinitis with poly(lactic acid) nanoparticles encapsulating betamethasone phosphate. Exp Eye Res 82:657–662

    Article  Google Scholar 

  • Sanchez A, Alonso MJ (2006) Nanoparticular carriers for ocular drug delivery. In: Torchilin VP (ed) Nanoparticulates as drug carriers. Imperial College Press, London, UK, pp 649–673

    Google Scholar 

  • Sasaki H, Yamamura K, Mukai T et al (1999) Enhancement of ocular drug penetration. Crit Rev Ther Drug Carrier Syst 16:85–146

    Article  Google Scholar 

  • Schoenwald RD (1990) Ocular drug delivery: pharmacokinetic considerations. Clin Pharmacokinet 18:255–269

    Article  Google Scholar 

  • Shaunak S, Thomas S, Gianasi E et al (2004) Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 22:977–984

    Article  Google Scholar 

  • Shen JK, Dong A, Hackett SF et al (2007) Oxidative damage in age-related macular degeneration. Histol Histopathol 22:1301–1308

    Google Scholar 

  • Snyder RO (1999) Adeno-associated virus-mediated gene delivery. J Gene Med 1:166–175

    Article  Google Scholar 

  • Sundback CA, Shyu JY, Wang Y et al (2005) Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials 26:5454–5464

    Article  Google Scholar 

  • Szebeni J, Alving CR, Rosivall L et al (2007) Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticles. J Liposome Res 17:107–117

    Article  Google Scholar 

  • Takeda A, Baffi JZ, Kleinman ME et al (2009) CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 460:225–230

    Article  Google Scholar 

  • Tao S, Young C, Redenti S et al (2007) Survival, migration and differentiation of retinal progenitor cells transplanted on micro-machined poly(methyl methacrylate) scaffolds to the subretinal space. Lab Chip 7:695–701

    Article  Google Scholar 

  • Tomalia DA, Reyna LA, Svenson S (2007) Dendrimers as multipurpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 35:61–67

    Google Scholar 

  • Toyama T, Matsuda H, Ishida I et al (2008) A case of toxic epidermal necrolysis-like dermatitis evolving from contact dermatitis of the hands associated with exposure to dendrimers. Contact Dermatitis 59:122–123

    Article  Google Scholar 

  • Turturro S, Sunoqrot S, Ying H et al (2013) Sustained release of matrix metalloproteinase-3 to trabecular meshwork cells using biodegradable PLGA microparticles. Mol Pharm 10:32–3023

    Article  Google Scholar 

  • Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Revs 58:1131–1135

    Article  Google Scholar 

  • Vandamme TF, Brobeck L (2005) Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 102:23–38

    Article  Google Scholar 

  • Vandervoort J, Ludwig A (2007) Ocular drug delivery: nanomedicine applications. Nanomed 2:11–21

    Article  Google Scholar 

  • Vega E, Egea MA, Valls O et al (2006) Flurbiprofen loaded biodegradable nanoparticles for ophthalmic administration. J Pharm Sci 95:2393–2405

    Article  Google Scholar 

  • Yenice I, Mocan MC, Palaska E et al (2008) Hyaluronic acid coated poly-epsilon-caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea. Exp Eye Res 87:162–167

    Article  Google Scholar 

  • Wadhawa S, Paliwal R, Paliwal SR et al (2010) Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: development, characterization, and evaluation. J Drug Target 18:292–302

    Article  Google Scholar 

  • Wei C, Nagai T, Wei W et al (2007) New advances in nanomedicine: diagnosis and preventive medicine. Med Clin North Am 91:871–879

    Article  Google Scholar 

  • Yamamoto S, Manabe N, Fujioka K et al (2007) Visualizing vitreous using quantum dots as imaging agents. IEEE Trans Nanobioscience 6:94–98

    Article  Google Scholar 

  • Yanagisawa R, Takano H, Inoue KI et al (2009) Titanium dioxide nanoparticles aggravate atopic dermatitis-like skin lesions in NC/NGA mice. Exp Biol Med (Maywood) 234:314–322

    Article  Google Scholar 

  • Yanagisawa R, Takano H, Inoue KI et al (2010) Size effects of polystyrene nanoparticles on atopic dermatitis-like skin lesions in NC/NGA mice. Int J Immunopathol Pharmacol 23:131–141

    Article  Google Scholar 

  • Yoo SM, Kang M, Kang T et al (2013) Electrotriggered, spatioselective, quantitative gene delivery into a single cell nucleus by Au nanowire nanoinjector. Nano Lett 13(6):2431–2435

    Article  Google Scholar 

  • Yorek MA (2003) The role of oxidative stress in diabetic vascular and neural disease. Free Radic Res 37:471–480

    Article  Google Scholar 

  • Yuan XB, Yuan YB, Jiang W et al (2008) Preparation of rapamycin-loaded chitosan/PLA nanoparticles for immunosuppression in corneal transplantation. Int J Pharm 349:241–248

    Article  Google Scholar 

  • Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122:598–614

    Article  Google Scholar 

  • Zimmer A, Mutschler E, Lambrecht G et al (1994) Pharmacokinetic and pharmacodynamic aspects of an ophthalmic pilocarpine nanoparticle-delivery-system. Pharm Res 11:1435–1442

    Article  Google Scholar 

  • Zolnik BS, González-Fernández A, Sadrieh N et al (2010) Minireview: nanoparticles and the immune system. Endocrinology 151:458–465

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Petrovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Petrovic, N., Petrovic, M.J., Sreckovic, S., Jovanovic, S., Todorovic, D., Vulovic, T.S. (2018). Nanotechnology in Ophthalmology. In: Brabazon, D., et al. Commercialization of Nanotechnologies–A Case Study Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-56979-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56979-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56978-9

  • Online ISBN: 978-3-319-56979-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics