Skip to main content

Growing Curvilinear Component Analysis (GCCA) for Dimensionality Reduction of Nonstationary Data

  • Chapter
  • First Online:
Multidisciplinary Approaches to Neural Computing

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 69))

Abstract

Dealing with time-varying high dimensional data is a big problem for real time pattern recognition. Only linear projections, like principal component analysis, are used in real time while nonlinear techniques need the whole database (offline). Their incremental variants do no work properly. The onCCA neural network addresses this problem; it is incremental and performs simultaneously the data quantization and projection by using the Curvilinear Component Analysis (CCA), a distance-preserving reduction technique. However, onCCA requires an initial architecture, provided by a small offline CCA. This paper presents a variant of onCCA, called growing CCA (GCCA), which has a self-organized incremental architecture adapting to the nonstationary data distribution. This is achieved by introducing the ideas of “seeds”, pairs of neurons which colonize the input domain, and “bridge”, a different kind of edge in the manifold graph, which signal the data nonstationarity. Some examples from artificial problems and a real application are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van der Maaten, L., Postma, E., Van der Herik, H.: Dimensionality reduction: a comparative review. TiCC TR 2009-005, Delft University of Technology (2009)

    Google Scholar 

  2. Sanger, T.D.: Optimal Unsupervised Learning in a Single-Layer Neural Network. Neural Netw. 2, 459–473 (1989)

    Article  Google Scholar 

  3. Weng, J., Zhang, Y., Hwang, W.S.: Candid covariance-free incremental principal components analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1034–1040 (2003)

    Article  Google Scholar 

  4. Kouropteva, O., Okun, O., Pietikainen, M.: Incremental locally linear embedding. Pattern Recogn. 38, 1764–1767 (2005)

    Article  MATH  Google Scholar 

  5. De Ridder, D., Duin, R.: Sammon’s mapping using neural networks: a comparison. Pattern Recogn. Lett. 18, 1307–1316 (1997)

    Article  Google Scholar 

  6. Martinetz, T., Schulten, K.: A “neural gas” network learns topologies. In: Artificial Neural Networks, pp. 397–402. Elsevier (1991)

    Google Scholar 

  7. Fritzke, B.: A growing neural gas network learns topologies. In: Advances in Neural Information Processing System, vol. 7, pp. 625–632. MIT Press (1995)

    Google Scholar 

  8. White, R.: Competitive hebbian learning: algorithm and demonstations. Neural Netw. 5(2), 261–275 (1992)

    Article  Google Scholar 

  9. Martinetz, T., Schulten, K.: Topology representing networks. Neural Netw. 7(3), 507–522 (1994)

    Article  Google Scholar 

  10. Vathy-Fogarassy, A., Kiss, A., Abonyi, J.: Topology Representing Network Map—A New Tool for Visualization of High-Dimensional Data, in Transactions on Computational Science I, Vol. 4750 of the series Lecture Notes in Computer Science pp. 61–84, 2008

    Google Scholar 

  11. Estevez, P., Figueroa, C.: Online data visualization using the neural gas network. Neural Netw. 19, 923–934 (2006)

    Article  MATH  Google Scholar 

  12. Estevez, P., Chong, A., Held, C., Perez, C.: Nonlinear projection using geodesic distances and the neural gas network. Lect. Notes Comput. Sci. 4131, 464–473 (2006)

    Article  Google Scholar 

  13. Cirrincione, G., Hérault, J., Randazzo, V.: The on-line curvilinear component analysis (onCCA) for real-time data reduction. In: International Joint Conference on Neural Networks (IJCNN), pp. 157–165 (2015)

    Google Scholar 

  14. Demartines, P., Hérault, J.: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Trans. Neural Netw. 8(1), 148–154 (1997)

    Article  Google Scholar 

  15. Karbauskaitė, R., Dzemyda, G.: Multidimensional data projection algorithms saving calculations of distances. Inf. Technol. Control 35(1), 57–61 (2006)

    Google Scholar 

  16. Nasa prognostic data repository. http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository

Download references

Acknowledgements

This work has been partly supported by OPLON Italian MIUR project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Randazzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Cirrincione, G., Randazzo, V., Pasero, E. (2018). Growing Curvilinear Component Analysis (GCCA) for Dimensionality Reduction of Nonstationary Data. In: Esposito, A., Faudez-Zanuy, M., Morabito, F., Pasero, E. (eds) Multidisciplinary Approaches to Neural Computing. Smart Innovation, Systems and Technologies, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-319-56904-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56904-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56903-1

  • Online ISBN: 978-3-319-56904-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics