Skip to main content

QSAR/QSPR Modeling in the Design of Drug Candidates with Balanced Pharmacodynamic and Pharmacokinetic Properties

  • Chapter
  • First Online:

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 24))

Abstract

Drug discovery and development is a slow complicated multi-objective and expensive enterprise. Drug candidates are a compromise output of competing pharmacodynamics and pharmacokinetic processes. To facilitate this task and avoid failures in clinical phases, computational techniques and in silico modeling using the endpoints offered by high technology, are extremely valuable. In this chapter, some historical aspects and a background overview for constructing Quantitative Structure-Activity Relationships (QSAR) and Quantitative Structure-Property Relationships (QSPR) are provided. The different goals for the establishment of QSAR/QSPR models are defined. Representative examples and success stories of in silico modeling along the different drug discovery processes are presented. Examples include models for optimizing efficient binding to receptor, using both ligand- and structure-based approaches, for in vitro permeability predictions, predictions for human intestinal absorption and blood brain barrier penetration, as well as for plasma protein binding and drug metabolism. The value of global and local models as well as their interpretability and the criteria for their evaluation and proper use are discussed throughout this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abad-Zapatero, C. (2007). Ligand efficiency indices for effective drug discovery. Expert Opinion Drug Discovery, 2, 469–488. doi:10.1517/17460441.2.4.469.

    Article  CAS  Google Scholar 

  • Abraham, M. H., Ibrahim, A., Zhao, Y., & Acree, W. E. (2006). A data base for partition of volatile organic compounds and drugs from blood/plasma/serum to brain, and an LFER analysis of the data. Journal of Pharmaceutical Sciences, 95, 2091–2100.

    Article  CAS  Google Scholar 

  • Abraham, M. H., Ibrahim, A., Zissimos, A. M., Zhao, Y. H., Comer, J., & Reynolds, D. P. (2002). Application of hydrogen bonding calculations in property based drug design. Drug Discovery Today, 7, 1056–1063.

    Article  CAS  Google Scholar 

  • Akhondi, S. A., Kors, J. A., & Muresan, S. (2012). Consistency of systematic chemical identifiers within and between small-molecule databases. Journal of Cheminformatics, 4, 1.

    Article  CAS  Google Scholar 

  • Anderson, A. C. (2003). The process of structure-based drug design. Chemistry & Biology, 10, 787–797.

    Article  CAS  Google Scholar 

  • Andrews, C. W., Bennett, L., & Lawrence, X. Y. (2000). Predicting human oral bioavailability of a compound: Development of a novel quantitative structure-bioavailability relationship. Pharmaceutical Research, 17, 639–644.

    Article  CAS  Google Scholar 

  • Artursson, P., Palm, K., & Luthman, K. (2001). Caco-2 monolayers in experimental and theoretical predictions of drug transport. Advanced Drug Delivery Reviews, 46, 27–43.

    Article  CAS  Google Scholar 

  • Ashour, M.-B. A., Gee, S. J., & Hammock, B. D. (1987). Use of a 96-well microplate reader for measuring routine enzyme activities. Analytical Biochemistry, 166, 353–360.

    Article  CAS  Google Scholar 

  • Avdeef, A. (2012). Absorption and drug development: solubility, permeability, and charge state. Wiley.

    Google Scholar 

  • Balaban, A. T. (Ed.). (1997). From chemical topology to three-dimensional geometry. New York (NY): Plenum Press.

    Google Scholar 

  • Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Rudnev, D., Evangelista, C., et al. (2007). NCBI GEO: Mining tens of millions of expression profiles—database and tools update. Nucleic Acids Research, 35, D760–D765.

    Article  CAS  Google Scholar 

  • Basant, N., Gupta, S., & Singh, K. P. (2016). Predicting binding affinities of diverse pharmaceutical chemicals to human serum plasma proteins using QSPR modelling approaches. SAR and QSAR in Environmental Research, 27, 67–85.

    Article  CAS  Google Scholar 

  • Bergström, C. A., Charman, W. N., & Porter, C. J. (2016). Computational prediction of formulation strategies for beyond-rule-of-5 compounds. Advanced Drug Delivery Reviews, 101, 6–21.

    Article  CAS  Google Scholar 

  • Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., & Hopkins, A. L. (2012). Quantifying the chemical beauty of drugs. Nature Chemistry, 4, 90–98.

    Article  CAS  Google Scholar 

  • Birchall, K., Gillet, V. J., Harper, G., & Pickett, S. D. (2008a). Evolving interpretable Structure-activity relationships. 1. Reduced graph queries. Journal of Chemical Information and Modeling, 48, 1543–1557.

    Article  CAS  Google Scholar 

  • Birchall, K., Gillet, V. J., Harper, G., & Pickett, S. D. (2008b). Evolving interpretable structure-activity relationship models. 2. Using multiobjective optimization to derive multiple models. Journal of Chemical Information and Modeling, 48, 1558–1570.

    Article  CAS  Google Scholar 

  • Bois, F. Y., & Brochot, C. (2016). Modeling pharmacokinetics. In E. Benfenati (Ed.), Silico Methods for Predicting Drug Toxicity (pp. 37–62). New York, NY: Springer New York.

    Chapter  Google Scholar 

  • Brandt, T., Holzmann, N., Muley, L., Khayat, M., Wegscheid-Gerlach, C., Baum, B., et al. (2011). Congeneric but still distinct: How closely related trypsin ligands exhibit different thermodynamic and structural properties. Journal of Molecular Biology, 405, 1170–1187. doi:10.1016/j.jmb.2010.11.038.

    Article  CAS  Google Scholar 

  • Brown, A. C., & Fraser, T. R. (1868). On the connection between chemical constitution and physiological action; with special reference to the physiological action of the salts of the ammonium bases derived from strychnia, brucia, thebaia, codeia, morphia, and nicotia. Journal of Anatomy and Physiology, 2, 224.

    CAS  Google Scholar 

  • Bruce, C. L., Melville, J. L., Pickett, S. D., & Hirst, J. D. (2007). Contemporary QSAR classifiers compared. Journal of Chemical Information and Modeling, 47, 219–227.

    Article  CAS  Google Scholar 

  • Burton, J., Ijjaali, I., Barberan, O., Petitet, F., Vercauteren, D. P., & Michel, A. (2006). Recursive partitioning for the prediction of cytochromes P450 2D6 and 1A2 inhibition: importance of the quality of the dataset. Journal of Medicinal Chemistry, 49, 6231–6240.

    Article  CAS  Google Scholar 

  • Byvatov, E., Fechner, U., Sadowski, J., & Schneider, G. (2003). Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. Journal of Chemical Information and Computer Sciences, 43, 1882–1889.

    Article  CAS  Google Scholar 

  • Cabrera-Perez, M. A., Bermejo, M., Alvarez, I. G., Alvarez, M. G., Garrigues, T. M., et al. (2012). QSPR in oral bioavailability: Specificity or integrality? Mini Reviews in Medicinal Chemistry 12, 534–550.

    Google Scholar 

  • Caporuscio, F., & Tafi, A. (2011). Pharmacophore modelling: A forty year old approach and its modern synergies. Current Medicinal Chemistry, 18, 2543–2553.

    Article  CAS  Google Scholar 

  • Cartmell, J., Enoch, S., Krstajic, D., & Leahy, D. E. (2005). Automated QSPR through competitive workflow. Journal of Computer-Aided Molecular Design, 19, 821–833.

    Article  CAS  Google Scholar 

  • Castillo-Garit, J. A., Marrero-Ponce, Y., Torrens, F., & García-Domenech, R. (2008). Estimation of ADME properties in drug discovery: Predicting Caco-2 cell permeability using atom-based stochastic and non-stochastic linear indices. Journal of Pharmaceutical Sciences, 97, 1946–1976.

    Article  CAS  Google Scholar 

  • Cereto-Massagué, A., Guasch, L., Valls, C., Mulero, M., Pujadas, G., & Garcia-Vallvé, S. (2012). DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets. Bioinformatics, 28, 1661–1662.

    Article  CAS  Google Scholar 

  • Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I.I., Cronin, M., et al. (2014). QSAR modeling: where have you been? Where are you going to? Journal of Medicinal Chemistry 57, 4977–5010.

    Google Scholar 

  • Chrysanthakopoulos, M., Koletsou, A., Nicolaou, I., Demopoulos, V. J., & Tsantili-Kakoulidou, A. (2009). Lipophilicity studies on pyrrolyl-acetic acid derivatives. Experimental versus predicted logP values in relationship with aldose reductase inhibitory activity. QSAR & Combinatorial Science, 28, 551–560.

    Article  CAS  Google Scholar 

  • Clark, D. E. (2003). In silico prediction of blood–brain barrier permeation. Drug Discovery Today, 8, 927–933.

    Article  CAS  Google Scholar 

  • Clark, D. E. (1999). Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. Journal of Pharmaceutical Sciences, 88, 807–814.

    Article  CAS  Google Scholar 

  • Congreve, M., Carr, R., Murray, C., & Jhoti, H. (2003). A “rule of three” for fragment-based lead discovery? Drug Discovery Today 8, 876–877.

    Google Scholar 

  • Consonni, V., Todeschini, R., & Pavan, M. (2002). Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. Journal of Chemical Information and Computer Sciences, 42, 682–692.

    Article  CAS  Google Scholar 

  • Cox, R., Green, D. V., Luscombe, C. N., Malcolm, N., & Pickett, S. D. (2013). QSAR workbench: Automating QSAR modeling to drive compound design. Journal of Computer-Aided Molecular Design, 27, 321–336.

    Article  CAS  Google Scholar 

  • Cramer, R. D., Patterson, D. E., & Bunce, J. D. (1988). Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. Journal of the American Chemical Society, 110, 5959–5967.

    Article  CAS  Google Scholar 

  • Cramer, R. D. (2012). The inevitable QSAR renaissance. Journal of Computer-Aided Molecular Design, 26, 35–38.

    Article  CAS  Google Scholar 

  • Crivori, P., Cruciani, G., Carrupt, P.-A., & Testa, B. (2000). Predicting blood-brain barrier permeation from three-dimensional molecular structure. Journal of Medicinal Chemistry, 43, 2204–2216.

    Article  CAS  Google Scholar 

  • Cruciani, G., Carosati, E., De Boeck, B., Ethirajulu, K., Mackie, C., Howe, T., et al. (2005). MetaSite: Understanding metabolism in human cytochromes from the perspective of the chemist. Journal of Medicinal Chemistry, 48, 6970–6979.

    Article  CAS  Google Scholar 

  • Cruciani, G., Crivori, P., Carrupt, P.-A., & Testa, B. (2000). Molecular fields in quantitative structure—Permeation relationships: The VolSurf approach. Journal of Molecular Structure: THEOCHEM, 503, 17–30.

    Article  CAS  Google Scholar 

  • Csizmadia, F., Tsantili-Kakoulidou, A., Panderi, I., & Darvas, F. (1997). Prediction of distribution coefficient from structure. 1. Estimation method. Journal of Pharmaceutical Sciences, 86, 865–871.

    Article  CAS  Google Scholar 

  • Darvas, F. (1988). Predicting metabolic pathways by logic programming. Journal of Molecular Graphics, 6, 80–86.

    Article  CAS  Google Scholar 

  • Dearden, J. C. (2007). In silico prediction of ADMET properties: How far have we come? Expert Opinion Drug Metabolism Toxicology, 3, 635–639.

    Article  CAS  Google Scholar 

  • De Benedetti, P. G., & Fanelli, F. (2010). Computational quantum chemistry and adaptive ligand modeling in mechanistic QSAR. Drug Discovery Today, 15, 859–866.

    Article  CAS  Google Scholar 

  • De Melo, E. B., Ferreira, M. M. C., et al. (2009). Nonequivalent effects of diverse LogP algorithms in three QSAR studies. QSAR Comb Sci 28, 1156–1165.

    Google Scholar 

  • Di, L., Kerns, E. H., Bezar, I. F., Petusky, S. L., & Huang, Y. (2009). Comparison of blood–brain barrier permeability assays: in situ brain perfusion, MDR1-MDCKII and PAMPA-BBB. Journal of Pharmaceutical Sciences, 98, 1980–1991.

    Article  CAS  Google Scholar 

  • Dunn, W. J. (1988). QSAR approaches to predicting toxicity. Toxicology Letters, 43, 277–283.

    Article  CAS  Google Scholar 

  • Ecker, G. F., & Noe, C. R. (2004). In silico prediction models for blood–brain barrier permeation. Current Medicinal Chemistry, 11, 1617.

    Article  CAS  Google Scholar 

  • Ekins, S., Bravi, G., Binkley, S., Gillespie, J. S., Ring, B. J., Wikel, J. H., et al. (1999). Three-and four-dimensional quantitative structure activity relationship analyses of cytochrome P-450 3A4 inhibitors. Journal of Pharmacology and Experimental Therapeutics, 290, 429–438.

    CAS  Google Scholar 

  • Enyedy, I. J., & Egan, W. J. (2008). Can we use docking and scoring for hit-to-lead optimization? Journal of Computer-Aided Molecular Design, 22, 161–168. doi:10.1007/s10822-007-9165-4.

    Article  CAS  Google Scholar 

  • Enyedy, I. J., Ling, Y., Nacro, K., Tomita, Y., Wu, X., Cao, Y., et al. (2001). Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. Journal of Medicinal Chemistry, 44, 4313–4324.

    Google Scholar 

  • Eriksson, L., Johansson, E., Kettaneh-Wold, N., Wold, S. (2001). Multi-and megavariate data analysis: Principles and applications. Umetrics.

    Google Scholar 

  • Estrada, E., Uriarte, E., Molina, E., Simón-Manso, Y., & Milne, G. W. (2006). An integrated in silico analysis of drug-binding to human serum albumin. Journal of Chemical Information and Modeling, 46, 2709–2724.

    Article  CAS  Google Scholar 

  • Evans, W. E., & Guy, R. K. (2004). Gene expression as a drug discovery tool. Nature Genetics, 36, 214–215.

    Article  CAS  Google Scholar 

  • Faulon, J.-L., Brown, W. M., & Martin, S. (2005). Reverse engineering chemical structures from molecular descriptors: how many solutions? Journal of Computer-Aided Molecular Design, 19, 637–650.

    Article  CAS  Google Scholar 

  • Filikov, A. V., Mohan, V., Vickers, T. A., Griffey, R. H., Cook, P. D., Abagyan, R. A., et al. (2000). Identification of ligands for RNA targets via structure-based virtual screening: HIV-1 TAR. Journal of Computer-Aided Molecular Design, 14, 593–610.

    Google Scholar 

  • Fujita, T., & Winkler, D. A. (2016). Understanding the roles of the “two QSARs”. Journal of Chemical Information and Modeling, 56, 269–274.

    Article  CAS  Google Scholar 

  • Ganellin, C. R. (2004). Robin Ganellin gives his views on medicinal chemistry and drug discovery. Drug Discovery Today, 9, 158–160.

    Article  Google Scholar 

  • Gasteiger, J., et al. (2003). Handbook of chemoinformatics. Wiley Online Library.

    Google Scholar 

  • Gaviraghi, G., Barnaby, R. J., & Pellegatti, M. (2001). Pharmacokinetic challenges in lead optimization. Testa B Van Waterbeemd H folk. G 3–14.

    Google Scholar 

  • Gedeck, P., Rohde, B., & Bartels, C. (2006). QSAR-how good is it in practice? Comparison of descriptor sets on an unbiased cross section of corporate data sets. Journal of Chemical Information and Modeling, 46, 1924–1936.

    Article  CAS  Google Scholar 

  • Ghafourian, T., & Amin, Z. (2013). QSAR models for the prediction of plasma protein binding. BioImpacts BI, 3, 21.

    CAS  Google Scholar 

  • Giaginis, C., Theocharis, S., & Tsantili-Kakoulidou, A. (2008). Quantitative Structure-activity relationships for PPAR-γ binding and gene transactivation of tyrosine-based agonists using multivariate statistics. Chemical Biology & Drug Design, 72, 257–264.

    Article  CAS  Google Scholar 

  • Giaginis, C., Theocharis, S., & Tsantili-Kakoulidou, A. (2007). A consideration of PPAR-γ ligands with respect to lipophilicity: Current trends and perspectives. Expert Opinion on Investigational Drugs, 16, 413–417.

    Article  CAS  Google Scholar 

  • Gilson, M. K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L., & Chong, J. (2016). BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Research, 44, D1045–D1053.

    Article  Google Scholar 

  • Godden, J. W., & Bajorath, J. (2000). Shannon entropy—A novel concept in molecular descriptor and diversity analysis. Journal of Molecular Graphics and Modelling, 18, 73–76.

    CAS  Google Scholar 

  • Goldmann, D., Montanari, F., Richter, L., Zdrazil, B., & Ecker, G. F. (2014). Exploiting open data: A new era in pharmacoinformatics. Future Medicinal Chemistry, 6, 503–514.

    Article  CAS  Google Scholar 

  • Goodford, P. J. (1985). A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. Journal of Medicinal Chemistry, 28, 849–857.

    Article  CAS  Google Scholar 

  • Gozalbes, R., Doucet, J. P., & Derouin, F. (2002). Application of Topological descriptors in QSAR and drug design: History and new trends. Current Drug Targets-Infectious Disorders, 2, 93–102. doi:10.2174/1568005024605909.

    Article  CAS  Google Scholar 

  • Gramatica, P. (2006). WHIM descriptors of shape. QSAR & Comb. Sci., 25, 301–415.

    Article  CAS  Google Scholar 

  • Guha, R. (2011). The ups and downs of structure-activity landscapes. Chemoinformatics and Computational Chemical Biology, 101–117.

    Google Scholar 

  • Guha, R., & Jurs, P. C. (2005). Determining the validity of a QSAR model-a classification approach. Journal of Chemical Information and Modeling, 45, 65–73.

    Article  CAS  Google Scholar 

  • Hajduk, P. J., Mendoza, R., Petros, A. M., Huth, J. R., Bures, M., Fesik, S. W., et al. (2003). Ligand binding to domain-3 of human serum albumin: A chemometric analysis. Journal of Computer-Aided Molecular Design, 17, 93–102.

    Article  CAS  Google Scholar 

  • Hann, M. M. (2011). Molecular obesity, potency and other addictions in drug discovery. MedChemComm, 2, 349–355.

    Article  CAS  Google Scholar 

  • Hansch, C. (1969). Quantitative approach to biochemical structure-activity relationships. Accounts of Chemical Research, 2, 232–239.

    Article  CAS  Google Scholar 

  • Hansch, C., & Clayton, J. M. (1973). Lipophilic character and biological activity of drugs II: The parabolic case. Journal of Pharmaceutical Sciences, 62, 1–21.

    Article  CAS  Google Scholar 

  • Hansch, C., & Fujita, T. (1964). p-σ-π Analysis. A method for the correlation of biological activity and chemical structure. Journal of the American Chemical Society, 86, 1616–1626.

    Article  CAS  Google Scholar 

  • Hansch, C., Hoekman, D., Leo, A., Zhang, L., & Li, P. (1995a). The expanding role of quantitative structure-activity relationships (QSAR) in toxicology. Toxicology Letters, 79, 45–53.

    Article  CAS  Google Scholar 

  • Hansch, C., & Leo, A. (1979). Substituent constants for correlation analysis in chemistry and biology. Wiley.

    Google Scholar 

  • Hansch, C., Leo, A., Hoekman, D. H., et al. (1995b). Exploring QSAR: Fundamentals and applications in chemistry and biology. Washington, DC: American Chemical Society.

    Google Scholar 

  • Hansch, C., Muir, R. M., Fujita, T., Maloney, P. P., Geiger, F., & Streich, M. (1963). The correlation of biological activity of plant growth regulators and chloromycetin derivatives with Hammett constants and partition coefficients. Journal of the American Chemical Society, 85, 2817–2824.

    Article  CAS  Google Scholar 

  • Hanumegowda, U. M., Wenke, G., Regueiro-Ren, A., Yordanova, R., Corradi, J. P., & Adams, S. P. (2010). Phospholipidosis as a function of basicity, lipophilicity, and volume of distribution of compounds. Chemical Research in Toxicology, 23, 749–755.

    Article  CAS  Google Scholar 

  • Helgee, E. A., Carlsson, L., Boyer, S., & Norinder, U. (2010). Evaluation of quantitative structure-activity relationship modeling strategies: Local and global models. Journal of Chemical Information and Modeling, 50, 677–689.

    Article  CAS  Google Scholar 

  • Helguera A. M., CombesR. D., González M. P., & Cordeiro M. N. (2008). Applications of 2D descriptors in drug design: A DRAGON tale. Current Topics in Medicinal Chemistry, 8, 1628–1655.

    Google Scholar 

  • Hertzberg, R. P., & Pope, A. J. (2000). High-throughput screening: New technology for the 21st century. Current Opinion in Chemical Biology, 4, 445–451.

    Article  CAS  Google Scholar 

  • Hieronymus, H., Lamb, J., Ross, K. N., Peng, X.P., Clement, C., Rodina, A., et al. (2006). Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 10, 321–330.

    Google Scholar 

  • Hillisch, A., Heinrich, N., & Wild, H. (2015). Computational chemistry in the pharmaceutical industry: From childhood to adolescence. ChemMedChem, 10, 1958–1962.

    Article  CAS  Google Scholar 

  • Hodos, R. A., Kidd, B. A., Shameer, K., Readhead, B. P., & Dudley, J. T. (2016). In silico methods for drug repurposing and pharmacology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 8, 186–210.

    Google Scholar 

  • Hollósy, F., Valkó, K., Hersey, A., Nunhuck, S., Kéri, G., & Bevan, C. (2006). Estimation of volume of distribution in humans from high throughput HPLC-based measurements of human serum albumin binding and immobilized artificial membrane partitioning. Journal of Medicinal Chemistry, 49, 6958–6971.

    Article  CAS  Google Scholar 

  • Hopfinger, A. J., Wang, S., Tokarski, J. S., Jin, B., Albuquerque, M., Madhav, P. J., et al. (1997). Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. Journal of the American Chemical Society, 119, 10509–10524.

    Article  CAS  Google Scholar 

  • Hopkins, A. L., Keserü, G. M., Leeson, P. D., Rees, D. C., & Reynolds, C. H. (2014). The role of ligand efficiency metrics in drug discovery. Nature Reviews Drug Discovery, 13, 105–121.

    Article  CAS  Google Scholar 

  • Houston, J. G., & Banks, M. (1997). The chemical-biological interface: Developments in automated and miniaturised screening technology. Current Opinion in Biotechnology, 8, 734–740.

    Article  CAS  Google Scholar 

  • Hou, T., Wang, J., Zhang, W., & Xu, X. (2007). ADME evaluation in drug discovery. 6. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules? Journal of Chemical Information and Modeling, 47, 460–463.

    Article  CAS  Google Scholar 

  • Huang, S.-M., Abernethy, D. R., Wang, Y., Zhao, P., & Zineh, I. (2013). The utility of modeling and simulation in drug development and regulatory review. Journal of Pharmaceutical Sciences, 102, 2912–2923.

    Article  CAS  Google Scholar 

  • Hughes, J. D., Blagg, J., Price, D. A., Bailey, S., DeCrescenzo, G. A., Devraj, R. V., et al. (2008). Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorganic & Medicinal Chemistry Letters 18, 4872–4875.

    Google Scholar 

  • Irvine, J. D., Takahashi, L., Lockhart, K., Cheong, J., Tolan, J. W., Selick, H. E., et al. (1999). MDCK (Madin–Darby canine kidney) cells: A tool for membrane permeability screening. Journal of Pharmaceutical Sciences, 88, 28–33.

    Article  CAS  Google Scholar 

  • Irwin, J. J. (2008). Using ZINC to acquire a virtual screening library. Current Protocols in Bioinformatics, 14–6.

    Google Scholar 

  • Ito, K., Iwatsubo, T., Kanamitsu, S., Nakajima, Y., & Sugiyama, Y. (1998). Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annual Review of Pharmacology and Toxicology, 38, 461–499. doi:10.1146/annurev.pharmtox.38.1.461.

    Article  CAS  Google Scholar 

  • Jamei, M. (2016). Recent advances in development and application of physiologically-based pharmacokinetic (PBPK) models: A transition from academic curiosity to regulatory acceptance. Current Pharmacology Reports, 2, 161–169.

    Article  CAS  Google Scholar 

  • Jamei, M., Marciniak, S., Feng, K., Barnett, A., Tucker, G., & Rostami-Hodjegan, A. (2009). The Simcyp® population-based ADME simulator. Expert Opinion on Drug Metabolism & Toxicology, 5, 211–223.

    Article  CAS  Google Scholar 

  • Jaworska, J., Nikolova-Jeliazkova, N., & Aldenberg, T. (2005). QSAR applicability domain estimation by projection of the training set descriptor space: A review. Atla-Nottingham- 33, 445.

    Google Scholar 

  • Jaworska, J. S., Comber, M., Auer, C., & Van Leeuwen, C. J. (2003). Summary of a workshop on regulatory acceptance of (Q) SARs for human health and environmental endpoints. Environmental Health Perspectives, 111, 1358.

    Article  Google Scholar 

  • Jorgensen, W. L. (2009). Efficient drug lead discovery and optimization. Accounts of Chemical Research, 42, 724–733.

    Article  CAS  Google Scholar 

  • Jorgensen, W. L. (2004). The many roles of computation in drug discovery. Science, 303, 1813–1818.

    Article  CAS  Google Scholar 

  • Kaldor, S. W., Kalish, V. J., Davies, J. F., Shetty, B.V., Fritz, J.E., Appelt, K., et al. (1997). Viracept (nelfinavir mesylate, AG1343): A potent, orally bioavailable inhibitor of HIV-1 protease. Journal of Medicinal Chemistry, 40, 3979–3985.

    Google Scholar 

  • Kaliszan, R., & Markuszewski, M. (1996). Brain/blood distribution described by a combination of partition coefficient and molecular mass. International Journal of Pharmaceutics, 145, 9–16.

    Article  CAS  Google Scholar 

  • Kansy, M., Senner, F., & Gubernator, K. (1998). Physicochemical high throughput screening: Parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of Medicinal Chemistry, 41, 1007–1010.

    Article  CAS  Google Scholar 

  • Kariv, I., Cao, H., & Oldenburg, K. R. (2001). Development of a high throughput equilibrium dialysis method. Journal of Pharmaceutical Sciences, 90, 580–587.

    Article  CAS  Google Scholar 

  • Katritzky, A. R., Lobanov, V. S., & Karelson, M. (1994). CODESSA: reference manual. FL: Univ. Fla. Gainesv.

    Google Scholar 

  • Keserü, G. M. (2001). A virtual high throughput screen for high affinity cytochrome P450cam substrates. Implications for in silico prediction of drug metabolism. Journal of Computer-Aided Molecular Design, 15, 649–657.

    Article  Google Scholar 

  • Kier, L. B., & Hall, L. H. (1999). Molecular structure description: The Electrotopological State. San Diego, CA: Academic Press.

    Google Scholar 

  • Kim, M. T., Sedykh, A., Chakravarti, S. K., Saiakhov, R. D., & Zhu, H. (2014). Critical evaluation of human oral bioavailability for pharmaceutical drugs by using various cheminformatics approaches. Pharmaceutical Research, 31, 1002–1014.

    Article  CAS  Google Scholar 

  • Kirchmair, J., Göller, A. H., Lang, D., Kunze, J., Testa, B., Wilson, I. D., et al. (2015). Predicting drug metabolism: experiment and/or computation? Nature Reviews Drug Discovery, 14, 387–404.

    Article  CAS  Google Scholar 

  • Klebe, G. (1998). Comparative molecular similarity indices analysis: CoMSIA. Perspectives in Drug Discovery and Design, 12, 87–104.

    Google Scholar 

  • Klebe, G., Abraham, U., & Mietzner, T. (1994). Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. Journal of Medicinal Chemistry, 37, 4130–4146.

    Article  CAS  Google Scholar 

  • Klopman, G., & Kalos, A. N. (1985). Causality in structure-activity studies. Journal of Computational Chemistry, 6, 492–506.

    Article  CAS  Google Scholar 

  • Klopman, G., Stefan, L. R., & Saiakhov, R. D. (2002). ADME evaluation: 2. A computer model for the prediction of intestinal absorption in humans. European Journal of Pharmaceutical Sciences, 17, 253–263.

    Article  CAS  Google Scholar 

  • Klopman, G., Tu, M., & Fan, B. T. (1999). META 4. Prediction of the metabolism of polycyclic aromatic hydrocarbons. Theoretical Chemistry Accounts, 102, 33–38.

    Article  CAS  Google Scholar 

  • Klopman, G., Tu, M., & Talafous, J. (1997). META. 3. A genetic algorithm for metabolic transform priorities optimization. Journal of Chemical Information and Computer Sciences, 37, 329–334.

    Article  CAS  Google Scholar 

  • Kola, I., & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nature Reviews Drug Discovery, 3, 711–715. doi:10.1038/nrd1470.

    Article  CAS  Google Scholar 

  • Konovalov, D. A., Coomans, D., Deconinck, E., & Vander Heyden, Y. (2007). Benchmarking of QSAR models for blood-brain barrier permeation. Journal of Chemical Information and Modeling, 47, 1648–1656.

    Article  CAS  Google Scholar 

  • Koukoulitsa, C., Tsantili-Kakoulidou, A., Mavromoustakos, Th., & Chinou, I. (2009). PLS analysis for antibacterial Activity of natural coumarins using Volsurf descriptors. QSAR and Comb. Sci., 28, 785–789.

    Google Scholar 

  • Kubinyi, H. (1979). Lipophilicity and drug activity, in: Progress in Drug Research/Fortschritte Der Arzneimittelforschung/Progrès Des Recherches Pharmaceutiques, pp. 97–198. Springer.

    Google Scholar 

  • Kubinyi, H., & Kehrhahn, O. H. (1978). Quantitative structure-activity relationships. VI. Non-linear dependence of biological activity on hydrophobic character: Calculation procedures for bilinear model. Arzneimittel-Forschung, 28, 598–601.

