Skip to main content

Univariate Real Root Isolation over a Single Logarithmic Extension of Real Algebraic Numbers

  • Conference paper
  • First Online:
Applications of Computer Algebra (ACA 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 198))

Included in the following conference series:

  • 831 Accesses

Abstract

We present algorithmic, complexity, and implementation results for the problem of isolating the real roots of a univariate polynomial \(B \in L[x]\), where \(L=\mathbb {Q} [ \lg (\alpha )]\) and \(\alpha \) is a positive real algebraic number. The algorithm approximates the coefficients of B up to a sufficient accuracy and then solves the approximate polynomial. For this we derive worst-case (aggregate) separation bounds. We also estimate the expected number of real roots when we draw the coefficients from a specific distribution and illustrate our results experimentally. A generalization to bivariate polynomial systems is also presented. We implemented the algorithm in \({\mathtt {C}}\) as part of the core library of mathematica for the case \(B \in \mathbb {Z} [ \lg (q)][x]\) where q is positive rational number and we demonstrate its efficiency over various data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://members.wolfram.com/adams/LogRootIsolExamples.txt.

References

  1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)

    MATH  Google Scholar 

  2. Baker, A.: Linear forms in the logarithms of algebraic numbers (IV). Mathematika 15(02), 204–216 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baker, A.: The theory of linear forms in logarithms. In: Transcendence Theory: Advances and Applications, pp. 1–27 (1977)

    Google Scholar 

  4. Bates, D.J., Sottile, F.: Khovanskii-Rolle continuation for real solutions. Found. Comput. Math. 11(5), 563–587 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodrato, M., Zanoni, A.: Long integers and polynomial evaluation with Estrin’s scheme. In: Proceedings of the 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 39–46. IEEE (2011)

    Google Scholar 

  6. Bouzidi, Y., Lazard, S., Moroz, G., Pouget, M., Rouillier, F., Sagraloff, M.: Solving bivariate systems using rational univariate representations. J. Complex. 37, 34–75 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brent, R.: Fast multiple-precision evaluation of elementary functions. J. ACM 23(2), 242–251 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brent, R., Zimmermann, P.: Modern Computer Arithmetic. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  9. Cheng, J.-S., Gao, X.-S., Yap, C.-K.: Complete numerical isolation of real roots in zero-dimensional triangular systems. J. Symb. Comput. 44, 768–785 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Davenport, J.H.: Cylindrical algebraic decomposition. Technical Report 88–10, School of Mathematical Sciences, University of Bath, England (1988). http://www.bath.ac.uk/masjhd/

  11. Dedieu, J., Yakoubsohn, J.: Computing the real roots of a polynomial by the exclusion algorithm. Numer. Algorithms 4(1), 1–24 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diochnos, D.I., Emiris, I.Z., Tsigaridas, E.P.: On the asymptotic and practical complexity of solving bivariate systems over the reals. J. Symb. Comput. 44(7), 818–835 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Du, Z., Sharma, V., Yap, C.K.: Amortized bound for root isolation via Sturm sequences. In: Wang, D., Zhi, L. (eds.) International Workshop on Symbolic Numeric Computing (SNC), pp. 113–129. Birkhauser, Beihang University, Beijing (2005)

    Google Scholar 

  14. Edelman, A., Kostlan, E.: How may zeros of a random polynomial are real? Bull. AMS 32(1), 1–37 (1995)

    Article  MATH  Google Scholar 

  15. Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.: A descartes algorithm for polynomials with bit-stream coefficients. In: Ganzha, V., Mayr, E., Vorozhtsov, E. (eds.) CASC. LNCS, vol. 3718, pp. 138–149. Springer (2005)

    Google Scholar 

  16. Emiris, I.Z., Galligo, A., Tsigaridas, E.P.: Random polynomials and expected complexity of bisection methods for real solving. In: Watt, S. (ed.) Proceedings of the 35th ACM International Symposium on Symbolic & Algebraic Computation (ISSAC), pages 235–242, Munich, Germany. ACM, New York (2010)

    Google Scholar 

  17. Emiris, I.Z., Mourrain, B., Tsigaridas, E.P.: The DMM bound: multivariate (aggregate) separation bounds. In: Proceedings of the 35th ACM International Symposium on Symbolic & Algebraic Computation (ISSAC), pp. 243–250, Munich, Germany. ACM (2010)

    Google Scholar 

  18. Eppstein, D., Paterson, M.S., Yao, F.F.: On nearest-neighbor graphs. Discret. Comput. Geom. 17(3), 263–282 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Escorcielo, P., Perrucci, D.: On the davenport-mahler bound (2016). arXiv preprint arXiv:1606.06572

  20. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.-C.: On location and approximation of clusters of zeros of analytic functions. Found. Comput. Math. 5(3), 257–311 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Johnson, J., Krandick, W.: Polynomial real root isolation using approximate arithmetic. In: Proceedings of the Intertnational Symposium on Symbolic and Algebraic Computation (ISSAC), pp. 225–232. ACM (1997)

    Google Scholar 

  22. Johnson, J.R.: Algorithms for polynomial real root isolation. PhD thesis, The Ohio State University (1991)

    Google Scholar 

  23. Lu, Z., He, B., Luo, Y., Pan, L.: An algorithm of real root isolation for polynomial system. In: Wang, D., Zhi, L. (eds.) Proceedings of the 1st ACM International Work. Symbolic Numeric Computation (SNC), pp. 94–107 (2005)

    Google Scholar 

  24. Mantzaflaris, A., Mourrain, B., Tsigaridas, E.P.: On continued fraction expansion of real roots of polynomial systems, complexity and condition numbers. Theor. Comput. Sci. 412(22), 2312–2330 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. McNamee, J.M., Pan, V.Y.: Numerical Methods for Roots of Polynomials (II), chapter 15. Elsevier (2013)

    Google Scholar 

  26. Mehlhorn, K., Sagraloff, M.: A deterministic algorithm for isolating real roots of a real polynomial. J. Symb. Comput. 46(1), 70–90 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mehlhorn, K., Sagraloff, M., Wang, P.: From approximate factorization to root isolation with application to cylindrical algebraic decomposition. J. Symb. Comput. 66, 34–69 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mignotte, M.: Mathematics for Computer Algebra. Springer, New York (1992)

    Book  MATH  Google Scholar 

  29. Mignotte, M., Waldschmidt, M.: Linear forms in two logarithms and Schneider’s method. Math. Ann. 231(3), 241–267 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pan, V.: Univariate polynomials: nearly optimal algorithms for numerical factorization and rootfinding. J. Symb. Comput. 33(5), 701–733 (2002)

    Article  MATH  Google Scholar 

  31. Pan, V.Y., Tsigaridas, E.P.: On the boolean complexity of real root refinement. In: Kauers, M. (ed.) Proc. Int’l Symp. on Symb. and Algebraic Comp. (ISSAC), pp. 299–306, Boston, USA. ACM (2013)

    Google Scholar 

  32. Rouillier, F., Zimmermann, Z.: Efficient isolation of polynomial’s real roots. J. Comput. Appl. Math. 162(1), 33–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sagraloff, M.: On the complexity of real root isolation. abs/1011.0344v1 (2010)

    Google Scholar 

  34. Schönhage, A.: The fundamental theorem of algebra in terms of computational complexity. Manuscript. Univ. of Tübingen, Germany, 1982. http://www.iai.uni-bonn.de/~schoe/fdthmrep.ps.gz

  35. Strzeboński, A., Tsigaridas, E.P.: Univariate real root isolation in an extension field. In: Leykin, A. (ed.) Proc. 36th ACM Int’l Symp. on Symbolic & Algebraic Comp. (ISSAC), pp. 321–328, San Jose, CA, USA. ACM (2011)

    Google Scholar 

  36. Strzeboński, A., Tsigaridas, E.P.: Univariate real root isolation in multiple extension fields. In: Proc. 37th ACM Int’l Symp. on Symbolic & Algebraic Comp. (ISSAC), pp. 343–350, Grenoble, France. ACM (2012)

    Google Scholar 

  37. Tsigaridas, E.P., Emiris, I.Z.: On the complexity of real root isolation using continued fractions. Theor. Comput. Sci. 392, 158–173 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge University Press, New York (2013)

    Book  MATH  Google Scholar 

  39. Xia, B., Yang, L.: An algorithm for isolating the real solutions of semi-algebraic systems. J. Symb. Comput. 34, 461–477 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xia, B., Zhang, T.: Real solution isolation using interval arithmetic. Comput. Math. Appl. 52, 853–860 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yakoubsohn, J.: Approximating the zeros of analytic functions by the exclusion algorithm. Numer. Algorithms 6(1), 63–88 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yakoubsohn, J.-C.: Numerical analysis of a bisection-exclusion method to find zeros of univariate analytic functions. J. Complex. 21(5), 652–690 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yap, C.: Fundamental Problems of Algorithmic Algebra. Oxford University Press, New York (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

Both authors would like to thank an anonymous referee for her, or his, very detailed comments that greatly improved the presentation of the results. Elias Tsigaridas is partially supported by the French National Research Agency (ANR-09-BLAN-0371-01), GeoLMI (ANR 2011 BS03 011 06), HPAC (ANR ANR-11-BS02-013) and an FP7 Marie Curie Career Integration Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias P. Tsigaridas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Strzeboński, A., Tsigaridas, E.P. (2017). Univariate Real Root Isolation over a Single Logarithmic Extension of Real Algebraic Numbers. In: Kotsireas, I., Martínez-Moro, E. (eds) Applications of Computer Algebra. ACA 2015. Springer Proceedings in Mathematics & Statistics, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-319-56932-1_27

Download citation

Publish with us

Policies and ethics