Skip to main content

Internal Variables and Microinertia

  • Chapter
  • First Online:
Internal Variables in Thermoelasticity

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 243))

Abstract

It is shown that inertial terms appear naturally in the thermodynamic theory with dual internal variables and the conditions of their appearance is well understandable in terms of mechanical notions. This demonstrates the difference between the standard single internal variable theory and the dual internal variables concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coleman BD, Gurtin ME (1967) Thermodynamics with internal state variables. J Chem Phys 47(2):597–613

    Article  Google Scholar 

  2. de Groot S, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland, Amsterdam

    MATH  Google Scholar 

  3. Eringen AC, Suhubi ES (1964) Nonlinear theory of simple micro-elastic solids -I. Int J Eng Sci 2(2):189–203

    Article  MathSciNet  MATH  Google Scholar 

  4. Horstemeyer MF, Bammann DJ (2010) Historical review of internal state variable theory for inelasticity. Int J Plast 26(9):1310–1334

    Article  MATH  Google Scholar 

  5. Houlsby G, Puzrin A (2000) A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int J Plast 16(9):1017–1047

    Article  MATH  Google Scholar 

  6. Kestin J (1993) Internal variables in the local-equilibrium approximation. J Non-Equilib Thermodyn 18(4):360–379

    Article  MATH  Google Scholar 

  7. Lebon G, Jou D, Casas-Vázquez J (2008) Understanding non-equilibrium thermodynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  8. Lubliner J (1973) On the structure of the rate equations of materials with internal variables. Acta Mech 17(1–2):109–119

    Article  MathSciNet  MATH  Google Scholar 

  9. Maugin GA (1990) Internal variables and dissipative structures. J Non-Equilib Thermodyn 15(2):173–192

    Article  Google Scholar 

  10. Maugin GA (1994) Physical and mathematical models of nonlinear waves in solids. In: Nonlinear waves in solids. Springer, Berlin, pp 109–233

    Google Scholar 

  11. Maugin GA (2006) On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch Appl Mech 75(10–12):723–738

    Article  MATH  Google Scholar 

  12. Maugin GA, Muschik W (1994) Thermodynamics with internal variables. Part I. General concepts. J Non-Equilib Thermodyn 19:217–249

    MATH  Google Scholar 

  13. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Rational Mech Anal 16(1):51–78

    Article  MathSciNet  MATH  Google Scholar 

  14. Muschik W (1990) Internal variables in non-equilibrium thermodynamics. J Non-Equilib Thermodyn 15(2):127–137

    Article  Google Scholar 

  15. Rahouadj R, Ganghoffer JF, Cunat C (2003) A thermodynamic approach with internal variables using Lagrange formalism. Part I: General framework. Mech Res Commun 30(2):109–117

    Article  MATH  Google Scholar 

  16. Rice JR (1971) Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J Mech Phys Solids 19(6):433–455

    Article  MATH  Google Scholar 

  17. Rubí J, Casas-Vázquez J (1980) Thermodynamical aspects of micropolar fluids. A non-linear approach. J Non-Equilib Thermodyn 5(3):155–164

    Article  Google Scholar 

  18. Rubí J, Pérez-Madrid A (1999) Inertial effects in non-equilibrium thermodynamics. Phys A Stat Mech Appl 264(3):492–502

    Article  Google Scholar 

  19. Sidoroff F (1988) Internal variables and phenomenological models for metals plasticity. Revue de Physique Appliquée 23(4):649–659

    Article  Google Scholar 

  20. Ván P (2002) Weakly nonlocal irreversible thermodynamics-the Ginzburg–Landau equation. Technische Mechanik 22(2):104–110

    Google Scholar 

  21. Ván P, Berezovski A, Engelbrecht J (2008) Internal variables and dynamic degrees of freedom. J Non-Equilib Thermodyn 33(3):235–254

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This chapter is derived in part from the article published in Contin. Mech. Thermodyn., (2016) 28:1027–1037. Copyright\(\copyright \) Springer-Verlag, available online: https://link.springer.com/article/10.1007/s00161-015-0453-2

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Berezovski .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Berezovski, A., Ván, P. (2017). Internal Variables and Microinertia. In: Internal Variables in Thermoelasticity. Solid Mechanics and Its Applications, vol 243. Springer, Cham. https://doi.org/10.1007/978-3-319-56934-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56934-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56933-8

  • Online ISBN: 978-3-319-56934-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics