Skip to main content

How Imaging Membrane and Cell Processes Involved in Electropermeabilization Can Improve Its Development in Cell Biology and in Clinics

  • Chapter
  • First Online:

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 227))

Abstract

Cell membranes can be transiently permeabilized under the application of electric pulses. This process, called electropermeabilization or electroporation, allows hydrophilic molecules, such as anticancer drugs and DNA, to enter into cells and tissues. The method is nowadays used in clinics to treat cancers. Vaccination and gene therapy are other fields of application of DNA electrotransfer. A description of the mechanisms can be assayed by using different complementary systems with increasing complexities (models of membranes, cells cultivated in 2D and 3D culture named spheroids, and tissues in living mice) and different microscopy tools to visualize the processes from single molecules to entire animals. Single-cell imaging experiments revealed that the uptake of molecules (nucleic acids, antitumor drugs) takes place in well-defined membrane regions and depends on their chemical and physical properties (size, charge). If small molecules freely cross the electropermeabilized membrane and have a free access to the cytoplasm, larger molecules, such as plasmid DNA, face physical barriers (plasma membrane, cytoplasm crowding, nuclear envelope) which reduce transfection efficiency and engender a complex mechanism of transfer. Gene electrotransfer indeed involves different steps that include the initial interaction with the membrane, its crossing, transport within the cytoplasm, and finally gene expression. In vivo, additional very important effects of electric pulses are present such as blood flow modifications. The full knowledge on the way molecules are transported across the electropermeabilized membranes and within tissues is mandatory to improve the efficacy and the safety of the electropermeabilization process both in cell biology and in clinics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andre FM, Mir LM (2010) Nucleic acids electrotransfer in vivo: mechanisms and practical aspects. Curr Gene Ther 10(4):267–280

    Article  CAS  PubMed  Google Scholar 

  • Beebe SJ, White J et al (2003) Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA Cell Biol 22(12):785–796

    Article  CAS  PubMed  Google Scholar 

  • Bellard E, Markelc B et al (2012) Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization. J Control Release 163(3):396–403

    Article  CAS  PubMed  Google Scholar 

  • Cemazar M, Jarm T et al (2010) Cancer electrogene therapy with interleukin-12. Curr Gene Ther 10(4):300–311

    Article  CAS  PubMed  Google Scholar 

  • Chiarella P, Fazio VM et al (2010) Application of electroporation in DNA vaccination protocols. Curr Gene Ther 10(4):281–286

    Article  CAS  PubMed  Google Scholar 

  • Chopinet L, Roduit C et al (2013) Destabilization induced by electropermeabilization analyzed by atomic force microscopy. Biochim Biophys Acta 1828(9):2223–2229

    Article  CAS  PubMed  Google Scholar 

  • Daud AI, DeConti RC et al (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26(36):5896–5903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escoffre JM, Rols MP (2012) Electrochemotherapy: progress and prospects. Curr Pharm Des 18:3406–3415

    Article  CAS  PubMed  Google Scholar 

  • Escoffre JM, Teissie J et al (2010a) Gene transfer: how can the biological barriers be overcome? J Membr Biol 236(1):61–74

    Article  CAS  PubMed  Google Scholar 

  • Escoffre JM, Kaddur K et al (2010b) In vitro gene transfer by electrosonoporation. Ultrasound Med Biol 36(10):1746–1755

    Article  CAS  PubMed  Google Scholar 

  • Escoffre JM, Portet T et al (2011) Electromediated formation of DNA complexes with cell membranes and its consequences for gene delivery. Biochim Biophys Acta 1808(6):1538–1543

    Article  CAS  PubMed  Google Scholar 

  • Escoffre JM, Bellard E et al (2014a) Membrane disorder and phospholipid scrambling in electropermeabilized and viable cells. Biochim Biophys Acta 1838(7):1701–1709

    Article  CAS  PubMed  Google Scholar 

  • Escoffre JM, Hubert M et al (2014b) Evidence for electro-induced membrane defects assessed by lateral mobility measurement of a GPi anchored protein. Eur Biophys J 43:277–286

    Article  CAS  PubMed  Google Scholar 

  • Faurie C, Rebersek M et al (2010) Electro-mediated gene transfer and expression are controlled by the life-time of DNA/membrane complex formation. J Gene Med 12(1):117–125

    Article  CAS  PubMed  Google Scholar 

  • Frandsen SK, Gibot L et al (2015) Calcium electroporation: evidence for differential effects in normal and malignant cell lines, evaluated in a 3D spheroid model. PLoS One 10(12):e0144028

    Article  PubMed  PubMed Central  Google Scholar 

  • Gehl J, Skovsgaard T et al (2002) Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochim Biophys Acta 1569(1–3):51–58

