Skip to main content

Effects of Climate Change on Wildlife in the Northern Rockies

  • Chapter
  • First Online:
Climate Change and Rocky Mountain Ecosystems

Part of the book series: Advances in Global Change Research ((AGLO,volume 63))

Abstract

Few data exist on the direct effects of climatic variability and change on animal species. Therefore, projected climate change effects must be inferred from what is known about habitat characteristics and the autecology of each species. Habitat for mammals, including predators (Canada lynx, fisher, wolverine) and prey (snowshoe hare) that depend on high-elevation, snowy environments, is expected to deteriorate relatively soon if snowpack continues to decrease. Species that are highly dependent on a narrow range of habitat (pygmy rabbit, Brewer’s sparrow, greater sage-grouse) will be especially vulnerable if that habitat decreases from increased disturbance (e.g., sagebrush mortality from wildfire). Species that are mobile or respond well to increased disturbance and habitat patchiness (deer, elk) will probably be resilient to a warmer climate in most locations. Some amphibian species (Columbia spotted frog, western toad) may be affected by pathogens (e.g., amphibian chytrid fungus) that are favored by a warmer climate.

Adaptation strategies for wildlife focused on maintaining adequate habitat and healthy wildlife populations, and increasing knowledge of species’ needs and climate sensitivities. Connectivity is an important conservation strategy for most species in the Northern Rockies. Maintaining healthy American beaver populations will provide riparian habitat structure and foraging opportunities for multiple species. Quaking aspen habitat, which is also important for several species, can be enhanced by allowing wildfire to burn, protecting aspen from grazing, and reducing conifer encroachment. Restoration of more open stands of ponderosa pine and mixed conifer forest through reduction of stand densities will benefit species such as flammulated owl. Excluding fire and reducing nonnative species will maintain sagebrush habitats that are required by several bird and mammal species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, R. A. (2010). Bat reproduction declines when conditions mimic climate change projections for western North America. Ecology, 91, 2437–2445.

    Article  Google Scholar 

  • Aubry, K. B., Raley, C. M., Buskirk, S. W., et al. (2013). Meta-analysis of habitat selection by fishers at resting sites in the Pacific coastal region. Journal of Wildlife Management, 77, 1937–2817.

    Google Scholar 

  • Bagne, K. E., Friggens, M. M., & Finch, D. M. (Eds.). (2011). A system for assessing vulnerability of species (SAVS) to climate change (General Technical Report RMRS-GTR-257). Fort Collins: U.S. Forest Service, Rocky Mountain Research Station.

    Google Scholar 

  • Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303–309.

    Article  CAS  Google Scholar 

  • Beck, J. L., & Mitchell, D. L. (2000). Influences of livestock grazing on sage grouse habitat. Wildlife Society Bulletin, 28, 993–1002.

    Google Scholar 

  • Beever, E. A., Ray, C., Mote, P. W., & Wilkening, J. L. (2010). Testing alternative models of climate-mediated extirpations. Ecological Applications, 20, 164–178.

    Article  Google Scholar 

  • Beever, E. A., Ray, C., Wilkening, J. L., et al. (2011). Contemporary climate change alters the pace and drivers of extinction. Global Change Biology, 17, 2054–2070.

    Article  Google Scholar 

  • Beever, E. A., Dobrowski, S. Z., Long, J., et al. (2013). Understanding relationships among abundance, extirpation, and climate at ecoregional scales. Ecology, 94, 1563–1571.

    Article  Google Scholar 

  • Bell, D. M., Bradford, J. B., & Lauenroth, W. K. (2014). Forest stand structure, productivity, and age mediate climatic effects on aspen decline. Ecology, 95, 2040–2046.

    Article  Google Scholar 

  • Bergman, E. J., Bishop, C. J., Freddy, D. J., et al. (2014). Habitat management influences overwinter survival of mule deer fawns in Colorado. Journal of Wildlife Management, 78, 448–455.

    Article  Google Scholar 

  • Braun, C. E., Oedekoven, O. O., & Aldridge, C. L. (2002). Oil and gas development in western North America: Effects on sagebrush steppe avifauna with particular emphasis on sage grouse. Transactions of the North American Wildlife and Natural Resources Conference, 67, 337–349.

    Google Scholar 

  • Campbell, R. D., Nouvellet, P., Newman, C., et al. (2012). The influence of mean climate trends and climate variance on beaver survival and recruitment dynamics. Global Change Biology, 18, 2730–2742.

    Article  Google Scholar 

  • Campbell, R. D., Newman, C., Macdonald, D. W., & Rosell, F. (2013). Proximate weather patterns and spring green-up phenology effect Eurasian beaver (Castor fiber) body mass and reproductive success: The implications of climate change and topography. Global Change Biology, 19, 1311–1324.

    Article  Google Scholar 

  • Case, M. J., Lawler, J. J., & Tomasevic, J. A. (2015). Relative sensitivity to climate change of species in northwestern North America. Biological Conservation, 187, 127–133.

    Article  Google Scholar 

  • Castillo, J. A., Epps, C. W., Davis, A. R., & Cushman, S. A. (2014). Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Molecular Ecology, 23, 843–856.

    Article  Google Scholar 

  • Chalfoun, A. D., & Martin, T. E. (2010). Facultative nest patch shifts in response to nest predation risk in the Brewer’s sparrow: A “win-stay, lose-switch” strategy? Oecologia, 163, 885–892.

    Article  Google Scholar 

  • Clark, D. R. (1988). Environmental contaminants and the management of bat populations in the United States. In R. C. Szaro, K. E. Severson, & D. R. Patton (Eds.), Management of amphibians, reptiles, and small mammals in North America (General Technical Report RM-166; pp. 409–413). Fort Collins: U.S. Forest Service, Rocky Mountain Research Station.

    Google Scholar 

  • Connelly, J. W., & Braun, C. E. (1997). Long-term changes in sage grouse Centrocercus urophasianus populations in western North America. Wildlife Biology, 3, 229–234.

    Google Scholar 

  • Connelly, J. W., Reese, K. P., Fischer, R. A., & Wakkinen, W. L. (2000). Response of sage-grouse breeding population to fire in southeastern Idaho. Wildlife Society Bulletin, 28, 90–96.

    Google Scholar 

  • Copeland, J. P., McKelvey, K. S., Aubry, K. B., et al. (2010). The bioclimatic envelope of the wolverine: Do environmental constraints limit their geographic distribution? Canadian Journal of Zoology, 88, 233–246.

    Article  Google Scholar 

  • Corn, P. S., Hossack, B. R., & Muths, E. (2005). Status of amphibians on the continental divide: Surveys on a transect from Montana to Colorado, USA. Alytes, 22, 85–94.

    Google Scholar 

  • Creutzburg, M. K., Henderson, E. B., & Conklin, D. R. (2015). Climate change and land management impact rangeland condition and sage-grouse habitat in southeastern Oregon. AIMS Environmental Science, 2, 203–236.

    Article  Google Scholar 

  • Davies, K. W., Boyd, C. S., Beck, J. L., et al. (2011). Saving the sagebrush sea: An ecosystem conservation plan for big sagebrush plant communities. Biological Conservation, 144, 2573–2584.

    Article  Google Scholar 

  • Edwards, A. C., Scalenghe, R., & Freppaz, M. (2007). Changes in the seasonal snow cover of alpine regions and its effect on soil processes: A review. Quaternary International, 162, 172–181.

    Article  Google Scholar 

  • Erb, L. P., Ray, C., & Guralnick, R. (2011). On the generality of a climate-mediated shift in the distribution of the American pika (Ochotona princeps). Ecology, 92, 1730–1735.

    Article  Google Scholar 

  • Fellers, G. M., & Pierson, E. D. (2002). Habitat use and foraging behavior of Townsend’s big-eared bat (Corynorhinus townsendii) in coastal California. Journal of Mammalogy, 83, 167–177.

    Article  Google Scholar 

  • Foden, W. B., Butchart, S. H. M., Stuart, S. N., et al. (2013). Identifying the world's most climate change vulnerable species: A systematic trait-based assessment of all birds, amphibians and corals. PloS One, 8, e65427.

    Article  CAS  Google Scholar 

  • Foresman, K. R. (2012). Mammals of Montana. Missoula: Mountain Press Publishing Company.

    Google Scholar 

  • Grayson, D. K. (2000). Mammalian responses to middle Holocene climatic change in the Great Basin of the Western United States. Journal of Biogeography, 27, 181–192.

    Article  Google Scholar 

  • Green, J. S., & Flinders, J. T. (1980). Habitat and dietary relationships of the pygmy rabbit. Journal of Range Management, 33, 136–142.

    Article  Google Scholar 

  • Gruver, J. C., & Keinath, D. A. (2003). Species assessment for Townsend’s big-eared bat (Corynorhinus townsendii) in Wyoming. Cheyenne: Bureau of Land Management, Wyoming State Office.

    Google Scholar 

  • Hansen, W. K. (2014). Causes of annual reproductive variation and anthropogenic disturbance in harlequin ducks breeding in Glacier National Park, Montana. Master’s thesis. Missoula: University of Montana.

    Google Scholar 

  • Henry, P., Sim, Z., & Russello, M. A. (2012). Genetic evidence for restricted dispersal along continuous altitudinal gradients in a climate change-sensitive mammal: The American pika. PloS One, 7, e39077.

    Article  CAS  Google Scholar 

  • Hodges, K. E. (2000). Ecology of snowshoe hares in northern boreal forests. In L. F. Ruggiero, K. B. Aubry, S. W. Buskirk, et al. (Eds.), Ecology and conservation of lynx in the United States (pp. 117–162). Boulder: University of Colorado Press.

    Google Scholar 

  • Hossack, B. R., Adams, M. J., Pearl, C. A., et al. (2013). Roles of patch characteristics, drought frequency, and restoration in long-term trends of a widespread amphibian. Conservation Biology, 27, 1410–1420.

    Article  Google Scholar 

  • Hossack, B. R., & Corn, P. S. (2007). Responses of pond-breeding amphibians to wildfire: Short-term patterns in occupancy and colonization. Ecological Applications, 17, 1403–1410.

    Article  Google Scholar 

  • Hurteau, S. R., Sisk, T. D., Block, W. M., & Dickson, B. G. (2008). Fuel-reduction treatment effects on avian community structure and diversity. Journal of Wildlife Management, 72, 1168–1174.

    Article  Google Scholar 

  • Jarema, S. I., Samson, J., McGill, B. J., & Humphries, M. M. (2009). Variation in abundance across a species’ range predicts climate change responses in the range interior will exceed those at the edge: A case study with North American beaver. Global Change Biology, 15, 508–522.

    Article  Google Scholar 

  • Katzner, T. E., & Parker, K. L. (1997). Vegetative characteristics and size of home ranges used by pygmy rabbits (Brachylagus idahoensis) during winter. Journal of Mammalogy, 78, 1063–1072.

    Article  Google Scholar 

  • Kie, J. G., Bowyer, R. T., Nicholson, M. C., et al. (2002). Landscape heterogeneity at differing scales: Effects on spatial distribution of mule deer. Ecology, 83, 530–544.

    Article  Google Scholar 

  • Krohn, W. B., Elowe, K. D., & Boone, R. B. (1995). Relations among fishers, snow, and martens: Development and evaluation of two hypotheses. The Forestry Chronicle, 71, 97–105.

    Article  Google Scholar 

  • Lankester, M. W. (2010). Understanding the impact of meningeal worm, Parelaphostrongylus tenuis, on moose populations. Alces, 46, 53–70.

    Google Scholar 

  • Lenarz, M. S., Nelson, M. E., Schrage, M. W., & Edwards, A. J. (2009). Temperature mediated moose survival in northeastern Minnesota. Journal of Wildlife Management, 73, 503–510.

    Article  Google Scholar 

  • Linkhart, B. D., Reynolds, R. T., & Ryder, R. A. (1998). Home range and habitat of breeding flammulated owls in Colorado. Wilson Bulletin, 110, 342–351.

    Google Scholar 

  • Lowe, S. J., Patterson, B. R., & Schaefer, J. A. (2010). Lack of behavioral responses of moose (Alces alces) to high ambient temperatures near the southern periphery of their range. Canadian Journal of Zoology, 88, 1032–1041.

    Article  Google Scholar 

  • Lucan, R. K., Weiser, M., & Hanak, V. (2013). Contrasting effects of climate change on the timing of reproduction and reproductive success of a temperate insectivorous bat. Journal of Zoology, 290, 151–159.

    Article  Google Scholar 

  • Luo, J. H., Koselj, K., Zsebok, S., et al. (2014). Global warming alters sound transmission: Differential impact on the prey detection ability of echolocating bats. Journal of the Royal Society Interface, 11, 20130961.

    Article  Google Scholar 

  • Magoun, A. J., & Copeland, J. P. (1998). Characteristics of wolverine reproductive den sites. Journal of Wildlife Management, 62, 1313–1320.

    Article  Google Scholar 

  • McCaffrey, R. M., & Maxell, B. A. (2010). Decreased winter severity increases viability of a montane frog population. Proceedings of the National Academy of Sciences, USA, 107, 8644–8649.

    Article  Google Scholar 

  • McKelvey, K. S., Aubry, K. B., & Ortega, Y. K. (2000). History and distribution of lynx in the contiguous United States. In L. F. Ruggiero, K. B. Aubry, S. W. Buskirk, et al. (Eds.), Ecology and conservation of lynx in the United States (pp. 207–264). Boulder: University of Colorado Press.

    Google Scholar 

  • McKelvey, K. S., Copeland, J. P., Schwartz, M. K., et al. (2011). Climate change predicted to shift wolverine distributions, connectivity, and dispersal corridors. Ecological Applications, 21, 2882–2897.

    Article  Google Scholar 

  • McMenamina, S. K., Hadlya, E. A., & Wright, C. K. (2008). Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proceedings of the National Academy of Sciences, USA, 105, 16988–16993.

    Article  Google Scholar 

  • Mehls, C. L., Jensen, K. C., Rumble, M. A., & Wimberly, M. C. (2014). Multi-scale habitat use of male ruffed grouse in the Black Hills National Forest. The Prairie Naturalist, 46, 21–33.

    Google Scholar 

  • Mezquida, E. T., Slater, S. J., & Benkman, C. W. (2006). Sage-grouse and indirect interactions: Potential implications of coyote control on sage-grouse populations. The Condor, 108, 747–759.

    Article  Google Scholar 

  • Millar, C. I., & Westfall, R. D. (2010). Distribution and climatic relationships of the American pika (Ochotona princeps) in the Sierra Nevada and western Great Basin, U.S.A.: periglacial landforms as refugia in warming climates. Arctic, Antarctic, and Alpine Research, 42, 76–88.

    Article  Google Scholar 

  • Miller, R. F., & Eddleman, L. L. (2001). Spatial and temporal changes of sage grouse habitat in the sagebrush biome (Technical Bulletin 151). Corvallis: Oregon State University, Agricultural Experiment Station.

    Google Scholar 

  • Mills, L. S., Zimova, M., Oyler, J., et al. (2013). Camouflage mismatch in seasonal coat color due to decreased snow duration. Proceedings of the National Academy of Sciences, USA, 110, 7360–7365.

    Article  CAS  Google Scholar 

  • Mote, P. W., Hamlet, A. F., Clark, M. P., & Lettenmaier, D. P. (2005). Declining mountain snowpack in western North America. Bulletin of the American Meteorological Society, 86, 39–49.

    Article  Google Scholar 

  • Mowat, G., Poole, K. G., & O’Donoghue, M. (2000). Ecology of lynx in northern Canada and Alaska. In L. F. Ruggiero, K. B. Aubry, S. W. Buskirk, G. M. Koehler, C. J. Krebs, M. K. KS, & J. R. Squires (Eds.), Ecology and conservation of lynx in the United States (pp. 265–306). Boulder: University Press of Colorado.

    Google Scholar 

  • Murray, D. L., Cox, E. W., Ballard, W. B., et al. (2006). Pathogens, nutritional deficiency, and climate change influences on a declining moose population. Wildlife Monographs, 166, 1–30.

    Article  Google Scholar 

  • Murray, D. L., Hussey, K. F., Finnegan, L. A., et al. (2012). Assessment of the status and viability of a population of moose (Alces alces) at its southern range limit in Ontario. Canadian Journal of Zoology, 90, 422–434.

    Article  Google Scholar 

  • Muths, E., Pilliod, D. S., & Livo, L. J. (2008). Distribution and environmental limitations of an amphibian pathogen in the Rocky Mountains, USA. Biological Conservation, 141, 1484–1492.

    Article  Google Scholar 

  • Naugle, D. E., Aldridge, C. L., Walker, B. L., et al. (2004). West Nile virus: Pending crisis for greater sage-grouse. Ecology Letters, 7, 704–713.

    Article  Google Scholar 

  • Nichols, J. D., & Williams, B. K. (2006). Monitoring for conservation. Trends in Ecology and Evolution, 21, 668–673.

    Article  Google Scholar 

  • Noon, B. R., & Biles, C. M. (1990). Mathematical demography of spotted owls in the Pacific Northwest. Journal of Wildlife Management, 54, 18–27.

    Article  Google Scholar 

  • Norvell, R. E., Edwards, T. C., & Howe, F. P. (2014). Habitat management for surrogate species has mixed effects on non-target species in the sagebrush steppe. Journal of Wildlife Management, 78, 456–462.

    Article  Google Scholar 

  • Olson, L. E., Sauder, J. D., Albrecht, N. M., et al. (2014). Modeling the effects of dispersal and patch size on predicted fisher (Pekania [Martes] pennanti) distribution in the U.S. Rocky Mountains. Biological Conservation, 169, 89–98.

    Article  Google Scholar 

  • Perry, L. G., Andersen, D. C., Reynolds, L. V., et al. (2012). Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America. Global Change Biology, 18, 821–842.

    Article  Google Scholar 

  • Petersen, K. L., & Best, L. B. (1985). Brewer's sparrow nest-site characteristics in a sagebrush community. Journal of Field Ornithology, 56, 23–27.

    Google Scholar 

  • Pierce, J. E., Larsen, R. T., Flinders, J. T., & Whiting, J. C. (2011). Fragmentation of sagebrush communities: Does an increase in habitat edge impact pygmy rabbits? Animal Conservation, 14, 314–321.

    Article  Google Scholar 

  • Piotrowski, J. S., Annis, S. L., & Longcore, J. E. (2004). Physiology of Batrachochytrium dendrobatidis, a Chytrid pathogen of amphibians. Mycologia, 96, 9–15.

    Article  Google Scholar 

  • Pope, M. D., & Crawford, J. A. (2004). Survival rates of translocated and native Mountain Quail in Oregon. Western North American Naturalist, 64, 331–337.

    Google Scholar 

  • Purse, B. V., Mellor, P. S., Rodgers, D. J., et al. (2005). Climate change and the recent emergence of bluetongue in Europe. Nature Reviews Microbiology, 3, 171–181.

    Article  CAS  Google Scholar 

  • Raine, R. M. (1983). Winter habitat use and responses to snow cover of fisher (Martes pennanti) and marten (Martes americana) in southeastern Manitoba. Canadian Journal of Zoology, 61, 25–34.

    Article  Google Scholar 

  • Renecker, L. A., & Hudson, R. J. (1986). Seasonal energy expenditure and thermoregulatory response of moose. Canadian Journal of Zoology, 64, 322–327.

    Article  Google Scholar 

  • Robertson, G. J., & Goudie, R. I. (2015). Harlequin duck Histrionicus histrionicus. In A. Poole (Ed.), The birds of North America online. Ithaca: Cornell Laboratory of Ornithology. http://bna.birds.cornell.edu/bna. 11 Dec 2016.

  • Russell, D. M., Goldberg, C. S., Waits, L. P., & Rosenblum, E. B. (2010). Batrachochytrium dendrobatidis infection dynamics in the Columbia spotted frog Rana luteiventris in north Idaho, USA. Diseases of Aquatic Organisms, 92, 223–230.

    Article  Google Scholar 

  • Saab, V., Block, W., Russell, R., et al. (2007). Birds and burns of the interior West: Descriptions, habitats, and management in western forests (General Technical Report PNW-GTR-712). Portland: U.S. Forest Service, Pacific Northwest Research Station.

    Google Scholar 

  • Sawyer, H., Nielson, R. M., Lindzey, F. G., et al. (2007). Habitat selection of Rocky Mountain elk in a nonforested environment. Journal of Wildlife Management, 71, 868–874.

    Article  Google Scholar 

  • Schrag, A., Konrad, S., Miller, S., et al. (2011). Climate-change impacts on sagebrush habitat and West Nile virus transmission risk and conservation implications for greater sage-grouse. GeoJournal, 76, 561–575.

    Article  Google Scholar 

  • Schroeder, M. A., Aldridge, C. L., Apa, A. D., et al. (2004). Distribution of sage-grouse in North America. The Condor, 106, 363–376.

    Article  Google Scholar 

  • Schwartz, M. K., Pilgrim, K. L., McKelvey, K. S., et al. (2004). Hybridization between Canada lynx and bobcats: Genetic results and management implications. Conservation Genetics, 5, 349–355.

    Article  CAS  Google Scholar 

  • Schwartz, M. K., Copeland, J. P., Anderson, N. J., et al. (2009). Wolverine gene flow across a narrow climatic niche. Ecology, 90, 3222–3232.

    Article  Google Scholar 

  • Schwartz, M. K., DeCesare, N. J., Jimenez, B. S., et al. (2013). Stand- and landscape-scale selection of large trees by fishers in the Rocky Mountains of Montana and Idaho. Forest Ecology and Management, 305, 103–111.

    Article  Google Scholar 

  • Sherwin, H. A., Montgomery, W. L., & Lundy, M. G. (2013). The impact and implications of climate change for bats. Mammal Review, 43, 171–182.

    Article  Google Scholar 

  • Smith, A. T., & Weston, M. L. (1990). Ochotona princeps. Mammalian Species, 352, 1–8.

    Article  Google Scholar 

  • Smucker, K. M., & Marks, J. S. (2013). Flammulated owls nest in hollow in ground. Journal of Raptor Research, 47, 421–422.

    Article  Google Scholar 

  • Squires, J. R., & Ruggiero, L. F. (2007). Winter prey selection of Canada lynx in northwestern Montana. Journal of Wildlife Management, 71, 310–315.

    Article  Google Scholar 

  • Squires, J. R., Decesare, N. J., Kolbe, J. A., & Ruggiero, L. F. (2008). Hierarchical den selection of Canada lynx in western Montana. Journal of Wildlife Management, 72, 1497–1506.

    Google Scholar 

  • Squires, J. R., Decesare, N. J., Kolbe, J. A., & Ruggiero, L. F. (2010). Seasonal resource selection of Canada lynx in managed forests of the northern Rocky Mountains. Journal of Wildlife Management, 74, 1648–1660.

    Google Scholar 

  • Squires, J. R., DeCesare, N. J., Olson, L. E., et al. (2013). Combining resource selection and movement behavior to predict corridors for Canada lynx at their southern range periphery. Biological Conservation, 157, 187–195.

    Article  Google Scholar 

  • Stauffer, F., & Peterson, S. R. (1985). Ruffed and blue grouse habitat use in southeastern Idaho. Journal of Wildlife Management, 49, 459–466.

    Article  Google Scholar 

  • Stephenson, J. A., Reese, K. P., Zager, P., et al. (2011). Factors influencing survival of native and translocated mountain quail in Idaho and Washington. Journal of Wildlife Management, 75, 1315–1323.

    Article  Google Scholar 

  • Sydeman, W. J., Güntert, M., & Balda, R. P. (1988). Annual reproductive yield in the cooperative pygmy nuthatch (Sitta pygmaea). The Auk, 105, 70–77.

    Google Scholar 

  • Thorne, E. T., Williams, E. S., Spraker, T. R., et al. (1988). Bluetongue in free-ranging pronghorn antelope (Antilocapra americana) in Wyoming: 1976 and 1984. Journal of Wildlife Diseases, 24, 113–119.

    Article  CAS  Google Scholar 

  • U.S. Geological Survey (USGS). (2013). North American breeding bird survey data, 1996–2013. http://www.mbr-pwrc.usgs.gov/bbs/tr2013/tr05620.htm. 12 Dec 2016.

  • van Oort, H., McLellan, B. N., & Serrouya, R. (2011). Fragmentation, dispersal and metapopulation function in remnant populations of endangered mountain caribou. Animal Conservation, 14, 215–224.

    Article  Google Scholar 

  • Welch, N. E., & MacMahon, J. A. (2005). Identifying habitat variables important to the rare Columbia spotted frog in Utah (USA): an information-theoretic approach. Conservation Biology, 19, 473–481.

    Article  Google Scholar 

  • Wisdom, M. J., Rowland, M. M., Wales, B. C., et al. (2002). Modeled effects of sagebrush-steppe restoration on greater sage-grouse in the Interior Columbia Basin, USA. Conservation Biology, 16, 1223–1231.

    Article  Google Scholar 

  • Woods, B. A., Rachlow, J. L., Bunting, S. C., et al. (2013). Managing high-elevation sagebrush steppe: Do conifer encroachment and prescribed fire affect habitat for pygmy rabbits? Rangeland Ecology Management, 66, 462–471.

    Article  Google Scholar 

  • Yandow, L. (2013). Delineating limiting habitat features and climate variables for the American pika (Ochotona princeps). Master’s thesis. Laramie: University of Wyoming.

    Google Scholar 

  • Zimova, M., Mills, L. S., Lukacs, P. M., & Mitchell, M. S. (2014). Snowshoe hares display limited phenotypic plasticity to mismatch in seasonal camouflage. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20140029.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin S. McKelvey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

McKelvey, K.S., Buotte, P.C. (2018). Effects of Climate Change on Wildlife in the Northern Rockies. In: Halofsky, J., Peterson, D. (eds) Climate Change and Rocky Mountain Ecosystems. Advances in Global Change Research, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-56928-4_8

Download citation

Publish with us

Policies and ethics