Skip to main content

Characteristics and Applications of Silver Nanoparticles

  • Chapter
  • First Online:
Commercialization of Nanotechnologies–A Case Study Approach

Abstract

This review provides an insight into the level of knowledge about the properties of silver nanoparticles, their already existing applications and possible further developments, as well as their effects on different behaviour and properties of the products wherein they are used. This chapter reviews the application fields of nanosilver, starting from basic silver properties and influential parameters in definition of silver nanoparticles (Ag NPs). Toxicity of Ag NPs is observed from various aspects in relation to cell toxicity and relevant mechanisms of their behaviour within tissue environment. Range of sizes and surface chemistry of Ag NPs and possible effects, as well as known in vivo effects are reviewed, based on the already established research results. Antibacterial properties of Ag NPs and relevant mechanisms of action are presented. Application areas where commercialization of nanosilver has started are presented: medicine (wound dressings, drug delivery, biosensors and medical diagnostics, orthopedics), food and textile industries, and water disinfection systems. Environment related issues have been considered and important conclusions derived from established results are presented. Each application sector comprises descriptions of basic mechanisms related to Ag NPs, gained benefits, but also possible risks and recognised limitations in application of Ag NPs. Future directions as recognised in specific research groups dealing with some of the sectors are listed. Exquisite properties of Ag NPs, especially antibacterial and optical properties, along with availability and lower cost of fabrication, processing and storage, compared to other noble elements makes them very promising for numerous future applications. However, proven cell toxicity must be further studied and methods to overcome these adverse effects on tissue in general are subject of current research. One important application field is drug delivery for targeted cancer cell destruction that is expected to show particular results very soon. Even with all the limitations that need to be imposed on usage of Ag NPs, they are promising nanoagent for novel advancements in different areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou El-Nour KMM, Eftaiha A, Al-Warthan A et al (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140

    Article  Google Scholar 

  • Actis L, Srinivasan A, Lopez-Ribot JL et al (2015) Effect of silver nanoparticle geometry on methicillin susceptible and resistant Staphylococcus aureus, and osteoblast viability. J Mater Sci Mater Med 26:215

    Article  Google Scholar 

  • Ahamed M, Karns M, Goodson M et al (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410

    Article  Google Scholar 

  • Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848

    Article  Google Scholar 

  • Akiyama T, Miyamoto H (2013) Silver oxide-containing hydroxyapatite coating has in vivo antibacterial activity in the rat tibia. J Orthop Res 31(8):1195–1200

    Article  Google Scholar 

  • Alt V, Bechert T, Steinrücke P et al (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 18:4383–4391

    Article  Google Scholar 

  • Arakawa H, Neault JF, Tajmir-Riahi HA (2001) Silver(I) complexes with DNA and RNA studied by fourier transform infrared spectroscopy and capillary electrophoresis. Biophys J 81:1580–1587

    Article  Google Scholar 

  • Arora S, Jain J, Rajwade JM et al (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179:93–100

    Article  Google Scholar 

  • Arora S, Jain J, Rajwade JM et al (2009) Interactions of silver nanoparticleswith primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236:310–318

    Article  Google Scholar 

  • Asharani PV, Mun GLK, Hande MP et al (2009a) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  Google Scholar 

  • Asharani PV, Hande MP, Valiyaveettil S (2009b) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65

    Article  Google Scholar 

  • Azlin-Hasim S, Cruz-Romero MC, Cummins E et al (2016) The potential use of a layer-by-layer strategy to develop LDPE antimicrobial films coated with silver nanoparticles for packaging applications. J Colloid Interface Sci 461:239–248

    Article  Google Scholar 

  • Balakumaran MD, Ramachandran R, Jagadeeswari S et al (2016) In vitro biological properties and characterization of nanosilver coated cotton fabrics—an application for antimicrobial textile finishing. Int Biodeterior Biodegradation 107:48–55

    Article  Google Scholar 

  • Berekaa MM (2015) Nanotechnology in food industry; advances in food processing, packaging and food safety. Int J Curr Microbiol App Sci 4(5):345–357

    Google Scholar 

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139

    Article  Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306

    Article  Google Scholar 

  • Bhunia AK, Samanta PK, Aich D (2015) Biocompatibility study of protein capped and uncapped silver nanoparticles on human hemoglobin. J Phys D: Appl Phys 48:235305

    Google Scholar 

  • Blaser SA, Scheringer M, MacLeod M et al (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  Google Scholar 

  • Boroumand MN, Montazer M, Simon F et al (2015) Novel method for synthesis of silver nanoparticles and their application on wool. Appl Surf Sci 346:477–483

    Article  Google Scholar 

  • Brennan SA, Ní Fhoghlú C, Devitt BM et al (2015) Silver nanoparticles and their orthopaedic applications. Bone Joint J 97-B:582–589

    Google Scholar 

  • Buerki-Thurnherr T, Xiao L, Diener L et al (2013) In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology 7:402–416

    Article  Google Scholar 

  • Butkus MA, Labare MP, Starke JA (2004) Use of aqueous silver to enhance inactivation of coliphageMS-2 by UV disinfection. Appl Environ Microbiol 70:2848–2853

    Article  Google Scholar 

  • Bülbül G, Hayat A, Andreescu S (2015) Portable nanoparticle-based sensors for food safety assessment. Sensors 15:30736–30758

    Article  Google Scholar 

  • Buzea C, Pacheco Blandino II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):17–172

    Article  Google Scholar 

  • Castiglioni S, Cazzaniga A, Perrotta C et al (2015) Silver nanoparticles-induced cytotoxicity requires ERK activation in human bladder carcinoma cells. Toxicol Lett 237:237–243

    Article  Google Scholar 

  • Chaloupka K, Malam Y, Seifalian A (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588

    Article  Google Scholar 

  • Chen P, Wang Z, Zong S et al (2016) pH-sensitive nanocarrier based on gold/silver core–shell nanoparticles decorated multi-walled carbon manotubes for tracing drug release in living cells. Biosens Bioelectron 75:446–451

    Article  Google Scholar 

  • Chen W, Liu Y, Courtney HS et al (2006) In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27:5512–5517

    Article  Google Scholar 

  • Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem 52:1636–1653

    Article  Google Scholar 

  • Chudasama B, Vala AK, Andhariya N et al (2009) Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res 2(12):955–965

    Article  Google Scholar 

  • Collinge C, Goll G, Seligson D et al (1994) Pin tract infections: silver vs uncoated pins. Orthopedics 17(5):445–448

    Google Scholar 

  • Coluccio ML, Francardi M, Gentile F et al (2016) Plasmonic 3D-structures based on silver decorated nanotips for biological sensing. Opt Lasers Eng 76:45–51

    Article  Google Scholar 

  • Cornelis G, Hund-Rinke K, Kuhlbusch T et al (2014) Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol 44:2720–2764

    Article  Google Scholar 

  • Cushen MK, Kerry J, Morris M et al (2012) Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci Technol 24:30–46

    Article  Google Scholar 

  • Del Real AEP, Castillo-Michel H, Kaegi R et al (2016) Fate of Ag-NPs in sewage sludge after application on agricultural soils. Environ Sci Technol 50:1759–1768

    Article  Google Scholar 

  • Dhand V, Soumya L, Bharadwaj S et al (2016) Green synthesis of silver nanoparticles using coffea arabica seed extract and its antibacterial activity. Mater Sci Eng, C 58:36–43

    Article  Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24

    Article  Google Scholar 

  • Durán N, Silveira CP, Durán M et al (2015) Silver nanoparticle protein corona and toxicity: a mini‑review. J Nanobiotechnol 13:55

    Google Scholar 

  • Duran N, Marcarto PD, De Souza GIH et al (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  Google Scholar 

  • El-Hussein A, Mfouo-Tynga I, Abdel-Harith M et al (2015) Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines. J Photochem Photobiol B 153:67–75

    Article  Google Scholar 

  • Emam HE, Saleh NH, Nagy KS et al (2016) Instantly AgNPs deposition through facile solventless technique for poly-functional cotton fabrics. Int J Biol Macromol 84:308–318

    Article  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR et al (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  Google Scholar 

  • Farhadian N, Usefi Mashoof R, Khanizadeh S et al (2016) Streptococcus mutans counts in patients wearing removable retainers with silver nanoparticles vs those wearing conventional retainers: a randomized clinical trial. Am J Orthod Dentofac Orthop 149:155–160

    Article  Google Scholar 

  • Fang W, Wang Z, Zong S et al (2014) PH-controllable drug carrier with SERS activity for targeting cancer cells. Biosens Bioelectron 57:10–15

    Article  Google Scholar 

  • Fedorenko VF, Buklagin DS, Golubev IG et al (2015) Review of Russian nanoagents for crops treatment. Nanotechnol Russ 10:318–324

    Article  Google Scholar 

  • Fewtrell L (2014) Silver: water disinfection and toxicity. Centre for Research into Environment and Health, World Health Organization, WHO, www.who.int

  • Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–750

    Article  Google Scholar 

  • Foldbjerg R, Irving ES, Hayashi Y et al (2012) Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci 130:145–157

    Article  Google Scholar 

  • Foldbjerg R, Jiang X, Micləuş T et al (2015) Silver nanoparticles—wolves in sheep’s clothing? Toxicol Res 4:563–575

    Article  Google Scholar 

  • Fong J, Wood F (2006) Nanocrystalline silver dressings in wound management: a review. Int J Nanomed 1:441–449

    Article  Google Scholar 

  • Freeman AI, Halladay LJ, Cripps P (2012) The effect of silver impregnation of surgical scrub suits on surface bacterial contamination. Vet J 192:489–493

    Article  Google Scholar 

  • Fu C, Zhang X, Savino K et al (2016) Antimicrobial silver-hydroxyapatite composite coatings through two-stage electrochemical synthesis. Surf Coat Technol 301:13–19

    Article  Google Scholar 

  • Furkert F, Sörensen J, Arnoldi J (2011) Antimicrobial efficacy of surface-coated external fixation pins. Curr Microbiol 62(6):1743–1751

    Article  Google Scholar 

  • Gaillet S, Rouanet JM (2015) Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms—a review. Food Chem Toxicol 77:58–63

    Article  Google Scholar 

  • Gambardella C, Ferrando S, Gatti AM et al (2015a) Review: morphofunctional and biochemical markers of stress in sea urchin life stages exposed to engineered nanoparticles. Environmental toxicology. In Press, doi:10.1002/tox.22159

  • Gambardella C, Costa E, Piazza V et al (2015b) Effect of silver nanoparticles on marine organisms belonging to different trophic levels. Mar Environ Res 111:41–49

    Article  Google Scholar 

  • Gamucci O, Bertero A, Gagliardi M et al (2014) Biomedical nanoparticles: overview of their surface immune-compatibility. Coatings 4:139–159

    Article  Google Scholar 

  • Gatti A, Montanari S (2015) Chapter 8: food, drugs and nanoparticles. In: Case studies in nanotoxicology and particle toxicology. Elsevier Inc. pp 163–194

    Google Scholar 

  • Gil PR, Oberderster G, Elder A et al (2010) Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano 4:5527–5531

    Article  Google Scholar 

  • Giret S, Wong Chi Man M, Carcel C (2015) Mesoporous-silica-functionalized nanoparticles for drug delivery. Chem Eur J 21:13850–13865

    Article  Google Scholar 

  • Gosheger G, Hardes J, Ahrens H et al (2004) Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials 25:5547–5556

    Article  Google Scholar 

  • Govindaraju K, Krishnamoorthy K, Alsagaby SA et al (2015) Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. IET Nanobiotechnol 9:325–330

    Article  Google Scholar 

  • Gnanadhas DP, Ben Thomas M, Thomas R et al (2013) Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrob Agents Chemother 57:4945–4955

    Article  Google Scholar 

  • Gumpu MB, Sethuraman S, Krishnan UM et al (2015) A review on detection of heavy metal ions in water—an electrochemical approach. Sens Actuators B 213:515–533

    Article  Google Scholar 

  • Gurunathan S, Raman J, Abd Malek SN et al (2013a) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomed 8:4399–4413

    Google Scholar 

  • Gurunathan S, Han JW, Dayem AA et al (2013b) Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7). J Ind Eng Chem 19:1600–1605

    Article  Google Scholar 

  • Gurunathan S, Han JW, Park JH et al (2015) Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy. Int J Nanomed 10:6257–6276

    Article  Google Scholar 

  • Hackenberg S, Scherzed A, Kessler M et al (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33

    Article  Google Scholar 

  • Haider A, Kang IK (2015) Preparation of silver nanoparticles and their industrial and biomedical applications: a comprehensive review. Adv Mater Sci Eng 2015:165257

    Article  Google Scholar 

  • Hannon JC, Kerry J, Cruz-Romero M et al (2015) Advances and challenges for the use of engineered nanoparticles in food contact materials. Trends Food Sci Technol 43:43–62

    Article  Google Scholar 

  • Hardes J, von Eiff C, Streitbuerger A et al (2010) Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J Surg Oncol 101:389–395

    Google Scholar 

  • He S, Feng Y, Ni J et al (2016) Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere 147:195–202

    Article  Google Scholar 

  • Ho CM, Yau SKW, Lok CN et al (2010) Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study. Chem Asian J 5:285–293

    Article  Google Scholar 

  • Ho CM, Wong CK, Yau SKW et al (2011) Oxidative dissolution of silver nanoparticles by dioxygen: a kinetic and mechanistic study. Chem Asian J 6:2506–2511

    Article  Google Scholar 

  • Hong IS, Jang GB, Lee HY et al (2015) Targeting cancer stem cells by using the nanoparticles. Int J Nanomed 10:251–260

    Google Scholar 

  • Hu CMJ, Aryal S, Zhang L (2010) Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv 1:323–334

    Article  Google Scholar 

  • Hu G, Cai Y, Tu Z et al (2015) Reducing the cytotoxicity while improving the anti-cancer activity of silver nanoparticles through α-tocopherol succinate modification. RSC Adv 5:82050–82055

    Article  Google Scholar 

  • Huang Y, Li X, Liao Z et al (2007) A randomized comparative trial between acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns 33:161–166

    Article  Google Scholar 

  • Jacob JA, Shanmugam A (2015) Silver nanoparticles provoke apoptosis of Dalton’s ascites lymphoma in vivo by mitochondria dependent and independent pathways. Colloids Surf B 136:1011–1016

    Article  Google Scholar 

  • Jia Z, Xiu P, Li M et al (2016) Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials 75:203–222

    Article  Google Scholar 

  • Jiang X, Foldbjerg R, Miclaus T et al (2013) Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicol Lett 222:55–63

    Article  Google Scholar 

  • Jia Z, Li M, Xiu P et al (2015) A novel cytocompatible, hierarchical porous Ti6Al4V scaffold with immobilized silver nanoparticles. Mater Lett 157:143–146

    Article  Google Scholar 

  • Jiang X, Miclaus T, Wang L et al (2015) Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology 9:181–189

    Article  Google Scholar 

  • Joseph MM, George SK, Sreelekha TT (2016) Bridging ‘green’ with nanoparticles: biosynthesis approaches for cancer management and targeting of cancer stem cells. Curr Nanosci 12:47–62

    Article  Google Scholar 

  • Kalishwaralal K, BarathManiKanth S, Pandian SRK et al (2010) Silver nano—a trove for retinal therapies. J Control Release 145:76–90

    Article  Google Scholar 

  • Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at non-cytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43:6046–6051

    Article  Google Scholar 

  • Kendall M, Holgate S (2012) Health impact and toxicological effects of nanomaterials in the lung. Respirology 17:743–758

    Google Scholar 

  • Khanna P, Ong C, Bay BH et al (2015) Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials 5:1163–1180

    Article  Google Scholar 

  • Khurana P, Thatai S, Kumar D (2014) Chapter 4: fabrication, properties of nanoshells with controllable surface charge and its applications. In: Tiwari A, Nordin AN (eds) Advanced biomaterials and biodevices. Scrivener Publishing LLC, Wiley, pp 121–146

    Google Scholar 

  • Kim JY, Lee C, Cho M et al (2008) Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation. Water Res 42:356–362

    Article  Google Scholar 

  • Kim S, Choi JE, Choi J et al (2009) Oxidative stress-dependent toxicity of silver nano-particles in human hepatoma cells. Toxicol In Vitro 23:1076–1084

    Article  Google Scholar 

  • Kim HR, Kim MJ, Lee SY et al (2011) Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutat Res 726:129–135

    Article  Google Scholar 

  • Kim S, Ryu DY (2012) Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 33:78–89

    Article  Google Scholar 

  • Kononenko V, Narat M, Drobne D (2015) Nanoparticle interaction with the immune system. Arh Hig Rada Toksikol 66:97–108

    Article  Google Scholar 

  • Kumar A, Vemula PK, Ajayan PM et al (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241

    Article  Google Scholar 

  • Kuorwel KK, Cran MJ, Orbell JD et al (2015) Review of mechanical properties, migration, and potential applications in active food packaging systems containing nanoclays and nanosilver. Compr Rev Food Sci Food Safety 14:411–430

    Article  Google Scholar 

  • Langer J, Novikov SM, Liz-Marzán1 LM (2015) Sensing using plasmonic nanostructures and nanoparticles. Nanotechnology 26:322001

    Google Scholar 

  • Larguinho M, Baptista PV (2015) Gold and silver nanoparticles for clinical diagnostics—from genomics to proteomics. J Proteomics 75:2811–2823

    Article  Google Scholar 

  • Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10:339–354

    Article  Google Scholar 

  • Lewis G (2016) Properties of nanofiller-loaded poly (methyl methacrylate) bone cement composites for orthopedic applications: a review. J Biomed Mater Res—Part B Appl Biomater (in press). doi:10.1002/jbm.b.33643

  • Li P, Tong Z, Huo L et al (2016) Antibacterial and biological properties of biofunctionalized nanocomposites on titanium for implant application. J Biomater Appl 31(2):205–214

    Article  Google Scholar 

  • Li S, Guo Z, Liu Z (2015) Surface-enhanced Raman spectroscopy + support vector machine: a new noninvasive method for prostate cancer screening? Expert Rev Anticancer Ther 15:5–7

    Article  Google Scholar 

  • Li D, Feng S, Huang H et al (2014) Label-free detection of blood plasma using silver nanoparticle based surface-enhanced Raman spectroscopy for esophageal cancer screening. J Nanosci Nanotechnol 10:478–484

    Google Scholar 

  • Li Z, Sheng C (2014) Nanosensors for food safety. J Nanosci Nanotechnol 14:905–912

    Article  Google Scholar 

  • Li J, Wang Z, Gryczynski I, Mandecki W (2010) Silver nanoparticle-enhanced fluorescence in microtransponder-based immuno- and DNA hybridization assays. Anal Bioanal Chem 398:1993–2001

    Article  Google Scholar 

  • Liang J, Zeng F, Zhang M et al (2015) Green synthesis of hyaluronic acid-based silver nanoparticles and their enhanced delivery to CD44+ cancer cells. RSC Adv 5:43733

    Article  Google Scholar 

  • Lim DH, Jang J, Kim S et al (2012) The effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress genes in human macrophages using cDNA microarray analysis. Biomaterials 33:4690–4699

    Article  Google Scholar 

  • Lin J, Chen R, Feng S et al (2011) A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle-based SERS spectroscopy for potential applications in noninvasive cancer detection. Nanomed Nanotechnol Biol Med 7:655–663

    Article  Google Scholar 

  • Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175

    Article  Google Scholar 

  • Liu J, Sonshine DA, Shervani S et al (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913

    Article  Google Scholar 

  • Liu J, Zhao Y, Guo Q et al (2012) TAT-modified nanosilver for combating multidrug-resistant cancer. Biomaterials 33:6155–6161

    Article  Google Scholar 

  • Lovatel RH, Nevesa RM, Oliveira GR et al (2015) Disinfection of biologically treated industrial wastewater using montmorillonite/alginate/nanosilver hybrids. J Water Process Eng 7:273–279

    Article  Google Scholar 

  • Lu S, Gao W, Gu HY (2008) Construction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns 34:623–628

    Article  Google Scholar 

  • Malhi S, Gu X (2015) Nanocarrier-mediated drugs targeting cancer stem cells: an emerging delivery approach. Expert Opin Drug Deliv 12:1177–1201

    Article  Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  Google Scholar 

  • Martirosyan A, Schneider Y-J (2014) Engineered nanomaterials in food: implications for food safety and consumer health. Int J Environ Res Public Health 11:5720–5750

    Article  Google Scholar 

  • Maynard AD, Warheit DB, Philbert MA (2011) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 120:109–129

    Article  Google Scholar 

  • Miola M, Fucale G, Maina G et al (2017) Composites bone cements with different viscosities loaded with a bioactive and antibacterial glass. Journal

    Google Scholar 

  • Mitrovic S, Adamovic D, Zivic F et al (2014) Friction and wear behavior of shot peened surfaces of 36CrNiMo4 and 36NiCrMo16 alloyed steels under dry and lubricated contact conditions. Appl Surf Sci 290:223–232

    Article  Google Scholar 

  • Miura N, Shinohara Y (2009) Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun 390:733–737

    Article  Google Scholar 

  • Molleman B, Hiemstra T (2015) Surface structure of silver nanoparticles as a model for understanding the oxidative dissolution of silver ions. Langmuir 49:13361–13372

    Article  Google Scholar 

  • Mohamud R, Xiang SD, Selomulya C et al (2014) The effects of engineered nanoparticles on pulmonary immune homeostasis. Drug Metab Rev 46:176–190

    Article  Google Scholar 

  • Moon JJ, Huang B, Irvine DJ (2012) Engineering nano- and microparticles to tune immunity. Adv Mater 24:3724–3746

    Article  Google Scholar 

  • Murphy M, Ting K, Zhang X et al (2015) Current development of silver nanoparticle preparation, investigation, and application in the field of medicine. J Nanomater 2015:696918

    Article  Google Scholar 

  • Myrzakhanova M, Gambardella C, Falugi C et al (2013) Effects of nanosilver exposure on cholinesterase activities, CD41, and CDF/LIF-like expression in zebraFish (Danio rerio) larvae. Biomed Res Int 2013:205183

    Article  Google Scholar 

  • Nair L, Laurencin C (2008) Nanofibers and nanoparticles for orthopaedic surgery applications. J Bone Jt. Surg Am 90:128–131

    Article  Google Scholar 

  • Nayak D, Ashe S, Rauta PR et al (2016) Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater Sci Eng C 58:44–52

    Article  Google Scholar 

  • Olasagasti M, Gatti A, Capitani F et al (2014) Toxic effects of colloidal nanosilver in zebrafish embryos. J Appl Toxicol 34:562–575

    Article  Google Scholar 

  • Ortega FG, Fernández-Baldo MA, Fernández JG et al (2015) Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. Int J Nanomed 10:2021–2031

    Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 27:1712–1720

    Article  Google Scholar 

  • Pandita D, Kumar S, Lather V (2015) Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospectives. Drug Discovery Today 20:95–104

    Article  Google Scholar 

  • Parameswaran AD, Roberts CS, Seligson D et al (2003) Pin tract infection with contemporary external fixation: how much of a problem? J Orthop Trauma 17:503–507

    Article  Google Scholar 

  • Park HJ, Kim JY, Kim J et al (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032

    Article  Google Scholar 

  • Park HS, Kim KH, Jang S et al (2010) Attenuation of allergic airway inflammation and hyperresponsiveness in a murine model of asthma by silver nanoparticles. Int J Nanomedicine 5:505–515

    Article  Google Scholar 

  • Percival S, Bowler P, Russell D (2005) Bacterial resistance to silver in wound care. J Hosp Infect 60(1):1–7

    Article  Google Scholar 

  • Perera S, Bhushan B, Bandara R et al (2013) Morphological, antimicrobial, durability, and physical properties of untreated and treated textiles using silver-nanoparticles. Colloids Surf A: Physicochem Eng Aspects 436:975–989

    Article  Google Scholar 

  • Petrarca C, Clemente E, Amato V et al (2015) Engineered metal based nanoparticles and innate immunity. Clin Mol Allergy 13:13. doi:10.1186/s12948-015-0020-1

    Article  Google Scholar 

  • Pimentel RC, Martínez ESM, García AM et al (2013) Silver nanoparticles nanocarriers, synthesis and toxic effect on cervical cancer cell lines. BioNanoScience 3:198–207

    Article  Google Scholar 

  • Polak P, Shefi O (2015) Nanometric agents in the service of neuroscience: manipulation of neuronal growth and activity using nanoparticles. Nanomed Nanotechnol Biol Med 11:1467–1479

    Article  Google Scholar 

  • Praveena SM, Aris AZ (2015) Application of low-cost materials coated with silver nanoparticle as water filter in Escherichia coli removal. Water Qual Exposure Health 7(4):617–625

    Article  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  Google Scholar 

  • Rajeshkumar S, Kannas C, Annadurai G (2012) Green synthesis of silver nanoparticles using marine brown algae turbinaria conoides and its antibacterial activity. Int J Pharm Bio Sci 3:502–510

    Google Scholar 

  • Raza ZA, Rehman A, Mohsin M et al (2015) Development of antibacterial cellulosic fabric via clean impregnation of silver nanoparticles. J Clean Prod 101:377–386

    Article  Google Scholar 

  • Rehan M, Mashaly HM, Mowafi S et al (2015) Multi-functional textile design using in-situ Ag NPs incorporation into natural fabric matrix. Dyes Pigm 118:9–17

    Article  Google Scholar 

  • Remya RR, Rajasree SRR, Aranganathan L et al (2015) An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnol Rep 8:110–115

    Article  Google Scholar 

  • Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43:1501–1518

    Article  Google Scholar 

  • Sadeghi B, Garmaroudi FS, Hashemi M et al (2012) Comparison of the anti-bacterial activity on the nanosilver shapes: nanoparticles, nanorods and nanoplates. Adv Powder Technol 23:22–26

    Article  Google Scholar 

  • Sanpui P, Chattopadhyay A, Ghosh SS (2011) Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Interfaces 3:218–228

    Article  Google Scholar 

  • Schaumann GE, Baumann T, Lang F et al (2015a) Engineered nanoparticles in soils and waters. Sci Total Environ 535:1–2

    Article  Google Scholar 

  • Schaumann G, Philippe A, Bundschuh M et al (2015b) Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535:3–19

    Article  Google Scholar 

  • Schlich K, Klawonn T, Terytze K et al (2013) Hazard assessment of a silver nanoparticle in soil applied via sewage sludge. Environ Sci Europe 25:17

    Article  Google Scholar 

  • Shahverdi AR, Fakhimi A, Shahverdi HR et al (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol Biol Med 3:168–171

    Google Scholar 

  • Sharma S, Chockalingam S, Sanpui P et al (2014) Silver nanoparticles impregnated alginate-chitosan-blended nanocarrier induces apoptosis in human glioblastoma cells. Adv Healthc Mater 3:106–114

    Article  Google Scholar 

  • Shimazaki T, Miyamoto H, Ando Y et al (2010) In vivo antibacterial and silver-releasing properties of novel thermal sprayed silver-containing hydroxyapatite coating. J Biomed Mater Res B Appl Biomater 92:386–389

    Google Scholar 

  • Shen S, Xia JX, Wang J (2016) Nanomedicine-mediated cancer stem cell therapy. Biomaterials 74:1–18

    Article  Google Scholar 

  • Singh PK, Jairath G, Ahlawat SS (2016) Nanotechnology: a future tool to improve quality and safety in meat industry. J Food Sci Technol 53:1739. doi:10.1007/s13197-015-2090-y

  • Siripattanakul-Ratpukdi S, Fürhacker M (2014) Review: issues of silver nanoparticles in engineered environmental treatment systems. Water Air Soil Pollut 225:1939

    Google Scholar 

  • Slane J, Vivanco J, Rose W et al (2015) Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Mater Sci Eng C Mater Biol Appl 48:188–196

    Article  Google Scholar 

  • Soenen SJ, Parak WJ, Rejman J et al (2015) (Intra)Cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev 115:2109–2135

    Article  Google Scholar 

  • Song L, Mao K, Zhou X et al (2016) A novel biosensor based on Au@Ag core–shell nanoparticles for SERS detection of arsenic(III). Talanta 146:285–290

    Article  Google Scholar 

  • Sotirioua GA, Teleki A, Camenzind A et al (2011) Nanosilver on nanostructured silica: antibacterial activity and Ag surface area. Chem Eng J 170(2011):547–554

    Article  Google Scholar 

  • Stebounova LV, Guio E, Grassian VH (2011) Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res 13:233–244

    Article  Google Scholar 

  • Stephen Inbaraj B, Chen BH (2016) Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J Food Drug Anal 24:15–28

    Article  Google Scholar 

  • Stevanovic M (2014) Chapter 10: assembly of polymers/metal nanoparticles and their applications as medical devices. In: Tiwari A, Nordin AN (eds) Advanced biomaterials and biodevices. Scrivener Publishing LLC, Wiley, pp 121–146

    Google Scholar 

  • Sujitha V, Murugan K, Paulpandi M et al (2015) Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114:3315–3325

    Article  Google Scholar 

  • Sur I, Cam D, Kahraman M et al (2010) Interaction of multi-functional silver nanoparticles with living cells. Nanotechnology 21:175104

    Article  Google Scholar 

  • Tang B, Li J, Hou X et al (2013) Colorful and antibacterial silk fiber from anisotropic silver nanoparticles. Ind Eng Chem Res 52:4556–4563

    Article  Google Scholar 

  • Theodorou IG, Ryan MP, Tetley TD et al (2014) Inhalation of silver nanomaterials—seeing the risks. Int J Mol Sci 15:23936–23974

    Article  Google Scholar 

  • Tian B, Chen W, Yu D et al (2016) Fabrication of silver nanoparticle-doped hydroxyapatite coatings with oriented block arrays for enhancing bactericidal effect and osteoinductivity. J Mech Behav Biomed Mater 61:345–359

    Article  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780

    Article  Google Scholar 

  • Vandebriel RJ, De JWH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 5:61–71

    Article  Google Scholar 

  • Venil CK, Sathishkumar P, Malathi M et al (2016) Synthesis of flexirubin-mediated silver nanoparticles using chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity. Mater Sci Eng, C 59:228–234

    Article  Google Scholar 

  • Vivekanandhan S, Christensen L, Misra M et al (2012) Green process for impregnation of silver nanoparticles into microcrystalline cellulose and their antimicrobial bionanocomposite films. J Biomater Nanobiotechnol 3:371–376

    Article  Google Scholar 

  • Wacker MG, Proykova A, Santos GML (2016) Dealing with nanosafety around the globe—regulation vs. innovation. Int J Pharm 509:95–106

    Article  Google Scholar 

  • Wadhera A, Fung M (2005) Systemic argyria associated with ingestion of colloidal silver. Dermatol Online J 11:12

    Google Scholar 

  • Walters CR, Pool EJ, Somerset VS (2014) Ecotoxicity of silver nanomaterials in the aquatic environment: a review of literature and gaps in nano-toxicological research. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 49:1588–1601

    Article  Google Scholar 

  • Wang Y, Newell BB, Irudayaraj J (2012) Folic acid protected silver nanocarriers for targeted drug delivery. J Biomed Nanotechnol 8:751–759

    Article  Google Scholar 

  • Wang L, Zhang T, Li P et al (2015) Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity. ACS Nano 9:6532–6547

    Article  Google Scholar 

  • Wassall M, Santin M (1997) Adhesion of bacteria to stainless steel and silver-coated orthopedic external fixation pins. J Biomed Mater Res 36(3):325–330

    Article  Google Scholar 

  • Wei L, Lu J, Xu H et al (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20:595–601

    Article  Google Scholar 

  • Wilhelmi V, Fischer U, Weighardt H et al (2013) Zinc oxide nanoparticles induce necrosis and apoptosis in macrophages in a p47phox- and Nrf2-independent manner. PLoS ONE 8:e65704

    Article  Google Scholar 

  • Xue Y, Zhang S, Huang Y et al (2012) Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J Appl Toxicol 32:890–899

    Article  Google Scholar 

  • Yang EJ, Kim S, Kim JS et al (2012) Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials 33:6858–6867

    Article  Google Scholar 

  • Yang J, Palla M, Bosco FG et al (2013) Surface-enhanced Raman spectroscopy based quantitative bioassay on aptamer-functionalized nanopillars using large-area Raman mapping. ACS Nano 7:5350–5359

    Article  Google Scholar 

  • Yu SJ, Yin YG, Liu JF (2013) Silver nanoparticles in the environment. Environ Sci Processes Impacts 15:78–92

    Article  Google Scholar 

  • Zhang C, Hu Z, Deng B (2016) Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms. Water Res 88:403–427

    Article  Google Scholar 

  • Zhang X, Niu H, Yan J et al (2011) Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloids Surf, A 375:186–192

    Article  Google Scholar 

  • Zhao F, Zhao Y, Liu Y et al (2011) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7:1322–1337

    Article  Google Scholar 

  • Zheng Z, Yin W, Zara JN et al (2010) The use of BMP-2 coupled—nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials 31:9293–9300

    Article  Google Scholar 

  • Zhu X, Li J, He H et al (2015) Application of nanomaterials in the bioanalytical detection of disease-related genes. Biosens Bioelectron 74:113–133

    Article  Google Scholar 

  • Zi W, Ren W, Xiao F et al (2016) Ag nanoparticle enhanced light trapping in hydrogenated amorphous silicon germanium solar cells on flexible stainless steel substrate. Sol Energy Mater Sol Cells 144:63–67

    Article  Google Scholar 

  • Zivic F, Babic M, Grujovic N, Mitrovic S, Adamovic D (2013) Influence of loose PMMA bone cement particles on the corrosion assisted wear of the orthopaedic AISI 316LVM stainless steel during reciprocating sliding. Wear 300:65–77

    Article  Google Scholar 

  • Zivic F, Babic M, Grujovic N et al (2012) Effect of vacuum-treatment on deformation properties of PMMA bone cement. J Mech Behav Biomed Mater 5:129–138

    Article  Google Scholar 

  • Zook JM, Long SE, Cleveland D et al (2011) Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance. Anal Bioanal Chem 401:1993–2002

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by a research grant from Science Foundation Ireland (SFI) under Grant Number 12/IA/1576 and part of the project III41017—Virtual Human Osteoarticular System and its Application in Preclinical and Clinical Practice which is sponsored by the Ministry of Education, Science and Technological Development of the Republic of Serbia for the period of 2011–2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Zivic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Zivic, F., Grujovic, N., Mitrovic, S., Ahad, I.U., Brabazon, D. (2018). Characteristics and Applications of Silver Nanoparticles. In: Brabazon, D., et al. Commercialization of Nanotechnologies–A Case Study Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-56979-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56979-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56978-9

  • Online ISBN: 978-3-319-56979-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics