Skip to main content

Introduction

  • Chapter
  • First Online:
Internal Variables in Thermoelasticity

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 243))

  • 672 Accesses

Abstract

Introduction of internal variables can be considered as a universal modelling tool for macroscopic field theories. It is based on minimal number of assumptions about the physical mechanism of the modelled phenomena. As long as evolution equations of internal variables are determined by basic macroscopic principles, we can expect that the validity of the evolution equations is independent of particular microscopic models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bampi F, Morro A (1984) Nonequilibrium thermodynamics: a hidden variable approach. In: Recent developments in nonequilibrium thermodynamics. Springer, Berlin, pp 211–232

    Google Scholar 

  2. Bataille J, Kestin J (1979) Irreversible processes and physical interpretation of rational thermodynamics. J Non-Equilib Thermodyn 4(4):229–258

    Article  Google Scholar 

  3. Bertram A (2014) On the history of material theory—a critical review. The history of theoretical, material and computational mechanics—mathematics meets mechanics and engineering. Springer, Berlin, pp 119–131

    Chapter  Google Scholar 

  4. Biot MA (1954) Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena. J Appl Phys 25(11):1385–1391

    Article  MATH  Google Scholar 

  5. Blenk S, Muschik W (1991) Orientational balances for nematic liquid crystals. J Non-Equilib Thermodyn 16(1):67–87

    Article  MATH  Google Scholar 

  6. Bridgman PW (1943) Nature of thermodynamics. Harvard University Press, Cambridge

    Google Scholar 

  7. Brilliantov NV, Pöschel T (2010) Kinetic theory of granular gases. Oxford University Press, Oxford

    MATH  Google Scholar 

  8. Capriz G (1985) Continua with latent microstructure. Arch Ration Mech Anal 90(1):43–56

    Article  MathSciNet  MATH  Google Scholar 

  9. Capriz G (1989) Continua with microstructure. Springer, Berlin

    Book  MATH  Google Scholar 

  10. Casas-Vázquez J, Jou D (2003) Temperature in non-equilibrium states: a review of open problems and current proposals. Rep Prog Phys 66(11):1937–2023

    Article  Google Scholar 

  11. Ciancio V, Verhás J (1993) On the representation of dynamic degrees of freedom. J Non-Equilib Thermodyn 18(1):39–50

    Article  Google Scholar 

  12. Cimmelli V, Sellitto A, Jou D (2010) Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations. Phys Rev B 81(5):054–301

    Article  Google Scholar 

  13. Cimmelli VA (2007) An extension of liu procedure in weakly nonlocal thermodynamics. J Math Phys 48(11):113–510

    Article  MathSciNet  MATH  Google Scholar 

  14. Cimmelli VA, Rogolino P (2001) On the mathematical structure of thermodynamics with internal variables. J Non-Equilib Thermodyn 26(3):231–242

    Article  MATH  Google Scholar 

  15. Clayton JD (2006) An internal variable theory of deformation, damage, and fragmentation of solids. Technical report, DTIC Document

    Google Scholar 

  16. Coleman BD, Gurtin ME (1965) Thermodynamics and the velocity of general acceleration waves. In: Wave propagation in dissipative materials. Springer, Berlin, pp 83–104

    Google Scholar 

  17. Coleman BD, Gurtin ME (1967) Thermodynamics with internal state variables. J Chem Phys 47(2):597–613

    Article  Google Scholar 

  18. de Groot S, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland, Amsterdam

    MATH  Google Scholar 

  19. Eckart C (1940) The thermodynamics of irreversible processes I. The simple fluid. Phys Rev 58(3):267

    Article  MATH  Google Scholar 

  20. Eckart C (1948) The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys Rev 73(4):373

    Article  MathSciNet  MATH  Google Scholar 

  21. Eringen AC, Suhubi ES (1964) Nonlinear theory of simple micro-elastic solids-I. Int J Eng Sci 2(2):189–203

    Article  MathSciNet  MATH  Google Scholar 

  22. Forest S (2013) Micromorphic media. Generalized continua from the theory to engineering applications. Springer, Berlin, pp 249–300

    Chapter  Google Scholar 

  23. Germain P, Nguyen QS, Suquet P (1983) Continuum thermodynamics. J Appl Mech 50(4b):1010–1020

    Article  MATH  Google Scholar 

  24. Grmela M, Öttinger HC (1997) Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys Rev E 56(6):6620–6632

    Article  MathSciNet  Google Scholar 

  25. Horstemeyer MF, Bammann DJ (2010) Historical review of internal state variable theory for inelasticity. Int J Plast 26(9):1310–1334

    Article  MATH  Google Scholar 

  26. Jou D, Restuccia L (2016) Caloric and entropic temperatures in non-equilibrium steady states. Phys A Stat Mech Appl 460:246–253

    Article  MathSciNet  Google Scholar 

  27. Kestin J (1992) Local-equilibrium formalism applied to mechanics of solids. Int J Solids Struct 29(14):1827–1836

    Article  MATH  Google Scholar 

  28. Kestin J (1993) Internal variables in the local-equilibrium approximation. J Non-Equilib Thermodyn 18(4):360–379

    Article  MATH  Google Scholar 

  29. Kestin J, Rice JR (1970) Paradoxes in the application of thermodynamics to strained solids. In: A critical review of thermodynamics. Mono Book Corporation, Baltimore, pp 275–298

    Google Scholar 

  30. Kirchner N, Steinmann P (2005) A unifying treatise on variational principles for gradient and micromorphic continua. Philos Mag 85(33–35):3875–3895

    Article  Google Scholar 

  31. Kluitenberg GA (1962) Thermodynamical theory of elasticity and plasticity. Physica 28(3):217–232

    Article  MathSciNet  Google Scholar 

  32. Kluitenberg GA, Ciancio V (1978) On linear dynamical equations of state for isotropic media I: general formalism. Phys A Stat Mech Appl 93(1):273–286

    Article  MathSciNet  Google Scholar 

  33. Kratochvil J, Dillon OW Jr (1969) Thermodynamics of elastic-plastic materials as a theory with internal state variables. J Appl Phys 40:3207–3218

    Article  Google Scholar 

  34. Love AEH (1944) A treatise on the mathematical theory of elasticity. Courier Corporation, North Chelmsford

    MATH  Google Scholar 

  35. Lubliner J (1973) On the structure of the rate equations of materials with internal variables. Acta Mech 17(1–2):109–119

    Article  MathSciNet  MATH  Google Scholar 

  36. Lun C, Savage SB, Jeffrey D, Chepurniy N (1984) Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J Fluid Mech 140:223–256

    Article  MATH  Google Scholar 

  37. Mariano PM (2001) Multifield theories in mechanics of solids. Adv Appl Mech 38:1–93

    Article  Google Scholar 

  38. Mariano PM, Stazi FL (2005) Computational aspects of the mechanics of complex materials. Arch Comput Methods Eng 12(4):391–478

    Article  MathSciNet  MATH  Google Scholar 

  39. Maugin GA (1990) Internal variables and dissipative structures. J Non-Equilib Thermodyn 15(2):173–192

    Article  Google Scholar 

  40. Maugin GA (1993) Material inhomogeneities in elasticity. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  41. Maugin GA (1999) The thermomechanics of nonlinear irreversible behaviors. World Scientific, Singapore

    Book  MATH  Google Scholar 

  42. Maugin GA (2006) On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch Appl Mech 75(10–12):723–738

    Article  MATH  Google Scholar 

  43. Maugin GA (2011) A historical perspective of generalized continuum mechanics. In: Mechanics of generalized continua. Springer, Berlin, pp 3–19

    Google Scholar 

  44. Maugin GA (2015) The saga of internal variables of state in continuum thermo-mechanics (1893–2013). Mech Res Commun 69:79–86

    Article  Google Scholar 

  45. Maugin GA, Muschik W (1994) Thermodynamics with internal variables. Part I. General concepts. J Non-Equilib Thermodyn 19:217–249

    Google Scholar 

  46. Maugin GA, Muschik W (1994) Thermodynamics with internal variables. Part II. Appl J Non-Equilib Thermodyn 19:250–289

    Google Scholar 

  47. McDowell DL (2005) Internal state variable theory. Handbook of materials modeling. Springer, Berlin, pp 1151–1169

    Chapter  Google Scholar 

  48. Meixner J, Reik HG (1959) Thermodynamik der irreversiblen Prozesse. Handb der Phys 3:413–523

    MathSciNet  Google Scholar 

  49. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Rational Mech Anal 16(1):51–78

    Article  MathSciNet  MATH  Google Scholar 

  50. Müller I (1985) Thermodynamics. Pitman, London

    MATH  Google Scholar 

  51. Müller I, Weiss W (2012) Thermodynamics of irreversible processes—past and present. Eur Phys J H 37(2):139–236

    Article  Google Scholar 

  52. Mura T (1987) Micromechanics of defects in solids. Springer, Berlin

    Book  MATH  Google Scholar 

  53. Muschik W (1990) Internal variables in non-equilibrium thermodynamics. J Non-Equilib Thermodyn 15(2):127–137

    Article  Google Scholar 

  54. Muschik W (1991) Internal variables in non-equilibrium thermodynamics. Recent developments in micromechanics. Springer, Berlin, pp 18–34

    Chapter  Google Scholar 

  55. Muschik W (1993) Comment to J Kestin: internal variables in the local-equilibrium approximation. J Non-Equilib Thermodyn 18(4):380–388

    Article  MATH  Google Scholar 

  56. Muschik W, Ehrentraut H, Blenk S (1995) Ericksen-Leslie liquid crystal theory revisited from a mesoscopic point of view. J Non-Equilib Thermodyn 20(1):92–101

    Article  MATH  Google Scholar 

  57. Muschik W (2007) Why so many “schools” of thermodynamics? Forschung im Ingenieurwesen 71(3–4):149–161

    Article  Google Scholar 

  58. Muschik W, Ehrentraut H, Papenfuss C, Blenk S (1996) Mesoscopic theory of liquid crystals. In: Entropy and entropy generation. Springer, Berlin, pp 101–109

    Google Scholar 

  59. Muschik W, Papenfuss C, Ehrentraut H, Radowicz A, Stefaniak J (1996) Concepts of continuum thermodynamics: 5 lectures on fundamentals, methods, and examples. Kielce University of Technology

    Google Scholar 

  60. Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam

    MATH  Google Scholar 

  61. Onsager L (1931) Reciprocal relations in irreversible processes I. Phys Rev 37(4):405–426

    Google Scholar 

  62. Onsager L (1931) Reciprocal relations in irreversible processes II. Phys Rev 38(12):2265–2279

    Google Scholar 

  63. Öttinger HC (2005) Beyond equilibrium thermodynamics. Wiley, New York

    Book  Google Scholar 

  64. Öttinger HC, Grmela M (1997) Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys Rev E 56(6):6633–6655

    Article  MathSciNet  Google Scholar 

  65. Parkus H (1976) Thermoelasticity. Springer, Berlin

    Book  MATH  Google Scholar 

  66. Prigogine I, Mazur P (1953) Sur l’extension de la thermodynamique aux phénomènes irreversibles liés aux degrés de liberté internes. Physica 19(1):241–254

    Article  MATH  Google Scholar 

  67. Rice JR (1971) Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J Mech Phys Solids 19(6):433–455

    Article  MATH  Google Scholar 

  68. Svendsen B (1999) On the thermodynamics of thermoelastic materials with additional scalar degrees of freedom. Contin Mech Thermodyn 11(4):247–262

    Article  MathSciNet  MATH  Google Scholar 

  69. Truesdell C (1984) Rational thermodynamics. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  70. Valanis KC (1972) Irreversible thermodynamics of continuous media. Springer, Berlin

    MATH  Google Scholar 

  71. Ván P, Papenfuss C, Muschik W (2004) Griffith cracks in the mesoscopic microcrack theory. J Phys A: Math Gen 37(20):5315–5328

    Article  MathSciNet  MATH  Google Scholar 

  72. Ván P, Berezovski A, Engelbrecht J (2008) Internal variables and dynamic degrees of freedom. J Non-Equilib Thermodyn 33(3):235–254

    Article  MATH  Google Scholar 

  73. Ván P, Berezovski A, Papenfuss C (2014) Thermodynamic approach to generalized continua. Contin Mech Thermodyn 26(3):403–420

    Article  MathSciNet  MATH  Google Scholar 

  74. Ván P, Fülöp T (2006) Weakly non-local fluid mechanics: the Schrödinger equation. Proc Royal Soc Lond A Math Phys Eng Sci 462(2066):541–557

    Article  MathSciNet  MATH  Google Scholar 

  75. Ván P, Muschik W (1995) Structure of variational principles in nonequilibrium thermodynamics. Phys Rev E 52(4):3584–3590

    Article  Google Scholar 

  76. Verhas J (1983) On the entropy current. J Non-Equilib Thermodyn 8(3):201–206

    Article  Google Scholar 

  77. Verhás J (1997) Thermodynamics and Rheology. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  78. Verhás J (1999) Non-equilibrium thermodynamics and the dynamics of particles. In: Trends in applications of mathematics to mechanics. CRC Press, Boca Raton, pp 138–146

    Google Scholar 

  79. Vilar JM, Rubi JM (2001) Thermodynamics beyond local equilibrium. Proc Natl Acad Sci 98(20):11081–11084

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Berezovski .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Berezovski, A., Ván, P. (2017). Introduction. In: Internal Variables in Thermoelasticity. Solid Mechanics and Its Applications, vol 243. Springer, Cham. https://doi.org/10.1007/978-3-319-56934-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56934-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56933-8

  • Online ISBN: 978-3-319-56934-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics