Skip to main content

The Generalized Rabinowitsch Trick

  • Conference paper
  • First Online:
Applications of Computer Algebra (ACA 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 198))

Included in the following conference series:

Abstract

The famous Rabinowitsch trick for Hilbert’s Nullstellensatz is generalized and used to analyze various properties of a polynomial with respect to an ideal. These properties include, among others, (i) checking whether the polynomial is a zero divisor in the residue class ring defined by the associated ideal and (ii) checking whether the polynomial is invertible in the residue class ring defined by the associated ideal. Just like using the classical Rabinowitsch’s trick, its generalization can also be used to decide whether the polynomial is in the radical of the ideal. Some of the byproducts of this construction are that it is possible to be more discriminatory in determining whether the polynomial is a zero divisor (invertible, respectively) in the quotient ring defined by the ideal, or the quotient ideal constructed by localization using the polynomial. This method also computes the smallest integer which gives the saturation ideal of the ideal with respect to a polynomial. The construction uses only a single Gröbner basis computation to achieve all these results.

The authors were supported by the NSF DMS-1217054 and NSFC 11371356.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A set G is a minimal Gröbner basis of I if (1) G is a Gröbner basis of I, and (2) for each \(g\in G\), \(\mathrm{lpp}(g)\) is not divisible by any leading power products of \(G \setminus \{g\}\).

References

  1. Bayer, D.: The Division Algorithm and the Hilbert Scheme. Ph.D. thesis, Harvard (1981)

    Google Scholar 

  2. Buchberger, B.: Groebner bases: an algorithmic method in polynomial ideal theory. In: Bose, N.K. (ed.) Multidimensional Systems Theory, pp. 184–232. D. Reidel Publishing, Dordrecht (1985)

    Chapter  Google Scholar 

  3. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Springer, New York (2007)

    Book  MATH  Google Scholar 

  4. Brownawell, W.D.: Rabinowitsch trick. In: Encyclopedia of Mathematics. Springer, Berlin (2001)

    Google Scholar 

  5. Duval, D.: Algebraic numbers: an example of dynamic evaluation. J. Symb. Comput. 18, 429–445 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kapur, D.: Geometry theorem proving using Hilbert’s Nullstellensatz. In: Proceedings of the ISSAC 1986, pp. 202–208. ACM Press, New York (1986)

    Google Scholar 

  7. Kapur, D., Sun, Y., Wang, D.: An efficient algorithm for computing comprehensive Gröbner system for a parametric polynomial system. J. Symb. Comput. 49, 27–44 (2013)

    Article  MATH  Google Scholar 

  8. Kapur, D., Sun, Y., Wang, D.: An efficient method for computing comprehensive Gröbner bases. J. Symb. Comput. 52, 124–142 (2013)

    Article  MATH  Google Scholar 

  9. Rabinowitsch, J.L.: Zum Hilbertschen Nullstellensatz. Mathematische Annalen 102(1), 520 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mora, T.: Solving Polynomial Equation Systems II. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  11. Noro, M.: Modular dynamic evaluation. In: Proceedings of the ISSAC 2006, pp. 262–268. ACM Press, New York (2006)

    Google Scholar 

  12. Sato, Y., Suzuki, A.: Computation of inverses in residue class rings of parametric polynomial ideal. In: Proceedings of the ISSAC 2009, pp. 311–316. ACM Press, New York (2009)

    Google Scholar 

  13. Shannon, D., Sweedler, M.: Using Gröbner bases to determine algebra membership, splitting surjective algebra homomorphisms and determine birational equivalence. J. Symb. Comput. 6, 267–273 (1988)

    Article  MATH  Google Scholar 

  14. Spear, D.A.: A constructive approach to commutative ring theory. In: Proceedings of the 1977 MACSYMA Users Conference, pp. 369–376 (1977)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professors Teo Mora and Yosuke Sato for their helpful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kapur, D., Sun, Y., Wang, D., Zhou, J. (2017). The Generalized Rabinowitsch Trick. In: Kotsireas, I., Martínez-Moro, E. (eds) Applications of Computer Algebra. ACA 2015. Springer Proceedings in Mathematics & Statistics, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-319-56932-1_14

Download citation

Publish with us

Policies and ethics