    Article  CAS  PubMed  Google Scholar 

  • Gibot L, Rols MP (2013) Progress and prospects: the use of 3D spheroid model as a relevant way to study and optimize DNA electrotransfer. Curr Gene Ther 13(3):175–181

    Article  PubMed  Google Scholar 

  • Gibot L, Wasungu L et al (2013) Antitumor drug delivery in multicellular spheroids by electropermeabilization. J Control Release 167(2):138–147

    Article  CAS  PubMed  Google Scholar 

  • Golzio M, Teissie J (2014) siRNA delivery via electropulsation: a review of the basic processes. Methods Mol Biol 1121:81–98

    Article  CAS  PubMed  Google Scholar 

  • Golzio M, Teissie J et al (2002) Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci U S A 99(3):1292–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heller LC, Heller R (2010) Electroporation gene therapy preclinical and clinical trials for melanoma. Curr Gene Ther 10(4):312–317

    Article  CAS  PubMed  Google Scholar 

  • Heller R, Heller LC (2015) Gene electrotransfer clinical trials. Adv Genet 89:235–262

    PubMed  Google Scholar 

  • Kamensek U, Rols MP et al (2016) Visualization of nonspecific antitumor effectiveness and vascular effects of gene electro-transfer to tumors. Curr Gene Ther 16(2):90–97

    Google Scholar 

  • Madi M, Rols MP et al (2015) Efficient in vitro electropermeabilization of reconstructed human dermal tissue. J Membr Biol 248:903–908

    Article  CAS  PubMed  Google Scholar 

  • Marrero B, Heller R (2012) The use of an in vitro 3D melanoma model to predict in vivo plasmid transfection using electroporation. Biomaterials 33(10):3036–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauroy C, Castagnos P et al (2012a) Interaction between GUVs and catanionic nanocontainers: new insight into spontaneous membrane fusion. Chem Commun (Camb) 48(53):6648–6650

    Article  CAS  Google Scholar 

  • Mauroy C, Portet T et al (2012b) Giant lipid vesicles under electric field pulses assessed by non invasive imaging. Bioelectrochemistry 87:253–259

    Google Scholar 

  • Mir LM, Glass LF et al (1998) Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. Br J Cancer 77(12):2336–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann E, Schaefer-Ridder M et al (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1(7):841–845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paganin-Gioanni A, Bellard E et al (2011) Direct visualization at the single-cell level of siRNA electrotransfer into cancer cells. Proc Natl Acad Sci U S A 108(26):10443–10447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portet T, Camps i Febrer F et al (2009) Visualization of membrane loss during the shrinkage of giant vesicles under electropulsation. Biophys J 96(10):4109–4121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portet T, Favard C et al (2011) Insights into the mechanisms of electromediated gene delivery and application to the loading of giant vesicles with negatively charged macromolecules. Soft Matter 7(8):3872–3881

    Article  CAS  Google Scholar 

  • Ravi M, Ramesh A et al (2016) Contributions of 3D cell cultures for cancer research. J Cell Physiol 232(10): 2679–2697

    Google Scholar 

  • Rols MP, Delteil C et al (1998) In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol 16(2):168–171

    Article  CAS  PubMed  Google Scholar 

  • Rosazza C, Escoffre JM et al (2011) The actin cytoskeleton has an active role in the electrotransfer of plasmid DNA in mammalian cells. Mol Ther 19(5):913–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosazza C, Buntz A et al (2013) Intracellular tracking of single plasmid DNA-particles after delivery by electroporation. Mol Ther 21:2217–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosazza C, Meglic SH et al (2016) Gene electrotransfer: a mechanistic perspective. Curr Gene Ther 16(2):98–129

    Google Scholar 

  • Sersa G, Cemazar M et al (1999) Tumor blood flow modifying effect of electrochemotherapy with bleomycin. Anticancer Res 19(5B):4017–4022

    CAS  PubMed  Google Scholar 

  • Sersa G, Teissie J et al (2015) Electrochemotherapy of tumors as in situ vaccination boosted by immunogene electrotransfer. Cancer Immunol Immun 64:1315–1327

    Article  CAS  Google Scholar 

  • Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240(4849):177–184

    Article  CAS  PubMed  Google Scholar 

  • Teissie J, Golzio M et al (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim Biophys Acta 1724(3):270–280

    Article  CAS  PubMed  Google Scholar 

  • Yarmush ML, Golberg A et al (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Pierre Rols .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gibot, L., Golzio, M., Rols, MP. (2017). How Imaging Membrane and Cell Processes Involved in Electropermeabilization Can Improve Its Development in Cell Biology and in Clinics. In: Kulbacka, J., Satkauskas, S. (eds) Transport Across Natural and Modified Biological Membranes and its Implications in Physiology and Therapy. Advances in Anatomy, Embryology and Cell Biology, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-319-56895-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56895-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56894-2

  • Online ISBN: 978-3-319-56895-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics