Skip to main content

Heat Conduction in Microstructured Solids

  • Chapter
  • First Online:
Internal Variables in Thermoelasticity

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 243))

  • 697 Accesses

Abstract

It is demonstrated that the dual internal variable approach is able to predict a hyperbolic character of heat conduction at the microscale. One of the internal variables is identified with microtemperature, i.e., the fluctuation of macroscopic temperature due to the inhomogeneity of the body. The macroscopic heat conduction equation remains parabolic, but coupled with the hyperbolic evolution equation for the microtemperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackerman C, Guyer R (1968) Temperature pulses in dielectric solids. Ann Phys 50(1):128–185

    Article  Google Scholar 

  2. Ackerman C, Overton W Jr (1969) Second sound in solid helium-3. Phys Rev Lett 22(15):764

    Article  Google Scholar 

  3. Berezovski A, Berezovski M (2013) Influence of microstructure on thermoelastic wave propagation. Acta Mech 224(11):2623–2633

    Article  MathSciNet  MATH  Google Scholar 

  4. Berezovski A, Engelbrecht J (2013) Thermoelastic waves in microstructured solids: dual internal variables approach. J Coupled Syst Multiscale Dyn 1(1):112–119

    Article  Google Scholar 

  5. Berezovski A, Engelbrecht J, Maugin GA (2011) Generalized thermomechanics with dual internal variables. Arch Appl Mech 81(2):229–240

    Article  MATH  Google Scholar 

  6. Berezovski A, Engelbrecht J, Maugin GA (2011) Thermoelasticity with dual internal variables. J Thermal Stress 34(5–6):413–430

    Article  MATH  Google Scholar 

  7. Berezovski A, Engelbrecht J, Ván P (2014) Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature. Arch Appl Mech 84(9–11):1249–1261

    Article  MATH  Google Scholar 

  8. Both S, Czél B, Fülöp T, Gróf G, Gyenis Á, Kovács R, Ván P, Verhás J (2016) Deviation from the Fourier law in room-temperature heat pulse experiments. J Non-Equilib Thermodyn 41(1):41–48

    Article  Google Scholar 

  9. Bright T, Zhang Z (2009) Common misperceptions of the hyperbolic heat equation. J Thermophys Heat Transf 23(3):601–607

    Article  Google Scholar 

  10. Cao BY, Guo ZY (2007) Equation of motion of a phonon gas and non-Fourier heat conduction. J Appl Phys 102(5):053–503

    Google Scholar 

  11. Cimmelli VA (2009) Different thermodynamic theories and different heat conduction laws. J Non-Equilib Thermodyn 34(4):299–333

    Article  MATH  Google Scholar 

  12. de Groot S, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland, Amsterdam

    MATH  Google Scholar 

  13. Dreyer W, Struchtrup H (1993) Heat pulse experiments revisited. Contin Mech Thermodyn 5(1):3–50

    Article  MathSciNet  Google Scholar 

  14. Ericksen JL (1998) Introduction to the thermodynamics of solids. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  15. Eringen AC (1999) Microcontinuum field theories: I. foundations and solids. Springer, Berlin

    Book  MATH  Google Scholar 

  16. Eringen AC, Suhubi ES (1964) Nonlinear theory of simple micro-elastic solids-I. Int J Eng Sci 2(2):189–203

    Article  MathSciNet  MATH  Google Scholar 

  17. Fabrizio M, Lazzari B (2014) Stability and second law of thermodynamics in dual-phase-lag heat conduction. Int J Heat Mass Transf 74:484–489

    Article  Google Scholar 

  18. Fourier JBJ (2009) The analytical theory of heat. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  19. Green A, Naghdi P (1991) A re-examination of the basic postulates of thermomechanics. Proc R Soc Lond A Math Phys Eng Sci 432(1885):171–194

    Article  MathSciNet  MATH  Google Scholar 

  20. Grmela M (1993) Weakly nonlocal hydrodynamics. Phys Rev E 47(1):351–365

    Article  MathSciNet  Google Scholar 

  21. Guyer R, Krumhansl J (1964) Dispersion relation for second sound in solids. Phys Rev 133(5A):A1411

    Article  Google Scholar 

  22. Guyer R, Krumhansl J (1966) Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys Rev 148(2):778

    Article  Google Scholar 

  23. Guyer RA, Krumhansl J (1966) Solution of the linearized phonon Boltzmann equation. Phys Rev 148(2):766

    Article  Google Scholar 

  24. Gyarmati I (1977) On the wave approach of thermodynamics and some problems of non-linear theories. J Non-Equilib Thermodyn 2(4):233–260

    Article  MATH  Google Scholar 

  25. Herwig H, Beckert K (2000) Experimental evidence about the controversy concerning Fourier or non-Fourier heat conduction in materials with a nonhomogeneous inner structure. Heat Mass Transf 36(5):387–392

    Article  Google Scholar 

  26. Herwig H, Beckert K (2000) Fourier versus non-Fourier heat conduction in materials with a nonhomogeneous inner structure. J Heat Transf Trans ASME 122(2):363–364

    Article  Google Scholar 

  27. Jackson HE, Walker CT (1971) Thermal conductivity, second sound, and phonon-phonon interactions in NaF. Phys Rev B 3(4):1428

    Article  Google Scholar 

  28. Jiji L (2009) Heat conduction. Springer, Berlin

    Book  MATH  Google Scholar 

  29. Joseph DD, Preziosi L (1989) Heat waves. Rev Mod Phys 61(1):41–73

    Article  MathSciNet  MATH  Google Scholar 

  30. Jou D, Casas-Vázquez J, Lebon G (1996) Extended irreversible thermodynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  31. Kaminski W (1990) Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J Heat Transf 112(3):555–560

    Article  Google Scholar 

  32. Kovács R, Ván P (2015) Generalized heat conduction in heat pulse experiments. Int J Heat Mass Transf 83:613–620

    Article  Google Scholar 

  33. Landau LD (1941) Two-fluid model of liquid helium II. J Phys 5(1):71–90

    Google Scholar 

  34. Lebon G, Jou D, Casas-Vázquez J (2008) Understanding non-equilibrium thermodynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  35. Maugin GA (1990) Internal variables and dissipative structures. J Non-Equilib Thermodyn 15(2):173–192

    Article  Google Scholar 

  36. Maugin GA (1999) The thermomechanics of nonlinear irreversible behaviors. World Scientific, Singapore

    Book  MATH  Google Scholar 

  37. Maugin GA (2006) On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch Appl Mech 75(10–12):723–738

    Article  MATH  Google Scholar 

  38. McNelly T, Rogers S, Channin D, Rollefson R, Goubau W, Schmidt G, Krumhansl J, Pohl R (1970) Heat pulses in NaF: onset of second sound. Phys Rev Lett 24(3):100

    Article  Google Scholar 

  39. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Rational Mech Anal 16(1):51–78

    Article  MathSciNet  MATH  Google Scholar 

  40. Mitra K, Kumar S, Vedevarz A, Moallemi M (1995) Experimental evidence of hyperbolic heat conduction in processed meat. J Heat Transf 117(3):568–573

    Article  Google Scholar 

  41. Müller I, Ruggeri T (1993) Extended thermodynamics. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  42. Narayanamurti V, Dynes R (1972) Observation of second sound in bismuth. Phys Rev Lett 28(22):1461

    Article  Google Scholar 

  43. Nellis G, Klein S (2009) Heat transfer. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  44. Peshkov V (1946) Determination of the velocity of propagation of the second sound in helium II. J Phys USSR 10:389–398

    Google Scholar 

  45. Rice JR (1971) Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J Mech Phys Solids 19(6):433–455

    Article  MATH  Google Scholar 

  46. Roetzel W, Putra N, Das SK (2003) Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure. Int J Thermal Sci 42(6):541–552

    Article  Google Scholar 

  47. Scott EP, Tilahun M, Vick B (2009) The question of thermal waves in heterogeneous and biological materials. J Biomech Eng 131(7):074–518

    Article  Google Scholar 

  48. Straughan B (2011) Heat waves. Springer, New York

    Book  MATH  Google Scholar 

  49. Tamma KK, Zhou X (1998) Macroscale and microscale thermal transport and thermo-mechanical interactions: some noteworthy perspectives. J Thermal Stress 21(3–4):405–449

    Article  Google Scholar 

  50. Tang D, Araki N (2000) Non-Fourier heat condution behavior in finite mediums under pulse surface heating. Mater Sci Eng A 292(2):173–178

    Article  Google Scholar 

  51. Tisza L (1938) Transport phenomena in helium II. Nature 141:913

    Article  Google Scholar 

  52. Tzou DY (1995) The generalized lagging response in small-scale and high-rate heating. Int J Heat Mass Transf 38(17):3231–3240

    Article  Google Scholar 

  53. Ván P, Fülöp T (2012) Universality in heat conduction theory: weakly nonlocal thermodynamics. Annalen der Physik 524(8):470–478

    Article  MathSciNet  MATH  Google Scholar 

  54. Ván P, Berezovski A, Engelbrecht J (2008) Internal variables and dynamic degrees of freedom. J Non-Equilib Thermodyn 33(3):235–254

    Article  MATH  Google Scholar 

  55. Wang L, Zhou X, Wei X (2007) Heat conduction: mathematical models and analytical solutions. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  56. Zhang MK, Cao BY, Guo YC (2013) Numerical studies on dispersion of thermal waves. Int J Heat Mass Transf 67:1072–1082

    Article  Google Scholar 

Download references

Acknowledgements

This chapter is derived in part from the article published in Int. J. Heat Mass Trans. (2016) 103:516–520. Copyright\(\copyright \) Elsevier Ltd., available online: http://www.sciencedirect.com/science/article/pii/S0017931016312832

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Berezovski .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Berezovski, A., Ván, P. (2017). Heat Conduction in Microstructured Solids. In: Internal Variables in Thermoelasticity. Solid Mechanics and Its Applications, vol 243. Springer, Cham. https://doi.org/10.1007/978-3-319-56934-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56934-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56933-8

  • Online ISBN: 978-3-319-56934-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics