Skip to main content

Effects of Climate Change on Forest Vegetation in the Northern Rockies

  • Chapter
  • First Online:
Climate Change and Rocky Mountain Ecosystems

Abstract

Increasing air temperature, through its influence on soil moisture, is expected to cause gradual changes in the abundance and distribution of tree, shrub, and grass species throughout the Northern Rockies, with drought tolerant species becoming more competitive. The earliest changes will be at ecotones between lifeforms (e.g., upper and lower treelines). Ecological disturbance, including wildfire and insect outbreaks, will be the primary facilitator of vegetation change, and future forest landscapes may be dominated by younger age classes and smaller trees. High-elevation forests will be especially vulnerable if disturbance frequency increases significantly. Increased abundance and distribution of non-native plant species, as well as the legacy of past land uses, create additional stress for regeneration of native forest species.

Most strategies for conserving native tree, shrub, and grassland systems focus on increasing resilience to chronic low soil moisture, and to more frequent and extensive ecological disturbance. These strategies generally include managing landscapes to reduce the severity and patch size of disturbances, encouraging fire to play a more natural role, and protecting refugia where fire-sensitive species can persist. Increasing species, genetic, and landscape diversity (spatial pattern, structure) is an important “hedge your bets” strategy that will reduce the risk of major forest loss. Adaptation tactics include using silvicultural prescriptions (especially stand density management) and fuel treatments to reduce fuel continuity, reducing populations of nonnative species, potentially using multiple genotypes in reforestation, and revising grazing policies and practices. Rare and disjunct species and communities (e.g., whitebark pine, quaking aspen) require adaptation strategies and tactics focused on encouraging regeneration, preventing damage from disturbance, and establishing refugia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberto, F. J., Aitken, S. N., Alía, R., et al. (2013). Potential for evolutionary responses to climate change–evidence from tree populations. Global Change Biology, 19, 1645–1661.

    Article  Google Scholar 

  • Alexander, R. R., & Shepperd, W. D. (1990). Picea engelmannii Parry ex Engelm. Engelmann spruce. In R. M. Burns & B. H. Honkala (Eds.), Silvics of North America: Volume 1 conifers (pp. 403–444). Washington, DC: U.S. Forest Service.

    Google Scholar 

  • Alexander, R. R., Shearer, R. C., & Shepperd, W. D. (1990). Abies lasiocarpa (Hook.) Nutt. Subalpine Fir. In R. M. Burns & B. H. Honkala (Eds.), Silvics of North America: Volume 1 conifers (pp. 149–166). Washington, DC: USDA Forest Service.

    Google Scholar 

  • Allen, C. D., Macalady, A. K., Chenchouni, H., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684.

    Article  Google Scholar 

  • Arno, S. F. (1990). Larix lyallii Parl. alpine larch. In R. M. Burns & B. H. Honkala (Eds.), Silvics of North America: Volume 1 conifers (pp. 330–347). Washington, DC: U.S. Forest Service.

    Google Scholar 

  • Arno, S. F. (2001). Community types and natural disturbance processes. In D. F. Tomback, S. F. Arno, R. E. Keane, & R.E. (Eds.), Whitebark pine communities: Ecology and restoration (pp. 74–89). Washington, DC: Island Press.

    Google Scholar 

  • Arno, S. F., & Habeck, J. R. (1972). Ecology of alpine larch (Larix lyallii Parl.) in the Pacific Northwest. Ecological Monographs, 42, 417–450.

    Article  Google Scholar 

  • Aston, I. W. (2010). Observed and projected ecological response to climate change in the Rocky Mountains and Upper Columbia Basin: A synthesis of current scientific literature (Natural Resource Report NPS/ROMN/NPR—2010/220). Fort Collins: National Park Service.

    Google Scholar 

  • Bartos, D. L. (1978). Modeling plant succession in aspen ecosystems. In D. N. Hyder (Ed.), Proceedings of the First International Rangeland Congress (pp. 208–211). Denver: Society for Range Management.

    Google Scholar 

  • Baumgartner, D. M., Lotan, J. E., & Tonn, J. R. (1994). Interior cedar-hemlock-white pine forests: Ecology and management. Pullman: Washington State University Extension Service.

    Google Scholar 

  • Bell, D. M., Bradford, J. B., & Lauenroth, W. K. (2014). Early indicators of change: Divergent climate envelopes between tree life stages imply range shifts in the western United States. Global Ecology and Biogeography, 23, 168–180.

    Article  Google Scholar 

  • Bentz, B. J., Régnière, J., Fettig, C. J., et al. (2010). Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. Bioscience, 60, 602–613.

    Article  Google Scholar 

  • Beschta, R. L., & Ripple, W. J. (2005). Rapid assessment of riparian cottonwood recruitment: Middle Fork John Day River, Northeastern Oregon. Ecological Restoration, 23, 150–156.

    Article  Google Scholar 

  • Bigler, C., Kulakowski, D., & Veblen, T. T. (2005). Multiple disturbance interactions and drought influence fire severity in Rocky Mountain subalpine forests. Ecology, 86, 3018–3029.

    Article  Google Scholar 

  • Bollenbacher, B. (2012). Characteristics of primary tree species in the Northern Region. Missoula: U.S. Forest Service, Northern Region.

    Google Scholar 

  • Brandt, J. P., Cerezke, H. F., Mallet, K. I., et al. (2003). Factors affecting trembling aspen (Populus tremuloides Michx.) health in Alberta, Saskatchewan, and Manitoba, Canada. Forest Ecology and Management, 178, 287–300.

    Article  Google Scholar 

  • Broadhurst, L. M., Lowe, A., Coates, D. J., et al. (2008). Seed supply for broadscale restoration: Maximizing evolutionary potential. Evolutionary Applications, 1, 587–597.

    Google Scholar 

  • Brown, J. K. (1996). Fire effects on aspen and cottonwood. In: Aspen and cottonwood in the Blue Mountains workshop. La Grande: Blue Mountains Natural Resources Institute.

    Google Scholar 

  • Brunelle, A., Whitlock, C., Bartlein, P., & Kipfmueller, K. (2005). Holocene fire and vegetation along environmental gradients in the Northern Rocky Mountains. Quaternary Science Reviews, 24, 2281–2300.

    Article  Google Scholar 

  • Burns, R. M., & Honkala, B. H. (1990). Silvics of North America: Volume one, conifers. Washington, DC: U.S. Forest Service.

    Google Scholar 

  • Callaway, R., Sala, A., Keane, R. E., (1998). Replacement of whitebark pine by subalpine fir: Consequences for stand carbon, water, and nitrogen cycles. In USDA forest service, Fire Sciences Laboratory (p. 31). Missoula.

    Google Scholar 

  • Carlson, C. E., Arno, S. F., & Menakis, J. (1990). Hybrid larch of the Carlton Ridge Research Natural Area in Western Montana. Natural Areas Journal, 10, 134–139.

    Google Scholar 

  • Carroll, A. L., Taylor, S. W., Régnière, J., & Safranyik, L. (2003). Effects of climate change on range expansion by the mountain pine beetle in British Columbia. In Mountain pine beetle symposium: Challenges and solutions (pp. 223–231). Victoria: Natural Resources Canada/Canadian Forest Service.

    Google Scholar 

  • Chhin, S., Hogg, E. T., Lieffers, V. J., & Huang, S. (2008). Potential effects of climate change on the growth of lodgepole pine across diameter size classes and ecological regions. Forest Ecology and Management, 256, 1692–1703.

    Article  Google Scholar 

  • Chmura, D. J., Anderson, P. D., Howe, G. T., et al. (2011). Forest responses to climate change in the Northwestern United States: Ecophysiological foundations for adaptive management. Forest Ecology and Management, 261, 1121–1142.

    Article  Google Scholar 

  • Clark, J. S., Carpenter, S. R., Barber, M., et al. (2001). Ecological forecasts: An emerging imperative. Science, 293, 657–660.

    Google Scholar 

  • Cohn, J. S., Di Stefano, J., Christie, F., et al. (2015). How do heterogeneity in vegetation types and post-fire age-classes contribute to plant diversity at the landscape scale? Forest Ecology and Management, 346, 22–30.

    Article  Google Scholar 

  • Coops, N. C., & Waring, R. H. (2011). A process-based approach to estimate lodgepole pine (Pinus contorta Dougl.) distribution in the Pacific Northwest under climate change. Climatic Change, 105, 313–328.

    Article  Google Scholar 

  • Creeden, E. P., Hicke, J. A., & Buotte, P. C. (2014). Climate, weather, and recent mountain pine beetle outbreaks in the western United States. Forest Ecology and Management, 312, 239–251.

    Article  Google Scholar 

  • Cumming, S. G., & Burton, P. J. (1996). Phenology-mediated effects of climatic change on some simulated British Columbia forests. Climatic Change, 34, 213–222.

    Article  Google Scholar 

  • Cushman, S. A., McKenzie, D., Peterson, D. L., et al. (2007). Research agenda for integrated landscape modeling (General Technical Report RMRS-GTR-194). Fort Collins: U.S. Forest Service, Rocky Mountain Research Station.

    Google Scholar 

  • Devine, W., Aubry, C., Bower, A., et al. (2012). Climate change and forest trees in the Pacific Northwest: A vulnerability assessment and recommended actions for national forests. Olympia: U.S. Forest Service/Pacific Northwest Region.

    Google Scholar 

  • Dickman, A., & Cook, S. (1989). Fire and fungus in a mountain hemlock forest. Canadian Journal of Botany, 67, 2005–2016.

    Article  Google Scholar 

  • Falk, D. A., Miller, C., McKenzie, D., & Black, A. E. (2007). Cross-scale analysis of fire regimes. Ecosystems, 10, 809–823.

    Article  Google Scholar 

  • Ferguson, D. E., & Johnson, F. D. (1996). Classification of grand fir mosaic habitats (General Technical Report INT-GTR-337). Ogden: U.S. Forest Service, Intermountain Research Station.

    Google Scholar 

  • Fins, L., & Steeb, L. W. (1986). Genetic variation in allozymes of western larch. Canadian Journal of Forest Research, 16, 1013–1018.

    Article  CAS  Google Scholar 

  • Fins, L., Byler, J., Ferguson, D., et al. (2002). Return of the giants: Restoring white pine ecosystems by breeding and aggressive planting of blister rust-resistant white pines. Journal of Forestry, 100, 20–26.

    Google Scholar 

  • Flannigan, M. D., Amiro, B. D., Logan, K. A., et al. (2005). Forest fires and climate change in the 21st century. Mitigation and Adaptation Strategies for Global Change, 11, 847–859.

    Article  Google Scholar 

  • Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., et al. (2009). Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 18, 483–507.

    Article  Google Scholar 

  • Foiles, M. W., Graham, R. T., & Olson, D. F. (1990). Abies grandis (Dougl. ex D. Don) Lindl. grand fir. In R. M. Burns & B. H. Honkala (Eds.), Silvics of North America: Volume 1 conifers (pp. 132–155). Washington, DC: U.S. Forest Service.

    Google Scholar 

  • Frey, B. R., Lieffers, V. J., Hogg, E. H., & Landhäusser, S. M. (2004). Predicting landscape patterns of aspen dieback: Mechanisms and knowledge gaps. Canadian Journal of Forest Research, 34, 1379–1390.

    Article  Google Scholar 

  • Fulé, P. Z., Cocke, A. E., Heinlein, T. A., & Covington, W. W. (2004). Effects of an intense prescribed forest fire: Is it ecological restoration? Restoration Ecology, 12, 220–230.

    Google Scholar 

  • Funk, J., & Saunders, S. (2014). Rocky mountain forests at risk: Confronting climate-driven impacts from insects, wildfires, heat, and drought. Cambridge, MA: Union of Concerned Scientists.

    Google Scholar 

  • Graham, R. T. (1990). Pinus monticola Dougl. ex D. Don western white pine. In R. M. Burns & B. H. Honkala (Eds.), Silvics of North America: Volume 1 conifers (pp. 348–353). Washington, DC: U.S. Forest Service.

    Google Scholar 

  • Gray, L. K., & Hamann, A. (2013). Tracking suitable habitat for tree populations under climate change in western North America. Climatic Change, 117, 289–303.

    Article  Google Scholar 

  • Halofsky, J. E., Peterson, D. L., Dante, S. K., et al. (2017). Climate change vulnerability and adaptation in the Northern Rocky Mountains. (General Technical Report RMRS-GTR-xxx). Fort Collins: U.S. Forest Service, Rocky Mountain Research Station. In press.

    Google Scholar 

  • Hamann, A., & Wang, T. (2006). Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology, 87, 2733–2786.

    Article  Google Scholar 

  • Hamrick, J. L. (2004). Response of forest trees to global environmental changes. Forest Ecology and Management, 197, 323–335.

    Article  Google Scholar 

  • Hansen, A. J., Neilson, R. P., Dale, V. H., et al. (2001). Global change in forests: Responses of species, communities, and biomes: Interactions between climate change and land use are projected to cause large shifts in biodiversity. Bioscience, 51, 765–779.

    Article  Google Scholar 

  • Ibañez, I., Clark, J. S., LaDeau, S., & Hille Ris Lambers, J. (2007). Exploiting temporal variability to understand tree recruitment response to climate change. Ecological Monographs, 77, 163–177.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007—the physical science basis. Climate Change 2007 working group I contribution to the fourth assessment report of the IPCC. New York: Cambridge University Press.

    Google Scholar 

  • Ireland, K. B., Moore, M. M., Fulé, P. Z., et al. (2014). Slow lifelong growth predisposes Populus tremuloides trees to mortality. Oecologia, 175, 847–859.

    Article  Google Scholar 

  • Iverson, L. R., & McKenzie, D. (2013). Tree-species range shifts in a changing climate: Detecting, modeling, assisting. Landscape Ecology, 28, 879–889.

    Article  Google Scholar 

  • Iverson, L. R., & Prasad, A. M. (2002). Potential redistribution of tree species habitat under five climate change scenarios in the eastern US. Forest Ecology and Management, 155, 205–222.

    Article  Google Scholar 

  • Jackson, M., Gannon, A., Kearns, H., & Kendall, K. C. (2010). Current status of limber pine in Montana (Report 10-06). Missoula: U.S. Forest Service, Northern Region.

    Google Scholar 

  • Johnstone, J. F., & Chapin, F. S. (2003). Non-equilibrium succession dynamics indicate continued northern migration of lodgepole pine. Global Change Biology, 9, 1401–1409.

    Article  Google Scholar 

  • Joyce, L. A., & Birdsey, R.A. (2000). The impact of climate change on America’s forests: A technical document supporting the 2000 USDA Forest Service RPA assessment (General Technical Report RMRS-GTR-59). Fort Collins: U.S. Forest Service, Rocky Mountain Research Station.

    Google Scholar 

  • Joyce, L. A., Blate, G. M., Littell, J. S., et al. (2008). National forests. In S. H. Julius & W. West (Eds.), Preliminary review of adaptation options for climate-sensitive ecosystmes and resources. Ch. 4. Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • Joyce, L. A., Running, S. W., Breshears, D. D., et al. (2014). Forests. In J. M. Melillo, T. C. Richmond, & G. W. Yohe (Eds.), Climate change impacts in the United States: Third National Climate Assessment. Ch. 7 (pp. 175–194). Washington, DC: U.S. Global Change Research Program.

    Google Scholar 

  • Jump, A. S., & Peñuelas, J. (2005). Running to stand still: Adaptation and the response of plants to rapid climate change. Ecology Letters, 8, 1010–1020.

    Article  Google Scholar 

  • Kappelle, M., Van Vuuren, M. M. I., & Baas, P. (1999). Effects of climate change on biodiversity: A review and identification of key research issues. Biodiversity and Conservation, 8, 1383–1397.

    Article  Google Scholar 

  • Keane, R. E. (2012). Creating historical range of variation (HRV) time series using landscape modeling: Overview and issues. In J. A. Wiens, G. D. Hayward, H. S. Safford, C. Giffen, & C. (Eds.), Historical environmental variation in conservation and natural resource management (pp. 113–128). Hoboken: John Wiley and Sons.

    Chapter  Google Scholar 

  • Keane, R. E. (2013). Disturbance regimes and the historical range of variation in terrestrial ecosystems. In A. L. Simon (Ed.), Encyclopedia of biodiversity (2nd ed., pp. 568–581). Waltham: Academic Press.

    Chapter  Google Scholar 

  • Keane, R. E., & Parsons, R. (2010). Restoring whitebark pine forests of the northern Rocky Mountains, USA. Ecological Restoration, 28, 56–70.

    Article  Google Scholar 

  • Keane, R. E., Morgan, P., & Menakis, J. P. (1994). Landscape assessment of the decline of whitebark pine (Pinus albicaulis) in the Bob Marshall Wilderness Complex, Montana, USA. Northwest Science, 68, 213–229.

    Google Scholar 

  • Keane, R. E., Ryan, K. C., & Running, S. W. (1996). Simulating effects of fire on northern Rocky Mountain landscapes with the ecological process model Fire-BGC. Tree Physiology, 16, 319–331.

    Article  CAS  Google Scholar 

  • Keane, R. E., Veblen, T., Ryan, K. C., et al. (2002). The cascading effects of fire exclusion in the Rocky Mountains. In J. Baron (Ed.), Rocky Mountain futures: An ecological perspective (pp. 133–153). Washington, DC: Island Press.

    Google Scholar 

  • Keane, R. E., Cary, G., Davies, I. D., et al. (2004). A classification of landscape fire succession models: Spatially explicit models of fire and vegetation dynamic. Ecological Modelling, 256, 3–27.

    Article  Google Scholar 

  • Keane, R. E., Agee, J., Fulé, P., et al. (2008). Ecological effects of large fires in the United States: Benefit or catastrophe. International Journal of Wildland Fire, 17, 696–712.

    Article  Google Scholar 

  • Keane, R. E., Hessburg, P. F., Landres, P. B., & Swanson, F. J. (2009). A review of the use of historical range and variation (HRV) in landscape management. Forest Ecology and Management, 258, 1025–1037.

    Article  Google Scholar 

  • Keane, R. E., Tomback, D. F., Aubry, C. A., et al. (2012). A range-wide restoration strategy for whitebark pine forests (General Technical Report RMRS-GTR-279). Fort Collins: U.S. Forest Service, Rocky Mountain Research Station.

    Google Scholar 

  • Keane, R. E., Loehman, R., Clark, J., et al. (2015a). Exploring interactions among multiple disturbance agents in forest landscapes: Simulating effects of fire, beetles, and disease under climate change. In A. H. Perera, B. R. Surtevant, & L. J. Buse (Eds.), Simulation modeling of forest landscape disturbances (pp. 201–231). New York, NY: Springer.

    Chapter  Google Scholar 

  • Keane, R. E., McKenzie, D., Falk, D. A., et al. (2015b). Representing climate, disturbance, and vegetation interactions in landscape models. Ecological Modelling, 309–310, 33–47.

    Article  Google Scholar 

  • Kirilenko, A. P., & Sedjo, R. A. (2007). Climate change impacts on forestry. Proceedings of the National Academy of Sciences, USA, 104, 19697–19702.

    Article  CAS  Google Scholar 

  • Landres, P. B., Morgan, P., & Swanson, F. J. (1999). Overview and use of natural variability concepts in managing ecological systems. Ecological Applications, 9, 1179–1188.

    Google Scholar 

  • Lanner, R. M. (1980). Avian seed dispersal as a factor in the ecology and evolution of limber and whitebark pines. In Sixth North American Forest Biology Workshop (pp. 15–47). Alberta: University of Alberta.

    Google Scholar 

  • Lawler, J. J., White, D., Neilson, R. P., & Blaustein, A. R. (2006). Predicting climate-induced range shifts: Model differences and model reliability. Global Change Biology, 12, 1568–1584.

    Article  Google Scholar 

  • Ledig, F. T., & Kitzmiller, J. H. (1992). Genetic strategies for reforestation in the face of global climate change. Forest Ecology and Management., 50, 153–169.

    Article  Google Scholar 

  • Lesica, P. (2001). Recruitment of Fraxinus pennsylvanica (Oleaceae) in eastern Montana woodlands. Madrono, 48, 286–292.

    Google Scholar 

  • Lesica, P. (2009). Can regeneration of green ash (Fraxinus pensylvanica) be restored in declining woodlands in eastern Montana? Rangeland Ecology and Management, 62, 564–571.

    Article  Google Scholar 

  • Liang, Y., He, H. S., Wang, W. J., et al. (2015). The site-scale processes affect species distribution predictions of forest landscape models. Ecological Modelling, 300, 89–101.

    Article  Google Scholar 

  • Loehman, R. A., Clark, J. A., & Keane, R. E. (2011). Modeling effects of climate change and fire management on western white pine (Pinus monticola) in the Northern Rocky Mountains, USA. Forests, 2, 832–860.

    Article  Google Scholar 

  • Loehman, R. A., Reinhardt, E., & Riley, K. L. (2014). Wildland fire emissions, carbon, and climate: Seeing the forest and the trees—a cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems. Forest Ecology and Management, 317, 9–19.

    Article  Google Scholar 

  • Logan, J. A., & Powell, J. A. (2001). Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). American Entomologist, 47, 160–173.

    Article  Google Scholar 

  • Logan, J. A., Regniere, J., & Powell, J. A. (2003). Assessing the impacts of global warming on forest pest dynamics. Frontiers in Ecology and the Environment, 1, 130–137.

    Article  Google Scholar 

  • Lotan, J. E., & Critchfield, W. B. (1990). Pinus contorta Dougl. ex. Loud. lodgepole pine. In R. M. Burns & B. H. Honkala (Eds.), Silvics of North America: Volume 1 conifers (pp. 648–666). Washington, DC: U.S. Forest Service.

    Google Scholar 

  • Marchetti, S. B., Worrall, J. J., & Eager, T. (2011). Secondary insects and diseases contribute to sudden aspen decline in southwestern Colorado, USA. Canadian Journal of Forestry Research, 41, 2315–2325.

    Article  Google Scholar 

  • Marlon, J. R., Bartlein, P. J., Walsh, M. K., et al. (2009). Wildfire responses to abrupt climate change in North America. Proceedings of the National Academy of Sciences, USA, 106, 2519–2524.

    Article  CAS  Google Scholar 

  • McKenzie, D., Peterson, D. L., & Littell, J. S. (2009). Global warming and stress complexes in forests of western North America. In A. Bytnerowicz, M. J. Arbaugh, A. R. Riebau, & C. Andersen (Eds.), Wildland fires and air pollution (pp. 317–337). The Hague: Elsevier.

    Google Scholar 

  • McKenzie, D., Miller, C., & Falk, D. A. (Eds.). (2011). The landscape ecology of fire. Dordrecht: Springer.

    Google Scholar 

  • McKenzie, D., Shankar, U., Keane, R. E., et al. (2014). Smoke consequences of new wildfire regimes driven by climate change. Earth’s Future, 2, 35–39.

    Article  CAS  Google Scholar 

  • Means, J. E. (1990). Tsuga mertensiana (Bong.) Carr. mountain hemlock. In R. M. Burns & B. H. Honkala (Eds.), Silvics of North America: Volume 1 conifers (pp. 1318–1332). Washington, DC: U.S. Forest Service.

    Google Scholar 

  • Millar, C. I., Swanston, C. W., & Peterson, D. L. (2014). Adapting to climate change. In D. L. Peterson, J. M. Vose, & T. Patel-Weynand (Eds.), Climate change and United States forests (pp. 183–222). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Miller, J. D., Safford, H. D., Crimmins, M., & Thode, A. E. (2009). Quantitative evidence for increasing forest fire severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA. Ecosystems, 12, 16–32.

    Article  Google Scholar 

  • Milner, K. S. (1992). Site index and height growth curves for ponderosa pine, western larch, lodgepole pine, and Douglas-fir in western Montana. Western Journal of Applied Forestry, 7, 9–14.

    Google Scholar 

  • Minore, D. (1979). Comparative autecological characteristics of northwestern tree species: A literature review (General Technical Report PNW-GTR-087). Portland, OR.: U.S. Forest Service, Pacific Northwest Forest and Range Experiment Station.

    Google Scholar 

  • Minore, D. (1990). Thuja plicata Donn ex D. Don western red cedar. In R. M. Burns & B. H. Honkala (Eds.), Silvics of North America: Volume 1 conifers (pp. 1249–1267). Washington, DC: U.S. Forest Service.

    Google Scholar 

  • Mitton, J. B., & Grant, M. C. (1996). Genetic variation and the natural history of quaking aspen. Bioscience, 46, 25–31.

    Article  Google Scholar 

  • Morales, J. M., Mermoz, M., Gowda, J. H., & Kitzberger, T. (2015). A stochastic fire spread model for north Patagonia based on fire occurrence maps. Ecological Modelling, 300, 73–80.

    Article  Google Scholar 

  • Nigh, G. (2014). Mitigating the effects of climate change on lodgepole pine site height in British Columbia, Canada, with a transfer function. Forestry, 87, 377–387.

    Article  Google Scholar 

  • Nitschke, C. R., & Innes, J. L. (2008). A tree and climate assessment tool for modelling ecosystem response to climate change. Ecological Modelling, 210, 263–277.

    Article  Google Scholar 

  • Peterson, D. W., & Peterson, D. L. (2001). Mountain hemlock growth responds to climatic variability at annual and decadal scales. Ecology, 82, 3330–3345.

    Article  Google Scholar 

  • Peterson, D. L., Vose, J. M., & Patel-Weynand, T. (2014). Climate change and United States forests. Dordrecht: Springer.

    Book  Google Scholar 

  • Pfister, R. D., Kovalchik, B. L., Arno, S. F., & Presby, R. C. (1977). Forest habitat types of Montana (General Technical Report INT-GTR-34). Ogden: U.S. Forest Service, Intermountain Forest and Range Experiment Station.

    Google Scholar 

  • Rehfeldt, G. E. (1994). Evolutionary genetics, the biological species, and the ecology of the cedar-hemlock forests. In D. M. Baumgartner, J. E. Lotan, & J. R. Tonn (Eds.), Interior cedar-hemlock-white pine forests: Ecology and management (pp. 91–100). Spokane: Washington State University, Cooperative Extension.

    Google Scholar 

  • Rehfeldt, G. E. (1995). Genetic variation, climate models and the ecological genetics of Larix occidentalis. Forest Ecology and Management, 78, 21–37.

    Article  Google Scholar 

  • Rehfeldt, G. E., & Jaquish, B. C. (2010). Ecological impacts and management strategies for western larch in the face of climate-change. Mitigation and Adaptation Strategies for Global Change, 15, 283–306.

    Article  Google Scholar 

  • Restaino, C. M., Peterson, D. L., & Littell, J. S. (2016). Increased water deficit decreases Douglas-fir growth throughout western US forests. Proceedings of the National Academy of Sciences, USA, 113, 9557–9562.

    Article  CAS  Google Scholar 

  • Retzlaff, M. L., Leirfallom, S. B., & Keane, R. E. (2016). A 20-year reassessment of the health and status of whitebark pine forests in the Bob Marshall Wilderness Complex, Montana (Research Note RMRS-RN-73). Fort Collins: U.S. Forest Service, Rocky Mountain Research Station.

    Google Scholar 

  • Riggs, R. A., Keane, R. E., Cimon, N., et al. (2015). Biomass and fire dynamics in a temperate forest-grassland mosaic: Integrating multi-species herbivory, climate, and fire with the FireBGCv2/GrazeBGC system. Ecologial Modelling, 296, 57–78.

    Article  CAS  Google Scholar 

  • Romme, W. H., Turner, M. G., Gardner, R. H., et al. (1997). A rare episode of sexual reproduction in aspen (Populus tremuloides Michx.) following the 1988 Yellowstone fires. Natural Areas Journal, 17, 17–25.

    Google Scholar 

  • Rood, S. B., Braatne, J. H., & Hughes, F. M. (2003). Ecophysiology of riparian cottonwoods: Stream flow dependency, water relations and restoration. Tree Physiology, 23, 1113–1124.

    Article  Google Scholar 

  • Ryan, K. C., & Reinhardt, E. D. (1988). Predicting postfire mortality of seven western conifers. Canadian Journal of Forest Research, 18, 1291–1297.

    Article  Google Scholar 

  • Ryan, M. G., Gower, S. T., Hubbard, R. M., et al. (1995). Woody tissue maintenance respiration of four conifers in contrasting climates. Oecologia, 101, 133–140.

    Article  Google Scholar 

  • Safranyik, L., Carroll, A., Régnière, J., et al. (2010). Potential for range expansion of mountain pine beetle into the boreal forest of North America. The Canadian Entomologist, 142, 415–442.

    Article  Google Scholar 

  • Sala, A., Peters, G. D., McIntyre, L. R., & Harrington, M. G. (2005). Physiological responses of ponderosa pine in western Montana to thinning, prescribed fire and burning season. Tree Physiology, 25, 339–348.

    Article  Google Scholar 

  • Schauer, A. J., Wade, B. K., & Sowell, J. B. (1998). Persistence of subalpine forest-meadow ecotones in the Gunnison Basin, Colorado. Great Basin Naturalist, 58, 273–281.

    Google Scholar 

  • Schoettle, A. W., & Sniezko, R. A. (2007). Proactive intervention to sustain high-elevation pine ecosystems threatened by white pine blister rust. Journal of Forest Research, 12, 327–336.

    Article  Google Scholar 

  • Schumacher, S., Reineking, B., Sibold, J., & Bugmann, H. (2006). Modeling the impact of climate and vegetation on fire regimes in mountain landscapes. Landscape Ecology, 21, 539–554.

    Article  Google Scholar 

  • Shafer, S. L., Bartlein, P. J., & Thompson, R. S. (2001). Potential changes in the distributions of western north America tree and shrub taxa under future climate scenarios. Ecosystems, 4, 200–215.

    Article  Google Scholar 

  • Shearer, R. C., & Schimidt, W. C. (1970). Natural regeneration in ponderosa pine forests of western Montana (Research Paper INT-RP-86). Ogden: U.S. Forest Service, Intermountain Forest and Range Experiment Station.

    Google Scholar 

  • Smithwick, E. A. H., Ryan, M. G., Kashian, D. M., et al. (2009). Modeling the effects of fire and climate change on carbon and nitrogen storage in lodgepole pine (Pinus contorta) stands. Global Change Biology, 15, 535–548.

    Article  Google Scholar 

  • Spittlehouse, D. L., & Stewart, R. B. (2003). Adaptation to climate change in forest management. British Columbia Journal of Ecosystems and Management, 4, 1–11.

    Google Scholar 

  • St. Clair, J. B., & Howe, G. T. (2007). Genetic maladaptation of coastal Douglas-fir seedlings to future climates. Global Change Biology, 13, 1441–1454.

    Article  Google Scholar 

  • Steele, R. (1990). Pinus flexilis James limber pine. In R. M. Burns & B. H. Honkala (Eds.), Silvics of North America: Volume 1 conifers (pp. 348–353). Washington, DC: U.S. Forest Service.

    Google Scholar 

  • Stout, D. L., & Sala, A. (2003). Xylem vulnerability to cavitation in Pseudotsuga menziesii and Pinus ponderosa from contrasting habitats. Tree Physiology, 23, 43–50.

    Article  Google Scholar 

  • Swanston, C., & Janowiak, M. (Eds.). (2012). Forest adaptation resources: Climate change tools and approaches for land managers (General Technical Report NRS-GTR-87). Newtown Square: U.S. Forest Service, Northern Research Station.

    Google Scholar 

  • Taylor, J., & Sturdevant, N. (1998). Limber pine mortality on the Lewis and Clark National Forest, Montana (Forest Health Protection Report 98-5). Missoula: U.S. Forest Service, Nothern Region.

    Google Scholar 

  • Temperli, C., Bugmann, H., & Elkin, C. (2013). Cross-scale interactions among bark beetles, climate change, and wind disturbances: A landscape modeling approach. Ecological Monographs, 83, 383–402.

    Article  Google Scholar 

  • Tomback, D., Arno, S. F., & Keane, R. E. (2001). Whitebark pine communities: Ecology and restoration. Washington, DC: Island Press.

    Google Scholar 

  • Turner, M. G., Romme, W. H., Gardner, R. H., et al. (1993). A revised concept of landscape equilibrium: Disturbance and stability on scaled landscapes. Landscape Ecology, 8, 213–227.

    Article  Google Scholar 

  • Urban, D. L., Harmon, M. E., & Halpern, C. B. (1993). Potential response of Pacific Northwestern forests to climatic change, effects of stand age and initial composition. Climatic Change, 23, 247–266.

    Article  Google Scholar 

  • Wang, T., Hamann, A., Yanchuk, A., et al. (2006). Use of response functions in selecting lodgepole pine populations for future climates. Global Change Biology, 12, 2404–2416.

    Article  Google Scholar 

  • Whited, D. C., Lorang, M. S., Harner, M. J., et al. (2007). Climate, hydrologic disturbance, and succession: Drivers of floodplain pattern. Ecology, 88, 940–953.

    Article  Google Scholar 

  • Whitlock, C. (1993). Postglacial vegetation and climate of Grand Teton and southern Yellowstone National Parks. Ecological Monographs, 63, 173–198.

    Article  Google Scholar 

  • Whitlock, C. (2004). Forests, fire and climate. Nature, 432, 28–29.

    Article  CAS  Google Scholar 

  • Whitlock, C., & Bartlein, P. J. (1993). Spatial variations of holocene climatic change in the Yellowstone region. Quaternary Research, 39, 231–238.

    Article  Google Scholar 

  • Whitlock, C., Shafer, S. L., & Marlon, J. (2003). The role of climate and vegetation change in shaping past and future fire regimes in the northwestern US and the implications for ecosystem management. Forest Ecology and Management, 178, 5–21.

    Google Scholar 

  • Woods, A. J., Heppner, D., Kope, H. H., et al. (2010). Forest health and climate change: A British Columbia perspective. The Forestry Chronicle, 86, 412–422.

    Article  Google Scholar 

  • Woodward, A., Schreiner, E. G., & Silsbee, D. G. (1995). Climate, geography, and tree establishment in subalpine meadows of the Olympic Mountains, Washington, USA. Arctic and Alpine Research, 27, 217–225.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Art Zack, Megan Strom, Chris Schnepf, Paul Zambino, and Kevin Greenleaf for technical reviews. We thank Gregg DiNitto, Paul Zambino, Blakey Lockman, Marcus Jackson, Joel Egan, Sandra Kegley, and Brytten Steed for contributions to the disturbance sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Keane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Keane, R.E. et al. (2018). Effects of Climate Change on Forest Vegetation in the Northern Rockies. In: Halofsky, J., Peterson, D. (eds) Climate Change and Rocky Mountain Ecosystems. Advances in Global Change Research, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-56928-4_5

Download citation

Publish with us

Policies and ethics