Skip to main content

Thermomechanical Single Internal Variable Theory

  • Chapter
  • First Online:
Internal Variables in Thermoelasticity

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 243))

  • 692 Accesses

Abstract

The theory of a single internal variable of state is well established including the weak nonlocality and the enrichment by extra entropy flux. The theory is based on the consideration of the internal variable of state as a tool for taking into account the internal dissipation. Inertial effects are absent in this theory by definition, which leads to parabolic evolution equations for the internal variables of state. Due to the simplicity, the single internal variable theory is the necessary first step in the construction of more sophisticated material models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asszonyi C, Fülöp T, Ván P (2015) Distinguished rheological models for solids in the framework of a thermodynamical internal variable theory. Contin Mech Thermodyn 27(6):971–986

    Article  MathSciNet  MATH  Google Scholar 

  2. Berti A, Giorgi C (2013) Phase-field modeling of transition and separation phenomena in continuum thermodynamics. AAPP—Phys Math Nat Sci 91(S1)

    Google Scholar 

  3. Biot MA (1954) Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena. J Appl Phys 25(11):1385–1391

    Article  MATH  Google Scholar 

  4. Borden MJ, Verhoosel CV, Scott MA, Hughes TJ, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    Article  MathSciNet  MATH  Google Scholar 

  5. Caginalp G (1986) An analysis of a phase field model of a free boundary. Arch Rational Mech Anal 92(3):205–245

    Article  MathSciNet  MATH  Google Scholar 

  6. Cahn JW (1961) On spinodal decomposition. Acta Metall 9(9):795–801

    Article  Google Scholar 

  7. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28(2):258–267

    Google Scholar 

  8. Capriz G (1989) Continua with microstructure. Springer, Berlin

    Google Scholar 

  9. Chen LQ (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32(1):113–140

    Article  Google Scholar 

  10. Coleman BD, Gurtin ME (1967) Thermodynamics with internal state variables. J Chem Phys 47(2):597–613

    Article  Google Scholar 

  11. de Groot S, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland, Amsterdam

    Google Scholar 

  12. Dunn JE, Serrin J (1985) On the thermomechanics of interstitial working. Arch Rational Mech Anal 88(2):95–133

    Article  MathSciNet  MATH  Google Scholar 

  13. Eckart C (1948) The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys Rev 73(4):373

    Google Scholar 

  14. Emmerich H (2008) Advances of and by phase-field modelling in condensed-matter physics. Adv Phys 57(1):1–87

    Article  Google Scholar 

  15. Fabrizio M, Giorgi C, Morro A (2006) A thermodynamic approach to non-isothermal phase-field evolution in continuum physics. Phys D: Nonlinear Phenom 214(2):144–156

    Article  MathSciNet  MATH  Google Scholar 

  16. Fabrizio M, Lazzari B, Nibbi R (2011) Thermodynamics of non-local materials: extra fluxes and internal powers. Contin Mech Thermodyn 23(6):509–525

    Article  MathSciNet  MATH  Google Scholar 

  17. Fix GJ (1983) Phase field methods for free boundary problems. Free boundary problems: theory and applications, vol II. Pitman, London, pp 580–589

    Google Scholar 

  18. Giorgi C (2009) Continuum thermodynamics and phase-field models. Milan J Math 77(1):67–100

    Article  MathSciNet  MATH  Google Scholar 

  19. Grmela M, Öttinger HC (1997) Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys Rev E 56(6):6620–6632

    Google Scholar 

  20. Gurtin ME (1996) Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Phys D: Nonlinear Phenom 92(3):178–192

    Article  MathSciNet  MATH  Google Scholar 

  21. Gurtin ME, Fried E, Anand L (2010) The mechanics and thermodynamics of continua. Cambridge University Press, Cambridge

    Google Scholar 

  22. Hohenberg PC, Halperin BI (1977) Theory of dynamic critical phenomena. Rev Mod Phys 49(3):435–479

    Article  Google Scholar 

  23. Hohenberg P, Krekhov A (2015) An introduction to the Ginzburg-Landau theory of phase transitions and nonequilibrium patterns. Phys Rep 572:1–42

    Article  MathSciNet  MATH  Google Scholar 

  24. Kienzler R, Herrmann G (2000) Mechanics in material space: with applications to defect and fracture mechanics. Springer Science & Business Media, Berlin

    Google Scholar 

  25. Kluitenberg GA (1962) On rheology and thermodynamics of irreversible processes. Physica 28(11):1173–1183

    Google Scholar 

  26. Kluitenberg GA (1962) Thermodynamical theory of elasticity and plasticity. Physica 28(3):217–232

    Google Scholar 

  27. Landau LD, Ginzburg VL (1950) On the theory of superconductivity. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 20:1064–1082

    Google Scholar 

  28. Mariano PM (2001) Multifield theories in mechanics of solids. Adv Appl Mech 38:1–93

    Article  Google Scholar 

  29. Mariano PM, Stazi FL (2005) Computational aspects of the mechanics of complex materials. Arch Comput Methods Eng 12(4):391–478

    Article  MathSciNet  MATH  Google Scholar 

  30. Mase GT, Smelser RE, Mase GE (2009) Continuum mechanics for engineers. CRC press, Boca Raton

    Google Scholar 

  31. Maugin GA (1990) Internal variables and dissipative structures. J Non-Equilib Thermodyn 15(2):173–192

    Article  Google Scholar 

  32. Maugin GA (1993) Material inhomogeneities in elasticity. CRC Press, Boca Raton

    Google Scholar 

  33. Maugin GA (2006) On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch Appl Mech 75(10–12):723–738

    Article  MATH  Google Scholar 

  34. Maugin GA (2010) Configurational forces: thermomechanics, physics, mathematics, and numerics. CRC Press, Boca Raton

    Google Scholar 

  35. Maugin GA (2015) The saga of internal variables of state in continuum thermo-mechanics (1893–2013). Mech Res Commun 69:79–86

    Article  Google Scholar 

  36. Maugin GA, Muschik W (1994) Thermodynamics with internal variables. Part I. General concepts. J Non Equilib Thermodyn 19:217–249

    MATH  Google Scholar 

  37. Öttinger HC (2005) Beyond equilibrium thermodynamics. Wiley, New York

    Google Scholar 

  38. Öttinger HC, Grmela M (1997) Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys Rev E 56(6):6633–6655

    Google Scholar 

  39. Penrose R (2006) The road to reality: a complete guide to the laws of the universe. Random House, New York

    Google Scholar 

  40. Penrose O, Fife PC (1990) Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Phys D 43(1):44–62

    Article  MathSciNet  MATH  Google Scholar 

  41. Penrose O, Fife PC (1993) On the relation between the standard phase-field model and a thermodynamically consistent phase-field model. Phys D 69(1–2):107–113

    Article  MathSciNet  MATH  Google Scholar 

  42. Singer-Loginova I, Singer H (2008) The phase field technique for modeling multiphase materials. Rep Prog Phys 71(10):106, 501

    Google Scholar 

  43. Steinbach I, Shchyglo O (2011) Phase-field modelling of microstructure evolution in solids: perspectives and challenges. Curr Opin Solid State Mater Sci 15(3):87–92

    Article  Google Scholar 

  44. Truesdell C, Noll W (2004) The non-linear field theories of mechanics. Springer, Berlin

    Google Scholar 

  45. Van der Waals J (1894) Thermodynamische Theorie der Kapillarität unter voraussetzung stetiger Dichteänderung. Zeitschrift für Physikalische Chemie 13:657–725

    Google Scholar 

  46. Verhás J (1997) Thermodynamics and rheology. Springer Science & Business Media, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Berezovski .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Berezovski, A., Ván, P. (2017). Thermomechanical Single Internal Variable Theory. In: Internal Variables in Thermoelasticity. Solid Mechanics and Its Applications, vol 243. Springer, Cham. https://doi.org/10.1007/978-3-319-56934-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56934-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56933-8

  • Online ISBN: 978-3-319-56934-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics