Skip to main content

Introduction

  • Chapter
  • First Online:
Computational Geotechnics

Part of the book series: SpringerBriefs in Energy ((BRIESCMES))

  • 365 Accesses

Abstract

The rising energy demand of the growing world population is a significant cause for environmental risks associated with harmful emissions, hazardous waste, destructive land use, etc. This creates a pressing need to avoid or resolve conflicts between a continuing socio-technical development on the one hand and the preservation of the natural basis of our existence on the other. In order to build an ecologically, economically and socially sustainable future, environmental, climate and energy policies are targeting measures such as the decarbonisation of the energy system, resource efficiency and sustainability, while maintaining energy security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://docs.opengeosys.org/books.

References

  • Adamson K-A (2004) Hydrogen from renewable resources—the hundred year commitment. Energy Policy 32(10):1231–1242

    Article  Google Scholar 

  • Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Kolditz O, Rabbel W, Schanz T, Schäfer D, Würdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70(8):3935–3943

    Article  Google Scholar 

  • Böttcher N, Görke U-J, Kolditz O, Nagel T (2017) Thermo-mechanical investigation of salt caverns for short-term hydrogen storage. Environ Earth Sci 76(3):98

    Article  Google Scholar 

  • Chan K, Brodsky N, Fossum A, Bodner S, Munson D (1994) Damage-induced nonassociated inelastic flow in rock salt. Int J Plast 10(6):623–642

    Article  Google Scholar 

  • Cristescu N (1985) Irreversible dilatancy or compressibility of viscoplastic rock-like materials and some applications. Int J Plast 1(3):189–204

    Article  MathSciNet  Google Scholar 

  • Cristescu N (1994) A procedure to determine nonassociated constitutive equations for geomaterials. Int J Plast 10(2):103–131

    Article  MATH  Google Scholar 

  • Cristescu ND, Hunsche U (1998) Time effects in rock mechanics. Wiley, New York

    Google Scholar 

  • Crotogino F, Donadei S, Bünger U, Landinger H (2010) Large-scale hydrogen underground storage for securing future energy supplies. In: 18th World hydrogen energy conference, vol. 78, pp 37–45

    Google Scholar 

  • Desai C, Zhang D (1987) Viscoplastic model for geologic materials with generalized flow rule. Int J Numer Anal Methods Geomech 11(6):603–620

    Article  MATH  Google Scholar 

  • Gahleitner G (2013) Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. Int J Hydrog Energy 38(5):2039–2061

    Article  Google Scholar 

  • Greenblatt JB, Succar S, Denkenberger DC, Williams RH, Socolow RH (2007) Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation. Energy Policy 35(3):1474–1492

    Article  Google Scholar 

  • Hampel A, Günther R, Salzer K, Minkley W, Pudewills A, Leuger B, Zapf D, Rokahr R, Herchen K, Wolters R et al (2010) BMBF-Verbundprojekt: Vergleich aktueller Stoffgesetze und Vorgehensweisen anhand von 3D-Modellberechnungen zum mechanischen Langzeitverhalten eines realen Untertagebauwerks im Steinsalz. Technical Report

    Google Scholar 

  • Harris AF, McDermott C, Kolditz O, Haszeldine R (2015) Modelling groundwater flow changes due to thermal effects of radioactive waste disposal at a hypothetical repository site near Sellafield, UK. Environ Earth Sci 74(2):1589–1602

    Article  Google Scholar 

  • Heusermann S, Lux K-H, Rokahr R (1983) Entwicklung mathematisch-mechanischer Modelle zur Beschreibung des Stoffverhaltens von Salzgestein in Abhängigkeit von der Zeit und der Temperatur auf der Grundlage von Laborversuchen mit begleitenden kontinuumsmechanischen Berechnungen nach der Methode der finiten Elemente. Fachinformationszentrum Energie, Physik, Mathematik, Karlsruhe

    Google Scholar 

  • Heusermann S, Rolfs O, Schmidt U (2003) Nonlinear finite-element analysis of solution mined storage caverns in rock salt using the LUBBY2 constitutive model. Comput Struct 81(8–11):629–638; K.J Bathe 60th Anniversary Issue

    Google Scholar 

  • Hunsche U, Schulze O (1994) Das Kriechverhalten von Steinsalz. Kali und Steinsalz 11(8/9): 238–255

    Google Scholar 

  • Ibrahim H, Ilinca A, Perron J (2008) Energy storage systems – characteristics and comparisons. Renew Sust Energ Rev 12(5):1221–1250

    Article  Google Scholar 

  • Jin J, Cristescu N (1998) An elastic/viscoplastic model for transient creep of rock salt. Int J Plast 14(1):85–107

    Article  MATH  Google Scholar 

  • Kabuth A, Dahmke A, Beyer C, Bilke L, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U-J, Köber R, Rabbel W, Schanz T, Schäfer D, Würdemann H, Bauer S (2016) Energy storage in the geological subsurface: dimensioning, risk analysis and spatial planning: the ANGUS+ project. Environ Earth Sci 76(1):23

    Article  Google Scholar 

  • Kolymbas D, Fellin W, Schneider-Muntau B, Medicus G, Schranz F (2016) Zur Rolle der Materialmodelle beim Standsicherheitsnachweis. Geotechnik 39(2):89–97

    Article  Google Scholar 

  • Li M, Zhang H, Xing W, Hou Z, Were P (2015) Study of the relationship between surface subsidence and internal pressure in salt caverns. Environ Earth Sci 73(11):6899–6910

    Article  Google Scholar 

  • Lund H, Salgi G (2009) The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Convers Manag 50(5):1172–1179

    Article  Google Scholar 

  • Lund H, Salgi G, Elmegaard B, Andersen AN (2009) Optimal operation strategies of compressed air energy storage (CAES) on electricity spot markets with fluctuating prices. Appl Therm Eng 29(5):799–806

    Article  Google Scholar 

  • Lux K-H (1984) Gebirgsmechanischer Entwurf und Felderfahrungen im Salzkavernenbau: ein Beitrag zur Entwicklung von Prognosemodellen für den Hohlraumbau im duktilen Salzgebirge. Ferdinand Enke Verlag, Stuttgart

    Google Scholar 

  • Lux KH, Rokahr R (1984) Laboratory investigations and theoretical statements as a basis for the design of cavern in rock salt formation. In: Proceedings of the 1st conference on the mechanical behavior of salt, pp 169–179

    Google Scholar 

  • Ma H, Yang C, Li Y, Shi X, Liu J, Wang T (2015) Stability evaluation of the underground gas storage in rock salts based on new partitions of the surrounding rock. Environ Earth Sci 73(11):6911–6925

    Article  Google Scholar 

  • Minkley W (2004) Gebirgsmechanische Beschreibung von Entfestigung und Sprödbrucherscheinungen im Carnallitit. Shaker, Herzogenrath

    Google Scholar 

  • Minkley W, Mühlbauer J (2007) Constitutive models to describe the mechanical behavior of salt rocks and the imbedded weakness planes. In: Wallner M, Lux K, Minkley W, Hardy H (eds) The mechanical behaviour of salt – understanding of THMC processes in salt: 6th conference (SaltMech6), Hannover, Germany, pp 119–127

    Google Scholar 

  • Minkley W, Menzel W, Konietzky H, te Kamp L (2001) A visco-elasto-plastic softening model and its application for solving static and dynamic stability problems in potash mining. In: Billaux D et al (ed) FLAC and numerical modeling in geomechanics – 2001 (Proceedings of the 2nd international FLAC conference, Lyon, France), pp 27–27

    Google Scholar 

  • Minkley W, Knauth M, Brückner D (2013) Discontinuum-mechanical behaviour of salt rocks and the practical relevance for the integrity of salinar barriers. In: 47th US rock mechanics/geomechanics symposium. American Rock Mechanics Association, San Francisco

    Google Scholar 

  • Minkley W, Knauth M, Fabig T, Farag N (2015a) Stability and integrity of salt caverns under consideration of hydro-mechanical loading. In: Mechanical behaviour of salt VIII. CRC Press, Leiden, pp 217–227

    Google Scholar 

  • Minkley W, Mühlbauer J, Lüdeling C (2015b) Dimensioning principles in potash and salt mining to achieve stability and integrity. In: 49th US rock mechanics/geomechanics symposium. American Rock Mechanics Association, San Francisco

    Google Scholar 

  • Nagel T, Minkley W, Böttcher N, Naumov D, Görke U-J, Kolditz O (2017) Implicit numerical integration and consistent linearization of inelastic constitutive models of rock salt. Comput Struct 182:87–103

    Article  Google Scholar 

  • Ozarslan A (2012) Large-scale hydrogen energy storage in salt caverns. Int J Hydrogen Energy 37(19):14265–14277; {HYFUSENSpecial} Issue for the 4th national - 3rd Latin American conference on hydrogen and sustainable energy sources (HYFUSEN), 6-9 June 2011, Mar Del Plata, Argentina

    Google Scholar 

  • Pudewills A (2005) Numerical modelling of the long-term evolution of EDZ: Development of material models, implementation in finite-element codes, and validation. Wissenschaftliche Berichte FZKA 7185

    Google Scholar 

  • Pudewills A, Droste J (2003) Numerical modeling of the thermomechanical behavior of a large-scale underground experiment. Comput Struct 81(8):911–918

    Article  Google Scholar 

  • Pudewills A, Müller-Hoeppe N, Papp R (1995) Thermal and thermomechanical analyses for disposal in drifts of a repository in rock salt. Nucl Technol 112(1):79–88

    Google Scholar 

  • Safaei H, Keith DW, Hugo RJ (2013) Compressed air energy storage (CAES) with compressors distributed at heat loads to enable waste heat utilization. Appl Energy 103:165–179

    Article  Google Scholar 

  • Sicsic P, Bérest P (2014) Thermal cracking following a blowout in a gas-storage cavern. Int J Rock Mech Min Sci 71:320–329

    Google Scholar 

  • Taylor J, Alderson J, Kalyanam K, Lyle A, Phillips L (1986) Technical and economic assessment of methods for the storage of large quantities of hydrogen. Int J Hydrog Energy 11(1):5–22

    Article  Google Scholar 

  • Wang G, Guo K, Christianson M, Konietzky H (2011) Deformation characteristics of rock salt with mudstone interbeds surrounding gas and oil storage cavern. Int J Rock Mech Min Sci 48(6):871–877

    Article  Google Scholar 

  • Xing W, Zhao J, Hou Z, Were P, Li M, Wang G (2015) Horizontal natural gas caverns in thin-bedded rock salt formations. Environ Earth Sci 73(11):6973–6985

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nagel, T., Böttcher, N., Görke, UJ., Kolditz, O. (2017). Introduction. In: Computational Geotechnics. SpringerBriefs in Energy(). Springer, Cham. https://doi.org/10.1007/978-3-319-56962-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56962-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56960-4

  • Online ISBN: 978-3-319-56962-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics