The Bioarchaeology of Back Pain

  • Kimberly A. PlompEmail author
Part of the Bioarchaeology and Social Theory book series (BST)


Back pain is a major health issue in modern populations, with most people experiencing it at some point in their lives. Spinal lesions are also commonly identified in archaeological populations. However, the association of these lesions with clinical symptoms of pain and disability can be unclear. This chapter provides a brief summary of spinal pathologies commonly identified in bioarchaeological investigations and a discussion of their clinical significance in modern populations. The focus will be on degenerative and traumatic lesions, such as osteoarthritis, spondylosis , disc herniations, and spondylolysis. It is hoped that this chapter will serve as a reference for bioarchaeologists who wish to discuss the possible associations between spinal pathologies, pain, and disability in the past and to interpret how these lesions may have influenced quality of life of the individuals they are studying.


Disability Impairment Bioarchaeology Schmorl’s nodes Spondylolysis Apophyseal osteoarthritis Costovertebral osteoarthritis Spondylosis 



The author would like to thank Mark Collard and the Human Evolutionary Studies Program in the Department of Archaeology, Simon Fraser University for support during the preparation of this chapter. Also, I would like to thank Shannon Wood of the Department of Archaeology, Simon Fraser University for permission to research and photograph the collections, and Claire Greenlow, Laura Whitehouse, and Rebecca Gilmore for reading early drafts and providing editorial suggestions. And finally, special thanks to the editors and the anonymous reviewers for their insightful and supportive feedback and suggestions.


  1. Adams, M. A., & Dolan, P. (2012). Intervertebral disc degeneration: Evidence for two distinct phenotypes. Journal of Anatomy, 221(6), 497–506.CrossRefGoogle Scholar
  2. Andersson, G. B. J. (1997). The epidemiology of spinal disorders. In J. W. Frymoyer (Ed.), The adult spine: Principles and practice (2nd ed., pp. 93–141). Philadelphia, PA: Lippincott-Raven.Google Scholar
  3. Andersson, H. I., Ejlertsoon, G., Leden, I., & Rosenberg, C. (1993). Chronic pain in a geographically defined general population: Studies of differences in age, gender, social class, and pain localization. Clinical Journal of Pain, 9(3), 174–182.CrossRefGoogle Scholar
  4. Barnett, C. H., Davies, D. V., & McConaill, M. A. (1961). Synovial joints, their structure and mechanics. Springfield, IL: Charles C. Thomas.Google Scholar
  5. Benhamou, C. L., Roux, C., Tourliere, D., Gervais, T., Viala, J. F., & Amor, B. (1993). Pseudovosceral pain referred from costovertebral arthropathies. Spine, 18(6), 790–795.CrossRefGoogle Scholar
  6. Binder, A. I. (2007). Cervical spondylosis and neck pain. British Medical Journal, 334, 527–531.CrossRefGoogle Scholar
  7. Bourke, J. (2014). The story of pain: From prayer to painkillers. Oxford, UK: Oxford University Press.Google Scholar
  8. Borenstein, D. (2004). Does osteoarthritis of the lumbar spine cause chronic low back pain? Current Pain and Headache Reports, 8, 512–517.CrossRefGoogle Scholar
  9. Bradgley, C. E. (1941). The articular facets in relation to low-back pain and sciatic radiation. The Journal of Bone and Joint Surgery, 23(2), 481–496.Google Scholar
  10. Bridges, P. S. (1994). Vertebral arthritis and physical activities in the prehistoric southeastern United States. American Journal of Physical Anthropology, 93, 83–93.CrossRefGoogle Scholar
  11. Buchbinder, R., Blyth, F. M., March, L. M., Brooks, P., Woolf, A. D., & Hoy, D. G. (2013). Placing the Global burden of low back pain in context. Best Practice and Research Clinical Rheumatism, 27, 575–589.CrossRefGoogle Scholar
  12. Burke, K. L. (2012). Schmorl’s nodes in an American military population: Frequency, Formation, and Etiology. Journal of Forensic Sciences, 57(3), 571–577.CrossRefGoogle Scholar
  13. Cholewicki, J., & McGill, S. (1996). Mechanical stability of the in vivo lumbar spine: Implications for injury and chronic low back pain. Clinical Biomechanics, 11, 1–15.CrossRefGoogle Scholar
  14. Cvijetić, S., Dekanic-Ozegovic, D., Campbell, L., Cooper, C., & Potocki, K. (2000). Occupational physical demands and hip osteoarthritis. Arhiv za higijenu rada i toksikologiju, 50(4), 371–379.Google Scholar
  15. Dankaerts, W., O’Sullivan, P., Burnett, A., & Straker, L. (2006). Differences in sitting postures are associated with nonspecific chronic low back pain disorders when patients are subclassified. Spine, 31(6), 698–704.CrossRefGoogle Scholar
  16. Dar, G., Masharawi, Y., Peleg, S., Steinberg, N., May, H., et al. (2010). Schmorl’s nodes distribution in the human spine and its possible etiology. European Spine Journal, 19, 670–675.CrossRefGoogle Scholar
  17. Dar, G., Peleg, S., Masharawi, Y., Steinberg, N., May, H., & Hershkovitz, I. (2009). Demographic aspects of Schmorl’s nodes. Spine, 34, E312–E315.CrossRefGoogle Scholar
  18. Dolan, A. L., Ryan, P. J., Arden, N. K., Stratton, R., Wedley, J. R., et al. (1996). The value of spect scans in identifying back pain likely to benefit from facet joint injection. British Journal of Rheumatology, 35, 1269–1273.CrossRefGoogle Scholar
  19. Eisenstein, S. M., & Parry, C. R. (1987). The lumbar facet arthrosis syndrome. Clinical presentation and articular surface changes. The Bone & Joint Journal, 69, 3–7.Google Scholar
  20. Faccia, K. J., & Williams, R. C. (2008). Schmorl’s nodes: Clinical significance and implications for the bioarchaeological record. International Journal of Osteoarchaeology, 18, 28–44.CrossRefGoogle Scholar
  21. Feldman, D. S., Hedden, D., & Wright, J. (2000). The use of bone scan to investigate back pain in children and adolescents. Journal of Pediatric Orthopaedics, 20(6), 790–795.CrossRefGoogle Scholar
  22. Frederickson, B. E., Baker, D., McHolick, W. J., Yuan, H. A., & Lubicky, J. P. (1984). The natural history of spondylolysis and sponsylolisthesis. The Journal of Bone and Joint Surgery, 66(5), 699–707.CrossRefGoogle Scholar
  23. Frymoyer, J. W., Pope, M. H., Costanza, M., Rosen, J., Goggin, J. E., & Wilder, D. G. (1980). Epidemiologic studies of low-back pain. Spine, 5(5), 419–423.CrossRefGoogle Scholar
  24. Frymoyer, J. W., Newberg, A., Pope, M. H., Wilder, D. G., Clements, J., & MacPherson, B. (1984). Spine radiographs in patients with low-back pain. The Journal of Bone and Joint Surgery, 66A(7), 1048–1055.CrossRefGoogle Scholar
  25. Gellhorn, A. C., Katz, J. N., & Suri, P. (2013). Osteoarthritis of the spine: The facet joints. National Review of Rheumatology, 9, 216–224.CrossRefGoogle Scholar
  26. Good, M. J. D., Brodwin, P. E., Good, B. J., & Kleinman, A. (1992). Pain as a human experience: An anthropological perspective. Berkeley: University of California Press.Google Scholar
  27. Grant, A. P., & Keegan, D. A. (1968). Rib pain—A neglected diagnosis. Ulster Medical Journal, 37(2), 162–169.Google Scholar
  28. Greenough, C. G., & Fraser, R. D. (1994). Aetiology, diagnosis and treatment of low back pain. European Spine Journal, 3, 22–27.CrossRefGoogle Scholar
  29. Halderman, S., Carroll, L., Cassidy, D., Schubert, J., & Nygren, A. (2008). The bone and joint decade 2000–2010 Task Force on neck pain and its associated disorders. European Spine Journal Supplement, 1, S5–S7.CrossRefGoogle Scholar
  30. Herrero-Beaumont, G., Roman-Blas, J. A., Castaneda, S., & Jimenez, S. A. (2009). Primary osteoarthritis no longer primary: Three subsets with distinct etiological, clinical, and therapeutic characteristics. Seminars in Arthritis and Rheumatism, 39, 71–80.CrossRefGoogle Scholar
  31. Hoy, D., March, L., Brooks, P., Woolf, A., Blyth, F., Vos, T., et al. (2010). Measuring the global burden of low back pain. Best Practice & Research Clinical Rheumatology, 24, 155–165.CrossRefGoogle Scholar
  32. Hu, S. S., Tribus, C. B., Diab, M., & Ghanayem, J. (2008). Spondylolisthesis and spondylolysis. Journal of Bone and Joint Surgery, 90(3), 656–671.Google Scholar
  33. Irvine, D. H., Foster, J. B., Newell, D. J., & Klukvin, B. N. (1965). Prevalence of cervical spondylosis in a general population. The Lancet, 285, 1089–1092.CrossRefGoogle Scholar
  34. Iwamoto, J., Takeda, T., & Wakano, K. (2004). Returning athletes with severe low back pain and spondylolysis to original sporting activities with conservative treatment. Scandinavian Journal of Medicine and Science in Sports, 14(6), 346–351.CrossRefGoogle Scholar
  35. Jensen, M. C., Brant-Zawadzki, M. N., Obuchowski, N., Modic, M. T., Malkasian, D., & Ross, J. S. (1994). Magnetic resonance imaging of the lumbar spine in people without back pain. The New England Journal of Medicine, 331(2), 69–73.CrossRefGoogle Scholar
  36. Jurmain, R. (1989). Trauma, degenerative disease, and other pathologies among the Gombe Chimpanzees. American Journal of Physical Anthropology, 80, 229–237.CrossRefGoogle Scholar
  37. Jurmain, R., & Kilgore, L. (1995). Skeletal evidence of osteoarthritis: A palaeopathological perspective. Annals of the Rheumatic Diseases, 54, 443–450.CrossRefGoogle Scholar
  38. Jurmain, R. D. (2000). Degenerative joint disease in African great apes: An evolutionary perspective. Journal of Human Evolution, 39, 185–203.CrossRefGoogle Scholar
  39. Kennedy, C. E., Moore, P. J., Peterson, R. A., Katzman, M. A., Vermani, M., & Charmak, W. D. (2011). What makes people anxious about pain? How personality and perception combine to determine pain anxiety responses in clinical and non-clinical populations. Anxiety Stress and Coping, 24(2), 179–200.CrossRefGoogle Scholar
  40. Kleinman, A. (1988). The illness narratives: Suffering, healing, and the human condition. New York: Basic Books Inc.Google Scholar
  41. Klaus, H. D., Larsen, C. S., & Tam, M. E. (2009). Economic intensification and degenerative joint disease: Life and labor on the postcontact north coast of Peru. American Journal of Physical Anthropology, 139, 204–221.CrossRefGoogle Scholar
  42. Knüsel, C. J., Göggel, S., & Lucy, D. (1997). Comparative degenerative joint disease of the vertebral column in the medieval monastic cemetery of the Gilbertine Priory of St. Andrew, Fishergate, York. England. American Journal of Physical Anthropology, 103, 481–495.CrossRefGoogle Scholar
  43. L’Abbe, E. N., & Steyn, M. (2007). Health statue of the Venda, a post-antibiotic community in rural Africa. International Journal of Osteoarchaeology, 17(5), 492–503.CrossRefGoogle Scholar
  44. Latimer, B. (2005). The perils of being bipedal. Annals of Biomedicine England, 33, 3–6.CrossRefGoogle Scholar
  45. Libson, E., Bloom, R. A., & Dinari, G. (1982). Symptomatic and asymptomatic spondylolysis and spondylolisthesis in young adults. International Orthopaedics, 6, 259–261.Google Scholar
  46. Lidgren, L. (2003). The bone and joint decade 2000–2010. Bulletin of the World Health Organization, 81(9), 629.Google Scholar
  47. Lipson, S. J., Fox, D. A., & Sosman, J. L. (1985). Symptomatic intravertebral disc herniation (Schmorl’s node) in the cervical spine. Annals of Rheumatic Diseases, 44, 857–859.CrossRefGoogle Scholar
  48. Llewellyn, A., & Hogan, K. (2000). The use and abuse of models of disability. Disability & Society, 15(1), 157–165.CrossRefGoogle Scholar
  49. Lovell, N. (1990). Patterns of injury and illness in the great apes: A skeletal analysis. Washington, DC: Smithsonian Institution.Google Scholar
  50. Lovell, N. (1994). Spinal arthritis and physical stress at Bronze Age Harappa. American Journal of Physical Anthropology, 93, 149–164.CrossRefGoogle Scholar
  51. Maat, G. J. R., Mastwijk, R. W., & Van Der Velde, E. A. (1995). Skeletal distribution of degenerative changes in vertebral osteophytosis, vertebral osteoarthritis and DISH. International Journal of Osteoarchaeology, 5, 289–298.CrossRefGoogle Scholar
  52. Malmivaara, A., Videman, T., Kuosma, E., & Troup, J. (1987). Facet joint orientation, facet and costovertebral joint osteoarthrosis, disc degeneration, vertebral body osteophytosis, and Schmorl’s nodes in the thoracolumbar junctional region of cadaveric spines. Spine, 12(5), 458–463.CrossRefGoogle Scholar
  53. Manchikanti, L., Singh, V., & Pampati, V. (2002). Evaluation of the prevalence of facet joint pain in chronic thoracic pain. Pain, 5(4), 354–359.Google Scholar
  54. Mays, S. (2006). Spondylolysis, spondylolisthesis, and lumbo-sacral morphology in Medieval English skeletal population. American Journal of Physical Anthropology, 131, 352–362.CrossRefGoogle Scholar
  55. Mays, S. (2007). Spondylolysis in the lower thoracic-upper lumbar spine in a British Medieval population. International Journal of Osteoarchaeology, 17, 608–618.CrossRefGoogle Scholar
  56. Merbs, C. (1983). Patterns of activity-induced pathology in a Canadian Inuit population (Vol. 119). Ottawa: National Museums of Canada.Google Scholar
  57. Merbs, C. (1996). Spondylolysis and spondylolisthesis: A cost of being an erect biped or a clever adaptation? American Journal of Physical Anthropology, 101(S23), 201–228.CrossRefGoogle Scholar
  58. Metzler, I. (1999). The palaeopathology of disability in the Middle Ages. Archaeological Review from Cambridge, 15(2), 55–67.Google Scholar
  59. Micheli, L. J., & Wood, R. (1995). Back pain in young athletes: Significant differences from adults in causes and patterns. JAMA Pediatrics, 149(1), 15–18.Google Scholar
  60. Middleton, K., & Fish, D. E. (2009). Lumbar spondylosis: Clinical presentation and treatment approaches. Current Review of Musculoskeletal Medicine, 2, 94–104.CrossRefGoogle Scholar
  61. Mikkelsen, W. M., Diff, I. F., & Dodge, H. J. (1970). Age-sex specific prevalence of radiographic abnormalities of the joints of the hands, wrists and cervical spine of adult residents of the Tecumseh, Michigan, Community Health Study area, 1962–1965. Journal of Chronic Diseases, 23(3), 151–159.CrossRefGoogle Scholar
  62. Mok, F., Samartzis, D., Karppinen, J., Luk, K., Fong, D., & Cheung, K. (2010). Prevalence, determinants, and association of Schmorl’s nodes of the lumbar spine with disc degeneration: a population-based study of 2449 individuals. Spine, 35, 1944–1952.CrossRefGoogle Scholar
  63. Molnar, P., Ahlstrom, T. P., & Leden, I. (2009). Osteoarthritis and activity—An analysis of the relationship between eburnation, musculoskeletal stress markers (MSM) and age in two Neolithic hunter-gatherer populations from Gotland, Sweden. International Journal of Osteoarchaeology, 21(3), 283–291.CrossRefGoogle Scholar
  64. Muraki, S., Akune, T., Oka, H., Mabuchi, A., En-Yo, Y., et al. (2009). Association of occupational activity with radiographic knee osteoarthritis and lumbar spondylosis in elderly patients of population-based cohorts: A large-scale population-based study. Arthritis Care & Research, 61(6), 779–786.CrossRefGoogle Scholar
  65. Nathan, H., Weinberg, H., Robin, G. C., & Aviad, I. (1964). The costovertebral joints. Anatomical observations in arthritis. Arthritis and Rheumatism, 7(3), 228–240.CrossRefGoogle Scholar
  66. Nordstrom, R. E. A., Laidenranta, T. V., Kaitila, I. I., & Laaseonen, E. M. I. (1986). Familial spondylolisthesis of the axis vertebra. The Journal of Bone and Joint Surgery, 68(5), 704–706.Google Scholar
  67. Novak, M., & Šlaus, M. (2011). Vertebral pathologies in two early modern period (16th–19th century) populations from Croatia. American Journal of Physical Anthropology, 145, 270–281.CrossRefGoogle Scholar
  68. Oliver, M. (1990). The politics of disablement. London: Macmillan.CrossRefGoogle Scholar
  69. O’Neill, T. W., McCloskey, E. V., Kanis, J. A., Bhalla, A. K., Reeve, J., Reid, D. M., et al. (1999). The distribution, determinants, and clinical correlates of vertebral ostephytosis: a population based survey. The Journal of Rheumatology, 26(4), 842–848.Google Scholar
  70. Pfirrmann, C., & Resnick, D. (2001). Schmorl’s nodes of the thoracic and lumbar spine: Radiographic pathologic study of prevalence, characterization, and correlation with degenerative changes of 1,650 spinal levels in 100 cadavers. Radiology, 219, 368–374.CrossRefGoogle Scholar
  71. Pinals, R. S. (1996). Mechanisms of joint destruction, pain and disability in osteoarthritis. Drugs, 52(3), 14–20.CrossRefGoogle Scholar
  72. Plomp, K. A., & Boylston, A. (2016). Costovertebral osteoarthritis in two Medieval English populations. International Journal of Palaeopathology, 14, 64–68.CrossRefGoogle Scholar
  73. Plomp, K. A., Roberts, C. A., & Strand Vidarsdottir, U. (2012). Vertebral morphology influences the development of Schmorl’s nodes in the lower thoracic vertebra. American Journal of Physical Anthropology, 149, 172–182.CrossRefGoogle Scholar
  74. Plomp, K. A., Strand Vidarsdottir, U., Weston, D. A., Dobney, K., & Collard, M. (2015a). The ancestral shape hypothesis: An evolutionary explanation for the occurrence of intervertebral disc herniations in humans. BMC Evolutionary Biology, 15, 68–78.CrossRefGoogle Scholar
  75. Plomp, K. A., Roberts, C. A., & Strand Vidarsdottir, U. (2015b). Does the correlation between Schmorl’s nodes and vertebral morphology extend into the lumbar spine? American Journal of Physical Anthropology, 157(3), 526–534.CrossRefGoogle Scholar
  76. Prescher, A. (1998). Anatomy and pathology of the aging spine. European Journal of Radiology, 27(181), 195.Google Scholar
  77. Raastad, J., Reiman, M., Coeytaux, R., Ledbetter, L., & Goode, A. P. (2015). The association between lumbar spine radiographic features and low back pain: A systematic review and meta-analysis. Seminars in Arthritis and Rheumatism, 44, 571–585.CrossRefGoogle Scholar
  78. Rathbun, T. A. (1987). Health and disease at a South Carolina plantation: 1840–1870. American Journal of Physical Anthropology, 74, 239–253.CrossRefGoogle Scholar
  79. Rogers, J., & Waldron, T. (1995). A field guide to joint disease in archaeology. New York: Wiley.Google Scholar
  80. Rogers, J., Watt, I., & Dieppe, P. (1985). Paleopathology of spinal osteophytosis, vertebral ankylosis, ankylosing spondylitis, and vertebral hyperostosis. Annals of the Rheumatic Diseases, 44, 113–120.CrossRefGoogle Scholar
  81. Rossi, F., & Dragoni, S. (2001). The prevalence of spondylolysis and spondylolisthesis in symptomatic elite athletes: Radiographic findings. Radiography, 7(1), 37–42.CrossRefGoogle Scholar
  82. Salemi, G., Savettieri, G., Meneghini, F., Di Benedetto, M. E., Ragonese, P., et al. (1996). Prevalence of cervical spondylotic radiculopathy: A door-to-door survey in a Sicilian municipality. Acta Neurologica Scandanavica, 93, 184–188.Google Scholar
  83. Sales, J. R., Beals, R. K., & Hart, R. A. (2007). Osteoarthritis of the costovertebral joints. The Journal of Bone and Joint Surgery, 89, 1336–1339.CrossRefGoogle Scholar
  84. Saraste, H. (1986). Symptoms in relation to the level of spondylolysis. International Orthopaedics, 10, 183–185.Google Scholar
  85. Sarzi-Puttini, P., Atzeni, F., Fumagalli, M., Capsoni, F., & Carrabba, M. (2005). Osteoarthritis of the spine. Seminars in Arthritis and Rheumatism, 34(6), 38–43.CrossRefGoogle Scholar
  86. Schmorl, G., & Junghans, H. (1971). The human spine in health and disease. New York: Grune and Stratton.Google Scholar
  87. Schwarzer, A. C., April, C., Derby, R., Fortin, J., Kine, G., & Bogduk, N. (1994). Clinical features of patients with pain stemming from the lumbar zygapophyseal joints. Is the lumbar facet syndrome a clinical entity? Spine, 10, 1132–1137.CrossRefGoogle Scholar
  88. Schwarzer, A. C., Wang, S. C., O’Driscoll, D., Harrington, T., Bogduk, N., & Laurent, R. (1995). The ability of computed tomography to identify a painful zygapophyseal joint in patients with chronic low back pain. Spine, 20, 907–912.CrossRefGoogle Scholar
  89. Shakespeare, T. (2012). Still a health issue. Disability and Health Journal, 5(3), 129–131.CrossRefGoogle Scholar
  90. Shiri, R., Karppinen, J., Leino-Arjas, P., Solovieva, S., & Viikari-Juntura, E. (2010). The association between smoking and low back pain: A meta-analysis. The American Journal of Medicine, 123(1), 87.e7–87.e35.Google Scholar
  91. Šlaus, M. (2000). Biocultural analysis of sex differences in mortality profiles and stress levels in late Medieval populations from Nova Raca, Croatia. American Journal of Physical Anthropology, 111, 193–209.CrossRefGoogle Scholar
  92. Spector, T. D., & MacGregor, A. J. (2004). Risk factors for osteoarthritis: Genetics. Osteoarthritis and Cartilage, 12, S39–S44.CrossRefGoogle Scholar
  93. Spector, T. D., Harris, P. A., Hart, D. J., Cicuttini, F. M., Nandra, D., Etherington, J., et al. (1996). Ricks of osteoarthritis associated with long-term weight-bearing sports. Arthritis and Rheumatism, 39(6), 988–995.CrossRefGoogle Scholar
  94. Suri, P., Miyakoshi, A., Hunter, D. J., Jarvik, J. G., Rainville, J., Guermazi, A., et al. (2011). Does lumbar spinal degeneration begin with the anterior structures? A study of the observed epidemiology in a community-based population. BMC Musculoskeletal Disorders, 12, 202–209.CrossRefGoogle Scholar
  95. Takahashi, K., & Takata, K. (1994). A large painful Schmorl’s node: A case report. Journal of Spinal Disorders, 7(1), 77–81.CrossRefGoogle Scholar
  96. Takahashi, K., Miyazaki, T., Ohnari, H., Takino, T., & Tomita, K. (1995). Schmorl’s nodes and low-back pain. European Spine Journal, 4, 56–59.CrossRefGoogle Scholar
  97. Teresi, L. M., Lufkin, R. B., Reicher, M. A., Moffit, B. J., Vinuela, F. V., Wilson, G. M., et al. (1987). Asymptomatic degenerative disk disease and spondylosis of the cervical spine: MR imaging. Radiology, 164(1), 83–88.CrossRefGoogle Scholar
  98. Tissot, F., Messing, K., & Stock, S. (2009). Studying the relationship between low back pain and working postures among those who stand and those who sit most of the working day. Ergonomics, 52(11), 1402–1418.CrossRefGoogle Scholar
  99. Torgerson, W. R., & Dotter, W. E. (1976). Comparative roentgenographic study of the asymptomatic and symptomatic lumbar spine. Journal of Bone and Joint Surgery, 58(6), 850–853.CrossRefGoogle Scholar
  100. Üstündağ, H. (2009). Schmorl’s nodes in a Post-Medieval skeletal sample from Klostermarienberg, Austria. International Journal of Osteoarchaeology, 19, 695–710.CrossRefGoogle Scholar
  101. van Schoor, N. M., Smit, J. H., Twisk, J. R., & Lips, P. (2005). Impact of vertebral deformities, osteoarthritis, and other chronic diseases on quality of life: A population-based study. Osteoporosis International, 16(7), 749–756.CrossRefGoogle Scholar
  102. Videman, T., Nurminen, M., & Troup, J. D. (1990). Lumbar spine pathology in cadaveric material in relation to history of back pain, occupation, and physical loading. Spine, 15(8), 728–740.Google Scholar
  103. Virta, L., Ronnemaa, T., Osterman, K., Aalto, T., & Laakso, M. (1992). Prevalence of isthmic lumbar spondylolisthesis in middle-aged subjects from eastern and western Finland. Journal of Clinical Epidemiology, 45(8), 917–922.CrossRefGoogle Scholar
  104. Wagner, A. L., Murtagh, F. R., Arrington, J. A., & Stallworth, D. (2000). Relationship of Schmorl’s nodes to vertebral body endplate fractures and acute endplate disk extrusions. American Journal of Neuroradiology, 21(2) 276–281.Google Scholar
  105. Waldron, T. (1992). Unilateral spondylolysis. International Journal of Osteoarchaeology, 2, 177–181.CrossRefGoogle Scholar
  106. Waldron, T. (1991). Variations in the rates of spondylolysis in early populations. International Journal of Osteoarchaeology, 1, 63–65.CrossRefGoogle Scholar
  107. Walker, B. F. (2000). The prevalence of low back pain: A systematic review of the literature from 1966 to 1998. Journal of Spinal Disorders, 13(3), 205–217.CrossRefGoogle Scholar
  108. Walters, G., Coumas, J. M., Akins, C. M., & Ragland, R. L. (1991). Magnetic resonance imaging acute symptomatic Schmorl’s node formation. Pediatric Emergency Care, 7(5), 294–296.CrossRefGoogle Scholar
  109. Ward, C., & Latimer, B. (2005). Human evolution and the development of spondylolysis. Spine, 30(16), 1808–1814.CrossRefGoogle Scholar
  110. Weinberg, H., Nathan, H., Magora, F., Gordon, R., & Aviad, I. (1972). Arthritis of the first costovertebral joint as a cause of thoracic outlet syndrome. Clinical Orthopaedics and Related Research, 86(159), 163.Google Scholar
  111. Weishaupt, D., Hodler, Z. M., & Boos, N. (1998). MR imaging of the lumbar spine: prevalence of intervertebral disk extrusion and sequestration, nerve root compression, end plate abnormalities, and osteoarthritis of the facet joints in asymptomatic volunteers. Radiology, 209, 661–666.CrossRefGoogle Scholar
  112. Weiss, E., & Jurmain, R. (2007). Osteoarthritis revisited: A contemporary review of aetiology. International Journal of Osteoarchaeology, 17, 437–450.CrossRefGoogle Scholar
  113. Who. (2001). International classification of functioning. Disability and health. Geneva: World 735 Health Organization.Google Scholar
  114. Williams, F. M. K., Manek, N. J., Sambrook, P., Spector, T. D., & MacGregor, A. J. (2007). Schmorl’s nodes: Common, highly heritable, and related to lumbar disc disease. Arthritis and Rheumatism, 57, 855–860.CrossRefGoogle Scholar
  115. Wood, J. W., Milner, G. R., Harpending, H. C., & Weiss, K. M. (1992). The osteological paradox: Problems of inferring prehistoric health from skeletal samples. Current Anthropology, 33(4), 343–370.CrossRefGoogle Scholar
  116. Yu, Y. L., Woo, E., & Huang, C. Y. (1987). Cervical spondylotic myelopathy and radiculopathy. Acta Neurologica Scandinavica, 75(6), 367–373.CrossRefGoogle Scholar
  117. Zhang, N., Li, F., Huang, Y., Teng, C., & Chen, W. (2010). Possible key role of immune system in Schmorl’s nodes. Medical Hypotheses, 74, 552–554.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Archaeology, Classics, and EgyptologyUniversity of LiverpoolLiverpoolUK

Personalised recommendations