    CAS  Google Scholar 

  • Kubinyi, H., Mannhold, R., Krogsgaard, L. R., & Timmerman, H. E., (1993). In R. Mannhold, Al (Eds.), Methods and principles in medicinal chemistry.

    Google Scholar 

  • Kumar, R., Sharma, A., & Varadwaj, P. K. (2011). A prediction model for oral bioavailability of drugs using physicochemical properties by support vector machine. Journal of Natural Science, Biology, and Medicine, 2, 168.

    Article  CAS  Google Scholar 

  • Lambrinidis, G., Vallianatou, T., & Tsantili-Kakoulidou, A. (2015). In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review. Advanced Drug Delivery Reviews, 86, 27–45.

    Article  CAS  Google Scholar 

  • Larregieu, C. A., & Benet, L. Z. (2014). Distinguishing between the permeability relationships with absorption and metabolism to improve BCS and BDDCS predictions in early drug discovery. Molecular Pharmaceutics, 11, 1335–1344.

    Article  CAS  Google Scholar 

  • Larregieu, C. A., & Benet, L. Z. (2013). Drug discovery and regulatory considerations for improving in silico and in vitro predictions that use Caco-2 as a surrogate for human intestinal permeability measurements. American Association of Pharmaceutical Scientists Journal, 15, 483–497.

    CAS  Google Scholar 

  • Leeson, P. D., & Springthorpe, B. (2007). The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Reviews Drug Discovery, 6, 881–890.

    Article  CAS  Google Scholar 

  • Leo, A., Hansch, C., & Elkins, D. (1971). Partition coefficients and their uses. Chemical Reviews, 71, 525–616. doi:10.1021/cr60274a001.

    Article  CAS  Google Scholar 

  • Levin, V. A. (1980). Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. Journal of Medicinal Chemistry, 23, 682–684.

    Article  CAS  Google Scholar 

  • Lewis, D. F., Ioannides, C., & Parke, D. V. (1996). COMPACT and molecular structure in toxicity assessment: A prospective evaluation of 30 chemicals currently being tested for rodent carcinogenicity by the NCI/NTP. Environmental Health Perspectives, 104, 1011.

    Article  CAS  Google Scholar 

  • Lewis, D. F. V. (2001). COMPACT: A structural approach to the modelling of cytochromes P450 and their interactions with xenobiotics. Journal of Chemical Technology and Biotechnology, 76, 237–244.

    Article  CAS  Google Scholar 

  • Lima, A. N., Philot, E. A., Trossini, G. H. G., Scott, L. P. B., Maltarollo, V. G., & Honorio, K. M. (2016). Use of machine learning approaches for novel drug discovery. Expert Opinion on Drug Discovery, 11, 225–239.

    Article  CAS  Google Scholar 

  • Lind, K. E., Du, Z., Fujinaga, K., Peterlin, B. M., & James, T. L. (2002). Structure-based computational database screening, in vitro assay, and NMR assessment of compounds that target TAR RNA. Chemistry & Biology, 9, 185–193.

    Google Scholar 

  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). In Vitro Models for Selection of Development CandidatesExperimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23, 3–25. doi:10.1016/S0169-409X(96)00423-1.

    Article  CAS  Google Scholar 

  • Löfås, S., & Johnsson, B. (1990). A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands. Journal of the Chemical Society, Chemical Communications, 1526–1528.

    Google Scholar 

  • Luco, J. M. (1999). Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling. Journal of Chemical Information and Computer Sciences, 39, 396–404.

    Article  CAS  Google Scholar 

  • MACCS. (2011). MACCS structural keys. San Diego, CA: Accelrys.

    Google Scholar 

  • Mannhold, R., & Dross, K. (1996). Calculation procedures for molecular lipophilicity: A comparative study. Quantitative Structure-Activity Relationships, 15, 403–409.

    Article  CAS  Google Scholar 

  • Mannhold, R., Poda, G. I., Ostermann, C., & Tetko, I. V. (2009). Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. Journal of Pharmaceutical Sciences, 98, 861–893.

    Article  CAS  Google Scholar 

  • Martin, Y. C. (2005). A bioavailability score. Journal of Medicinal Chemistry 48, 3164–3170.

    Google Scholar 

  • Martin, Y. C. (1978). Quantitative Drug Design. New York: A Critical Introduction. Marcel Dekker.

    Google Scholar 

  • Meanwell, N. A. (2016). Improving Drug Design: An Update on Recent Applications of Efficiency Metrics, Strategies for Replacing Problematic Elements, and Compounds in Nontraditional Drug Space. Chemical Research in Toxicology, 29, 564–616.

    Article  CAS  Google Scholar 

  • Mekenyan, O., & Bonchev, D. (1986). Oasis method for predicting biological-activity of chemical-compounds. Acta Pharmaceutica Jugoslavica, 36, 225–237.

    CAS  Google Scholar 

  • Mitchell, M., (1998). An introduction to genetic algorithms. MIT press.

    Google Scholar 

  • Moda, T. L., Montanari, C. A., & Andricopulo, A. D. (2007). Hologram QSAR model for the prediction of human oral bioavailability. Bioorganic & Medicinal Chemistry, 15, 7738–7745.

    Article  CAS  Google Scholar 

  • MOE. (2016). Molecular operating environment (MOE), 2013.08; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7.

    Google Scholar 

  • Moura Barbosa, A. J., & Del Rio, A. (2012). Freely accessible databases of commercial compounds for high-throughput virtual screenings. Current Topics in Medicinal Chemistry, 12, 866–877.

    Article  Google Scholar 

  • Mostrag-Szlichtyng, A., & Worth, A. (2010). Review of QSAR models and software tools for predicting biokinetic properties. Comm: Luxemb. Eur.

    Google Scholar 

  • Muir, R. M., Fujita, T., & Hansch, C. (1967). Structure-activity relationship in the auxin activity of mono-substituted phenylacetic acids. Plant Physiology, 42, 1519–1526.

    Article  CAS  Google Scholar 

  • Mysinger, M. M., Carchia, M., Irwin, J. J., & Shoichet, B. K. (2012). Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. Journal of Medicinal Chemistry, 55, 6582–6594. doi:10.1021/jm300687e.

    Article  CAS  Google Scholar 

  • Narayanan, R., & Gunturi, S. B. (2005). In silico ADME modelling: Prediction models for blood–brain barrier permeation using a systematic variable selection method. Bioorganic & Medicinal Chemistry, 13, 3017–3028.

    Article  CAS  Google Scholar 

  • Navratilova, I., Myszka, D. G., & Rich, R. L. (2007). Probing membrane protein interactions with real-time biosensor technology. Biophysical Analysis of Membrane Proteins: Investigating Structure and Function, 121–140.

    Google Scholar 

  • Netzeva, T. I., Worth, A. P., Aldenberg, T., Benigni, R., Cronin, M. T., Gramatica, P., et al. (2005). Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. ATLA 33, 155–173.

    Google Scholar 

  • Nicolotti, O., Gillet, V. J., Fleming, P. J., & Green, D. V. (2002). Multiobjective optimization in quantitative structure-activity relationships: Deriving accurate and interpretable QSARs. Journal of Medicinal Chemistry, 45, 5069–5080.

    Article  CAS  Google Scholar 

  • Oprea, T. I. (2000). Property distribution of drug-related chemical databases. Journal of Computer-Aided Molecular Design, 14, 251–264.

    Article  CAS  Google Scholar 

  • Owens, P. K., Raddad, E., Miller, J. W., Stille, J. R., Olovich, K. G., Smith, N. V., et al. (2015). A decade of innovation in pharmaceutical R&D: The chorus model. Nature Reviews Drug Discovery, 14, 17–28.

    Article  CAS  Google Scholar 

  • Pajouhesh, H., & Lenz, G. R. (2005). Medicinal chemical properties of successful central nervous system drugs. NeuroRx, 2, 541–553.

    Article  Google Scholar 

  • Papadatos, G., Gaulton, A., Hersey, A., & Overington, J. P. (2015). Activity, assay and target data curation and quality in the ChEMBL database. Journal of Computer-Aided Molecular Design, 29, 885–896.

    Article  CAS  Google Scholar 

  • Parkinson, H., Sarkans, U., Kolesnikov, N., Abeygunawardena, N., Burdett, T., Dylag, et al. (2010). ArrayExpress update—An archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Research, gkq1040.

    Google Scholar 

  • Paterlini, S., & Minerva, T. (2010). Regression model selection using genetic algorithms. In Proceedings of the 11th WSEAS International Conference on Nural Networks and 11th WSEAS International Conference on Evolutionary Computing and 11th WSEAS International Conference on Fuzzy Systems, pp. 19–27.

    Google Scholar 

  • Pastor, M., Cruciani, G., Mclay, I., Pickett, S., & Clementi, S. (2000). Grid-independent descriptors (GRIND): A novel class of alignment-independent three-dimensional molecular descriptors. Journal of Medicinal Chemistry, 43, 3233–3243.

    Article  CAS  Google Scholar 

  • Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg, S. R., et al. (2010). How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nature Reviews Drug Discovery, 9, 203–214.

    CAS  Google Scholar 

  • Pham-The, H., González-Álvarez, I., Bermejo, M., Garrigues, T., Le-Thi-Thu, H., & Cabrera-Pérez, M. Á. (2013). The use of rule-based and QSPR approaches in ADME profiling: A case study on caco-2 permeability. Molecular Informatics, 32, 459–479.

    Article  CAS  Google Scholar 

  • Platts, J. A., Abraham, M. H., Zhao, Y. H., Hersey, A., Ijaz, L., & Butina, D. (2001). Correlation and prediction of a large blood–brain distribution data set-an LFER study. European Journal of Medicinal Chemistry, 36, 719–730.

    Article  CAS  Google Scholar 

  • Pliška, V., Testa, B., & van de Waterbeemd, H. (1996). Lipophilicity: The empirical tool and the fundamental objective. an introduction. In V. Pliška, B. Testa, P. -D. H. van de Waterbeemd (Eds.), Lipophilicity in drug action and toxicology (pp. 1–6). Wiley-VCH Verlag GmbH.

    Google Scholar 

  • Polanski, J. (2009). Receptor dependent multidimensional QSAR for modeling drug-receptor interactions. Current Medicinal Chemistry, 16, 3243–3257.

    Article  CAS  Google Scholar 

  • Puzyn, T., Leszczynski, J., & Cronin, M. T. (2010). Recent advances in QSAR studies: Methods and applications. Springer Science & Business Media.

    Google Scholar 

  • Qiu, T., Qiu, J., Feng, J., Wu, D., Yang, Y., Tang, K., et al. (2016). The recent progress in proteochemometric modelling: Focusing on target descriptors, cross-term descriptors and application scope. Briefings in Bioinformatics. bbw004.

    Google Scholar 

  • Rekker, R. F., & Mannhold, R. (1992). Calculation of drug lipophilicity: The hydrophobic fragmental constant approach. Wiley-VCH.

    Google Scholar 

  • Rich, R. L., & Myszka, D. G. (2000). Advances in surface plasmon resonance biosensor analysis. Current Opinion in Biotechnology, 11, 54–61.

    Article  CAS  Google Scholar 

  • Rodgers, S. L., Davis, A. M., Tomkinson, N. P., & van de Waterbeemd, H. (2011). Predictivity of simulated ADME AutoQSAR models over time. Molecular Informatics, 30, 256–266.

    Article  CAS  Google Scholar 

  • Rodgers, S. L., Davis, A. M., & van de Waterbeemd, H. (2007). Time-series QSAR analysis of human plasma protein binding data. QSAR & Combinatorial Science, 26, 511–521.

    Article  CAS  Google Scholar 

  • Rogge, M. C., & Taft, D. R. (Eds.). (2010) preclinical drug development second edition. In Drugs and the pharmaceutical sciences (Vol.187). CRS Press, Taylor and Francis Group.

    Google Scholar 

  • Rowley, M., Kulagowski, J. J., Watt, A. P., Rathbone, D., Stevenson, G. I., Carling, R. W., et al. (1997). Effect of plasma protein binding on in vivo activity and brain penetration of glycine/NMDA receptor antagonists. Journal of Medicinal Chemistry, 40, 4053–4068. doi:10.1021/jm970417o.

    Article  CAS  Google Scholar 

  • Roy, K., Mitra, I., Kar, S., Ojha, P. K., Das, R. N., & Kabir, H. (2012). Comparative studies on some metrics for external validation of QSPR models. Journal of Chemical Information and Modeling, 52, 396–408. doi:10.1021/ci200520g.

    Article  CAS  Google Scholar 

  • Roy, P. P., Paul, S., Mitra, I., & Roy, K. (2009). On two novel parameters for validation of predictive QSAR models. Molecules, 14, 1660–1701.

    Article  CAS  Google Scholar 

  • Rücker, C., Rücker, G., & Meringer, M. (2007). y-Randomization and its variants in QSPR/QSAR. Journal of Chemical Information and Modeling, 47, 2345–2357.

    Article  CAS  Google Scholar 

  • Rutenber, E. E., & Stroud, R. M. (1996). Binding of the anticancer drug ZD1694 to E. coli thymidylate synthase: Assessing specificity and affinity. Structure, 4, 1317–1324.

    Article  CAS  Google Scholar 

  • Sahigara, F., Mansouri, K., Ballabio, D., Mauri, A., Consonni, V., & Todeschini, R. (2012). Comparison of different approaches to define the applicability domain of QSAR models. Molecules, 17, 4791–4810.

    Article  CAS  Google Scholar 

  • Saiakhov, R. D., Stefan, L. R., & Klopman, G. (2000). Multiple computer-automated structure evaluation model of the plasma protein binding affinity of diverse drugs. Perspectives in Drug Discovery and Design, 19, 133–155.

    Article  CAS  Google Scholar 

  • Sakiyama, Y. (2009). The use of machine learning and nonlinear statistical tools for ADME prediction. Expert Opinion on Drug Metabolism & Toxicology, 5, 149–169.

    Article  CAS  Google Scholar 

  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27, 221–234.

    Article  CAS  Google Scholar 

  • Satyanarayanajois, S.D. (2011). Drug design and discovery: Methods and protocols. Humana Press.

    Google Scholar 

  • Schindler, T., Bornmann, W., Pellicena, P., Miller, W. T., Clarkson, B., & Kuriyan, J. (2000). Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science, 289, 1938–1942.

    Article  CAS  Google Scholar 

  • Schneider, G. (2010). Virtual screening: An endless staircase? Nature Reviews Drug Discovery, 9, 273–276.

    Article  CAS  Google Scholar 

  • Sedykh, A., Zhu, H., Tang, H., Zhang, L., Richard, A., Rusyn, I., et al. (2011). Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. Environmental Health Perspectives, 119, 364.

    Article  CAS  Google Scholar 

  • Sherer, E. C., Verras, A., Madeira, M., Hagmann, W. K., Sheridan, R. P., Roberts, D., et al. (2012). QSAR Prediction of passive permeability in the LLC-PK1 cell line: Trends in molecular properties and cross-prediction of caco-2 permeabilities. Molecular Informatics, 31, 231–245.

    Article  CAS  Google Scholar 

  • Sheridan, R. P. (2014). Global quantitative structure-activity relationship models vs selected local models as predictors of off-target activities for project compounds. Journal of Chemical Information and Modeling, 54, 1083–1092.

    Article  CAS  Google Scholar 

  • Sheridan, R. P., Korzekwa, K. R., Torres, R. A., & Walker, M. J. (2007). Empirical regioselectivity models for human cytochromes P450 3A4, 2D6, and 2C9. Journal of Medicinal Chemistry, 50, 3173–3184.

    Article  CAS  Google Scholar 

  • Sheridan, R. P., McMasters, D. R., Voigt, J. H., & Wildey, M. J. (2015). eCounterscreening: Using QSAR predictions to prioritize testing for off-target activities and setting the balance between benefit and risk. Journal of Chemical Information and Modeling, 55, 231–238.

    Article  CAS  Google Scholar 

  • Sohn, Y. S., Park, C., Lee, Y., Kim, S., Thangapandian, S., Kim, Y., et al. (2013). Multi-conformation dynamic pharmacophore modeling of the peroxisome prolifera-tor-activated receptor γ for the discovery of novel agonists. Journal of Molecular Graphics and Modelling, 46, 1–9.

    Google Scholar 

  • Speck-Planche, A., & Cordeiro, M. N. D. S. (2015). Multitasking models for quantitative structure—Biological effect relationships: Current status and future perspectives to speed up drug discovery. Expert Opinion on Drug Discovery, 10, 245–256.

    Article  CAS  Google Scholar 

  • Spowage, B. M., Bruce, C. L., & Hirst, J. D. (2009). Interpretable correlation descriptors for quantitative structure—Activity relationships. Journal of Cheminformatics, 1, 22.

    Article  CAS  Google Scholar 

  • Stegmaier, K., Ross, K. N., Colavito, S. A., O’Malley, S., Stockwell, B. R., & Golub, T. R. (2004). Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nature Genetics, 36, 257–263.

    Article  CAS  Google Scholar 

  • Stuper, A. J., & Jurs, P. C. (1976). ADAPT: A computer system for automated data analysis using pattern recognition techniques. Journal of Chemical Information and Modeling, 16, 99–105. doi:10.1021/ci60006a014.

    Article  CAS  Google Scholar 

  • Suenderhauf, C., Hammann, F., & Huwyler, J. (2012). Computational prediction of blood–brain barrier permeability using decision tree induction. Molecules, 17, 10429–10445.

    Article  CAS  Google Scholar 

  • Sun, H. (2004). A universal molecular descriptor system for prediction of logP, logS, logBB, and absorption. Journal of Chemical Information and Computer Sciences, 44, 748–757.

    Article  CAS  Google Scholar 

  • Swift, R. V., & Amaro, R. E. (2013). Back to the future: Can physical models of passive membrane permeability help reduce drug candidate attrition and move us beyond QSPR? Chemical Biology & Drug Design, 81, 61–71.

    Article  CAS  Google Scholar 

  • Talafous, J., Sayre, L. M., Mieyal, J. J., & Klopman, G. (1994). META. 2. A dictionary model of mammalian xenobiotic metabolism. Journal of Chemical Information and Computer Sciences, 34, 1326–1333.

    CAS  Google Scholar 

  • Tao, L., Zhang, P., Qin, C., Chen, S. Y., Zhang, C., Chen, Z., et al. (2015). Recent progresses in the exploration of machine learning methods as in-silico ADME prediction tools. Advanced Drug Delivery Reviews, 86, 83–100.

    Article  CAS  Google Scholar 

  • Tarcsay, Á., Nyíri, K., & Keserű, G. M. (2012). Impact of lipophilic efficiency on compound quality. Journal of Medicinal Chemistry, 55, 1252–1260.

    Article  CAS  Google Scholar 

  • Terfloth, L., Bienfait, B., & Gasteiger, J. (2007). Ligand-based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates. Journal of Chemical Information and Modeling, 47, 1688–1701.

    Article  CAS  Google Scholar 

  • Testa, B., Balmat, A.-L., & Long, A. (2004). Predicting drug metabolism: Concepts and challenges. Pure and Applied Chemistry, 76, 907–914.

    Article  CAS  Google Scholar 

  • Testa, B., Balmat, A.-L., Long, A., & Judson, P. (2005a). Predicting drug metabolism—An evaluation of the expert system METEOR. Chemistry & Biodiversity, 2, 872–885.

    Article  CAS  Google Scholar 

  • Testa, B., Vistoli, G., & Pedretti, A. (2005b). Musings on ADME predictions and structure-activity relations. Chemistry & Biodiversity, 2, 1411–1427. doi:10.1002/cbdv.200590115.

    Article  CAS  Google Scholar 

  • Testa, B. (2009). Drug metabolism for the perplexed medicinal chemist. Chemistry & Biodiversity, 6, 2055–2070.

    Article  CAS  Google Scholar 

  • Tetko, I. V., Poda, G. I., Ostermann, C., & Mannhold, R. (2009). Large-scale evaluation of log P predictors: Local corrections may compensate insufficient accuracy and need of experimentally testing every other compound. Chemistry & Biodiversity, 6, 1837–1844.

    Article  CAS  Google Scholar 

  • Tetko, I. V., Tanchuk, V. Y., & Villa, A. E. (2001). Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices. Journal of Chemical Information and Computer Sciences, 41, 1407–1421.

    Article  CAS  Google Scholar 

  • Thiel-Demby, V. E., Humphreys, J. E., St. John Williams, L. A., Ellens, H. M., Shah, N., Ayrton, et al. (2008). Biopharmaceutics classification system: Validation and learnings of an in vitro permeability assay. Molecular Pharmaceutics 6, 11–18.

    Google Scholar 

  • Tian, S., Li, Y., Wang, J., Zhang, J., & Hou, T. (2011). ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Molecular Pharmaceutics, 8, 841–851.

    Article  CAS  Google Scholar 

  • Tilley, J. W., Chen, L., Fry, D. C., Emerson, S.D., Powers, G.D., Biondi, D., et al. (1997). Identification of a small molecule inhibitor of the IL-2/IL-2Rα receptor interaction which binds to IL-2. Journal of the American Chemical Society 119, 7589–7590.

    Google Scholar 

  • Todeschini, R., & Consonni, V. (2009). Molecular descriptors for chemoinformatics, Volume 41 (2 Volume Set). Wiley.

    Google Scholar 

  • Tropsha, A., Gramatica, P., & Gombar, V. K. (2003). The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR & Combinatorial Science, 22, 69–77. doi:10.1002/qsar.200390007.

    Article  CAS  Google Scholar 

  • Tsantili-Kakoulidou, A., & Agrafiotis, D. K. (2011). The 18th european symposium on quantitative structure-activity relationships. Expert Opinion on Drug Discovery, 6, 453–456.

    Article  Google Scholar 

  • Tsopelas, F., Vallianatou, T., & Tsantili-Kakoulidou, A. (2016a). The potential of immobilized artificial membrane chromatography to predict human oral absorption. European Journal of Pharmaceutical Sciences, 81, 82–93.

    Article  CAS  Google Scholar 

  • Tsopelas, F., Vallianatou, T., & Tsantili-Kakoulidou, A. (2016b). Advances in immobilized artificial membrane (IAM) chromatography for novel drug discovery. Expert Opinion on Drug Discovery, 11, 473–488.

    Article  CAS  Google Scholar 

  • Ursu, O., Rayan, A., Goldblum, A., & Oprea, T. I. (2011). Understanding drug-likeness. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1, 760–781.

    CAS  Google Scholar 

  • Usansky, H. H., & Sinko, P. J. (2005). Estimating human drug oral absorption kinetics from Caco-2 permeability using an absorption-disposition model: Model development and evaluation and derivation of analytical solutions for ka and Fa. Journal of Pharmacology and Experimental Therapeutics, 314, 391–399.

    Article  CAS  Google Scholar 

  • Vallianatou, T., Lambrinidis, G., Giaginis, C., Mikros, E., & Tsantili-Kakoulidou, A. (2013). Analysis of PPAR-α/γ Activity by Combining 2-D QSAR and Molecular Simulation. Molecular Informatics, 32, 431–445.

    Article  CAS  Google Scholar 

  • van de Waterbeemd, H., Camenisch, G., Folkers, G., & Raevsky, O. A. (1996). Estimation of Caco-2 cell permeability using calculated molecular descriptors. Quantitative Structure-Activity Relationships, 15, 480–490.

    Article  Google Scholar 

  • van de Waterbeemd, H., & Smith, D. A., (2001). Relations of molecular properties with drug disposition: The cases of gastrointestinal absorption. Pharmacokinetic Optimization in Drug Research: Biological, Physicochemical, and Computational Strategies, 51.

    Google Scholar 

  • Van de Waterbeemd, H., & Testa, B. (1987). The parametrization of lipophilicity and other structural properties in drug design. Advances in Drug Research, 16, 85–225.

    Google Scholar 

  • Varghese, J. N. (1999). Development of neuraminidase inhibitors as anti-influenza virus drugs. Drug Development Research, 46, 176–196.

    Article  CAS  Google Scholar 

  • Vastag, M., & Keseru, G. M. (2009). Current in vitro and in silico models of blood–brain barrier penetration: a practical view. Current Opinion in Drug Discovery & Development, 12, 115–124.

    CAS  Google Scholar 

  • Vasudevan, S. R., & Churchill, G. C. (2009). Mining free compound databases to identify candidates selected by virtual screening. Expert Opinion on Drug Discovery, 4, 901–906.

    Article  CAS  Google Scholar 

  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45, 2615–2623.

    Article  CAS  Google Scholar 

  • Vedani, A., Briem, H., Dobler, M., Dollinger, H., & McMasters, D. R. (2000). Multiple-conformation and protonation-state representation in 4D-QSAR: the neurokinin-1 receptor system. Journal of Medicinal Chemistry, 43, 4416–4427.

    Article  CAS  Google Scholar 

  • Vedani, A., Dobler, M., & Lill, M. A. (2005). Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor. Journal of Medicinal Chemistry, 48, 3700–3703.

    Article  CAS  Google Scholar 

  • Veerasamy, R., Rajak, H., Jain, A., Sivadasan, S., Varghese, C. P., & Agrawal, R. K. (2011). Validation of QSAR models-strategies and importance. International Journal of Drug Design & Discovery, 3, 511–519.

    Google Scholar 

  • Vilar, S., Chakrabarti, M., & Costanzi, S. (2010). Prediction of passive blood–brain partitioning: straightforward and effective classification models based on in silico derived physicochemical descriptors. Journal of Molecular Graphics and Modelling, 28, 899–903.

    Article  CAS  Google Scholar 

  • Volpe, D. A. (2008). Variability in Caco-2 and MDCK cell-based intestinal permeability assays. Journal of Pharmaceutical Sciences, 97, 712–725.

    Article  CAS  Google Scholar 

  • Votano, J. R., Parham, M., Hall, L. M., Hall, L. H., Kier, L. B., Oloff, S., et al. (2006). QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation. Journal of Medicinal Chemistry, 49, 7169–7181. doi:10.1021/jm051245v.

    Article  CAS  Google Scholar 

  • Wager, T. T., Villalobos, A., Verhoest, P. R., Hou, X., & Shaffer, C. L. (2011). Strategies to optimize the brain availability of central nervous system drug candidates. Expert Opinion on Drug Discovery, 6, 371–381.

    Article  CAS  Google Scholar 

  • Wang, N.-N., Dong, J., Deng, Y.-H., Zhu, M.-F., Wen, M., Yao, Z.-J., et al. (2016). ADME properties evaluation in drug discovery: Prediction of caco-2 cell permeability using a combination of NSGA-II and boosting. Journal of Chemical Information and Modeling, 56, 763–773.

    Article  CAS  Google Scholar 

  • Wang, Y., Xiao, J., Suzek, T.O., Zhang, J., Wang, J., Zhou, Z., et al. (2012). PubChem’s BioAssay database. Nucleic Acids Research 40, D400–D412.

    Google Scholar 

  • Wessel, M. D., Jurs, P. C., Tolan, J. W., & Muskal, S. M. (1998). Prediction of human intestinal absorption of drug compounds from molecular structure. Journal of Chemical Information and Computer Sciences, 38, 726–735.

    Article  CAS  Google Scholar 

  • Wiesmann, C., Christinger, H. W., Cochran, A. G., Cunningham, B. C., Fairbrother, W. J., Keenan, C. J., et al. (1998). Crystal structure of the complex between VEGF and a receptor-blocking peptide. Biochemistry (Mosc), 37, 17765–17772.

    Article  CAS  Google Scholar 

  • Willett, P. (2004). Evaluation of molecular similarity and molecular diversity methods using biological activity data in methods in molecular biology. In J. Bajorath (Ed.), Chemoinformatics: Concepts, methods, and tools for drug discovery (Vol. 275). Totowa, N.J: Humana Press Inc.

    Google Scholar 

  • Williams, G. (2012). A searchable cross-platform gene expression database reveals connections between drug treatments and disease. BMC Genomics, 13, 1.

    Article  CAS  Google Scholar 

  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laborary Systems, 58, 109–130.

    Article  CAS  Google Scholar 

  • Wong, W. W., & Burkowski, F. J. (2009). A constructive approach for discovering new drug leads: Using a kernel methodology for the inverse-QSAR problem. Journal of Cheminformatics, 1, 1.

    Article  CAS  Google Scholar 

  • Worth, A. P., Hartung, T., & Van Leeuwen, C. J. (2004). The role of the European centre for the validation of alternative methods (ECVAM) in the validation of (Q) SARs. SAR and QSAR in Environmental Research, 15, 345–358.

    Article  CAS  Google Scholar 

  • Yee, S. (1997). In vitro permeability across caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man—Fact or myth. Pharmaceutical Research, 14, 763–766.

    Article  CAS  Google Scholar 

  • Yera, E. R., Cleves, A. E., & Jain, A. N. (2014). Prediction of off-target drug effects through data fusion. In Pacific Symposium on Biocomputing. NIH Public Access, p. 160.

    Google Scholar 

  • Yusof I., & Segall, M. D. (2013). Considering the impact drug-like properties have on the chance of success. Drug Discovery Today 18, 659–66.

    Google Scholar 

  • Zhao, P., Rowland, M., & Huang, S.-M. (2012). Best practice in the use of physiologically based pharmacokinetic modeling and simulation to address clinical pharmacology regulatory questions. Clinical Pharmacology and Therapeutics, 92, 17–20.

    Article  CAS  Google Scholar 

  • Zhao, Y. H., Le, J., Abraham, M. H., Hersey, A., Eddershaw, P. J., Luscombe, C. N., Boutina, D., et al. (2001). Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. Journal of Pharmaceutical Sciences 90, 749–784.

    Google Scholar 

  • Zsila, F. (2013). Subdomain IB is the third major drug binding region of human serum albumin: Toward the three-sites model. Molecular Pharmaceutics, 10, 1668–1682.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Tsantili-Kakoulidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lambrinidis, G., Tsopelas, F., Giaginis, C., Tsantili-Kakoulidou, A. (2017). QSAR/QSPR Modeling in the Design of Drug Candidates with Balanced Pharmacodynamic and Pharmacokinetic Properties. In: Roy, K. (eds) Advances in QSAR Modeling. Challenges and Advances in Computational Chemistry and Physics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-56850-8_9

Download citation

Publish with us

Policies and ethics