Skip to main content

The Use of Topological Indices in QSAR and QSPR Modeling

  • Chapter
  • First Online:
Advances in QSAR Modeling

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 24))

Abstract

Topological indices (TIs) are numerical representations of the topology of a molecule, and are calculated from the heavy atom graphical depiction of the molecule. One of the first TIs was that of Wiener in 1947, who showed that his index correlated well with the boiling points of alkanes. There are now many different TIs available, and many of them are discussed in this chapter, with respect largely to their use as descriptors in QSAR/QSPR modeling. Three types in particular stand out, molecular connectivities developed by Randić and Kier and Hall, electrotopological state (E-state) values developed by Kier and Hall, and information content indices developed by Basak and co-workers. New TIs are still appearing, despite some criticism that there are already too many types of TI, that they are difficult of interpretation, and that they are inferior to physicochemical descriptors in modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham, M. H., Chadha, H. S., & Mitchell, R. C. (1994). Hydrogen bonding. Part 32. An analysis of water-octanol and water-cyclohexane partitioning and the log P parameter of Seiler. Journal of Pharmaceutical Sciences, 83, 1085–1100.

    Article  CAS  Google Scholar 

  • Abreu, R. M. V., Ferreira, I. C. F. R., & Queiroz, M. J. R. P. (2009). QSAR model for predicting radical scavenging activity of di(hetero)arylamines derivatives of benzo[b]thiophenes. European Journal of Medicinal Chemistry, 44, 1952–1958.

    Article  CAS  Google Scholar 

  • Aptula, A. O., Jeliazkova, N. G., Schultz, T. W., & Cronin, M. T. D. (2005). The better predictive model: high q2 for the training set or low root mean square error of prediction for the test set? QSAR & Combinatorial Science, 24, 385–396.

    Article  CAS  Google Scholar 

  • Bajaj, S., Sambi, S. S., & Madan, A. K. (2005). Prediction of anti-inflammatory activity of N-arylanthranilic acids: Computational approach using refined Zagreb indices. Croatica Chemica Acta, 78, 165–174.

    CAS  Google Scholar 

  • Balaban, A. T. (1979). Chemical graphs. 34. Five new topological indices for the branching of tree-like graphs. Theoretica Chimica Acta, 53, 355–375.

    Article  CAS  Google Scholar 

  • Balaban, A. T. (1982). Highly discriminating distance-based topological index. Chemical Physics Letters, 89, 399–404.

    Article  CAS  Google Scholar 

  • Balaban, A. T. (1985). Applications of graph theory in chemistry. Journal of Chemical Information and Computer Sciences, 25, 334–343.

    CAS  Google Scholar 

  • Basak, S. C. (1987). Use of molecular complexity indices in predictive pharmacology and toxicology: A QSAR approach. Medical Science Research, 15, 605–609.

    CAS  Google Scholar 

  • Basak, S. C., Magnuson, V. R., Niemi, G. J., Regal, R. R., & Veith, G. D. (1987). Topological indices: Their nature, mutual relatedness, and applications. Mathematical Modelling, 8, 300–305.

    Article  Google Scholar 

  • Basak, S. C., Magnuson, V. R., Niemi, G. J., & Regal, R. R. (1988). Determining structural similarity of chemical using graph-theoretic indices. Discrete Applied Mathematics, 19, 17–44.

    Article  Google Scholar 

  • Basak, S. C. (1999). Information theoretic indices of neighborhood complexity and their applications. In J. Devillers & A. T. Balaban (Eds.), Topological indices and related descriptors in QSAR and QSPR (pp. 563–593). Amsterdam: Gordon and Breach Science Publishers.

    Google Scholar 

  • Basak, S. C., Gute, B. D., & Grunwald, G. D. (1999). A hierarchical approach to the development of QSAR models using topological, geometrical and quantum chemical parameters. In J. Devillers & A. T. Balaban (Eds.), Topological indices and related descriptors in QSAR and QSPR (pp. 563–593). Amsterdam: Gordon and Breach Science Publishers.

    Google Scholar 

  • Basak, S. C., Balaban, A. T., Grunwald, G. D., & Gute, B. D. (2000). Topological indices: Their nature and mutual relatedness. Journal of Chemical Information and Computer Sciences, 40, 891–898.

    Article  CAS  Google Scholar 

  • Basak, S. C., Gute, B. D., & Mills, D. (2006). Similarity methods in analog selection, property estimation and clustering of diverse chemicals. ARKIVOC.Ix, 157–210.

    Google Scholar 

  • Basak, S. C., & Gute, B. D. (2008). Mathematical biodescriptors of proteomics maps: Background and applications. Current Opinion in Drug Discovery & Development, 11, 320–326.

    CAS  Google Scholar 

  • Basak, S. C. (2010). Role of mathematical chemodescriptors and proteomics-based biodescriptors in drug discovery. Drug Development Research, 72, 1–9.

    Google Scholar 

  • Basak, S. C. (2013a). Philosophy of mathematical chemistry: A personal perspective. HYLE—International Journal for Philosophy of Chemistry, 19, 4–17.

    Google Scholar 

  • Basak, S. C. (2013b). Mathematical descriptors for the prediction of property, bioactivity, and toxicity of chemicals from their structure: A chemical-cum-biochemical approach. Current Computer-Aided Drug Design, 9, 449–462.

    Article  CAS  Google Scholar 

  • Basak, S. C., Grunwald, G. D., & Majumdar, S. (2015). Intrinsic dimensionality of chemical space: Characterization and applications. Mol2Net Section B, Proceedings, 1, 1–10.

    Google Scholar 

  • Baskin, I. I., Gordeeva, E. V., Devdarian, R. O., Zefirov, N. S., Palyulin, V. A., & Stankevich, M. I. (1989). Methodology of solution of the inverse problem for the structure-property relationship for the case of topological indices. Doklady Chemistry, 307, 217–220.

    Google Scholar 

  • Bharate, S. B., & Singh, I. P. (2011). Quantitative structure-activity relationship study of phloroglucinol-terpene adducts as anti-leishmanial agents. Bioorganic & Medicinal Chemistry Letters, 21, 4310–4315.

    Article  CAS  Google Scholar 

  • Burkhard, L. P., Andren, A. W., & Armstrong, D. E. (1983). Structure activity relationships using molecular connectivity indices with principal component analysis. Chemosphere, 12, 935–943.

    Article  CAS  Google Scholar 

  • Caballero, J., Fernández, M., Saavedra, M., & González-Nilo, F. D. (2008). 2D autocorrelation, CoMFA, and CoMSIAmodeling of protein tyrosine kinases’ inhibition by substituted pyrido[2,3-d]pyrimidine derivatives. Bioorganic & Medicinal Chemistry, 16, 810–821.

    Google Scholar 

  • Cronin, M. T. D., et al. (2002). Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis. Chemosphere, 49, 1201–1221.

    Google Scholar 

  • Cummins, D. J., Andrews, C. W., Bentley, J. A., & Cory, M. (1996). Molecular diversity and chemical databases: Comparison of medicinal chemistry knowledge bases and databases of commercially available compounds. Journal of Chemical Information and Computer Sciences, 36, 750–763.

    Article  CAS  Google Scholar 

  • Dearden, J. C., Bradburne, S. J. A., Cronin, M. T. D., Solanki, P., et al. (1988). The physical significance of molecular connectivity. In J. E. Turner, M. W. England, T. W. Schultz, & N. J. Kwaak (Eds.), QSAR-88 (pp. 43–50). Oakridge, TN: U.S. Department of Energy.

    Google Scholar 

  • Dearden, J. C., Cronin, M. T. D., Schultz, T. W., & Lin, D. T. (1995). QSAR study of the toxicity of nitrobenzenes to Tetrahymena pyriformis. Quantitative Structure-Activity Relationships, 14, 189–196.

    Article  Google Scholar 

  • Dearden, J. C., Wong, E. H. Y., & Walker, J. D. (2004). Molecular connectivity: polarity correction to improve correlation with hydrophobicity. QSAR & Combinatorial Science, 23, 75–79.

    Article  CAS  Google Scholar 

  • Dearden, J. C., Cronin, M. T. D., & Kaiser, K. L. E. (2009). How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR and QSAR in Environmental Research, 20, 241266.

    Article  CAS  Google Scholar 

  • Dearden, J. C., et al. (2015a). Mechanism-based QSAR modeling of skin sensitization. Chemical Research in Toxicology, 28, 1975-1968.

    Google Scholar 

  • Dearden, J. C., Hewitt, M., & Rowe, P. H. (2015b). QSAR study of some anti-hyperglycaemic sulphonylurea drugs. SAR& QSAR in Environmental Research, 26, 439–448.

    Google Scholar 

  • Debnath, B., Gayen, S., Basu, A., Srikanth, K., & Jha, T. (2004). Quantitative structure-activity relationship study on some benzodiazepine derivatives as anti-Alzheimer agents. Journal of Molecular Modelling, 10, 328–334.

    Article  CAS  Google Scholar 

  • Devillers, J. (1999a). No-free-lunch molecular descriptors in QSAR and QSPR. In J. Devillers & A. T. Balaban (Eds.), Topological indices and related descriptors in QSAR and QSPR (pp. 1–20). Amsterdam: Gordon and Breach Science Publishers.

    Google Scholar 

  • Devillers, J. (1999b). Autocorrelation descriptors for modeling (eco)toxicological endpoints. In J. Devillers & A. T. Balaban (Eds.), Topological indices and related descriptors in QSAR and QSPR (pp. 595–612). Amsterdam: Gordon and Breach Science Publishers.

    Google Scholar 

  • Dureja, H., Gupta, S., & Madan, A. K. (2008). Topological models for prediction of pharmacokinetic parameters of cephalosporins using random forest, decision tree and moving average analysis. ScientiaPharmaceutica, 76, 377–394.

    Google Scholar 

  • Eike, D. M., Brennecke, J. F., & Maginn, E. J. (2003). Predicting melting points of quaternary ammonium ionic liquids. Green Chemistry, 5, 323–328.

    Article  CAS  Google Scholar 

  • Estrada, E. (2002). Physicochemical interpretation of molecular connectivity indices. Journal of Physical Chemistry A, 106, 9085–9091.

    Article  CAS  Google Scholar 

  • Filip, P. A., Balaban, T. S., & Balaban, A. T. (1987). A new approach for devising graph invariants: Derived topological indices with low degeneracy and good correlation ability. Journal of Mathematical Chemistry, 1, 61–83.

    Article  CAS  Google Scholar 

  • Golbraikh, A., & Tropsha, A. (2002). Beware of q2! Journal of Molecular Graphics and Modelling, 20, 269–276.

    Article  CAS  Google Scholar 

  • Golbraikh, A., Bonchev, D., & Tropsha, A. (2001). Novel chirality descriptors derived from molecular topology. Journal of Chemical Information and Computer Sciences, 41, 147–158.

    Article  CAS  Google Scholar 

  • González, M. P., Caballero, J., Helguera, A. M., et al. (2006). 2D autocorrelation modelling of the inhibitory activity of cytokinin-derived cyclin-dependent kinase inhibitors. Bulletin of Mathematical Biology, 68, 735–751.

    Article  CAS  Google Scholar 

  • Gordeeva, E. V., Molchanova, M. S., & Zefirov, N. S. (1990). General methodology and computer program for the exhaustive restoring of chemical structures by molecular connectivity indexes. Tetrahedron Computer Methodology, 3, 389–415.

    Article  CAS  Google Scholar 

  • Gordon, M., & Scantlebury, G. R. (1964). Non-random polycondensation: statistical theory of the substitution effect. Transactions of the Faraday Society, 60, 604–621.

    Article  CAS  Google Scholar 

  • Gramatica, P., Pilutti, P., & Papa, E. (2007). Approaches for externally validated QSAR modelling of nitrated polycyclic aromatic hydrocarbon mutagenicity. SAR and QSAR in Environmental Research, 18, 169–178.

    Article  CAS  Google Scholar 

  • Gupta, M. K., Sagar, R., Shaw, A. K., & Prabhakar, Y. S. (2005). CP-MLR directed QSAR studies on the antimycobacterial activity of functionalized alkenols—Topological descriptors in modeling the activity. Bioorganic & Medicinal Chemistry, 13, 35–343.

    Google Scholar 

  • Gute, B. D., & Basak, S. C. (1997). Predicting acute toxicity (LC50) of benzene derivatives using theoretical molecular descriptors: A hierarchical QSAR approach. SAR & QSAR in Environmental Research, 7, 117–131.

    Article  CAS  Google Scholar 

  • Gutman, I., & Trinajstić, N. (1972). Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chemical Physics Letters, 17, 535–538.

    Article  CAS  Google Scholar 

  • Gutman, I., & Körtvélyesi, T. (1995). Wiener indices and molecular surfaces. Zeitschrift für Naturforschung, 50A, 669–671.

    Google Scholar 

  • Hall, L. H., Kier, L. B., & Murray, W. J. (1975). Molecular connectivity II: Relationship to water solubility and boiling point. Journal of Pharmaceutical Sciences, 64, 1974–1977.

    Article  CAS  Google Scholar 

  • Hall, L. H., Maynard, E. L., & Kier, L. B. (1989). QSAR investigation of benzene toxicity to fathead minnow using molecular connectivity. Environmental Toxicology and Chemistry, 8, 783–788.

    Article  CAS  Google Scholar 

  • Hall, L. H., Mohney, B., & Kier, L. B. (1991a). The electrotopological state: Structure information at the atomic level for molecular graphs. Journal of Chemical Information and Computer Sciences, 31, 76–82.

    CAS  Google Scholar 

  • Hall, L. H., Mohney, B., & Kier, L. B. (1991b). The electrotopological state: An atom index for QSAR. Quantitative Structure-Activity Relationships, 10, 43–51.

    Article  CAS  Google Scholar 

  • Hall, L. H., & Kier, L. B. (1993). Design of molecules from quantitative structure-activity relationship models. III. Role of higher order path counts: Path three. Journal of Chemical Information and Computer Sciences, 33, 598–603.

    CAS  Google Scholar 

  • Hall, L. H., & Kier, L. B. (1995). Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information. Journal of Chemical Information and Computer Sciences, 35, 1039–1045.

    CAS  Google Scholar 

  • Hall, L. H., & Kier, L. B. (1999a). Molecular connectivity chi indices for database analysis and structure-property modeling. In J. Devillers & A. T. Balaban (Eds.), Topological indices and related descriptors in QSAR and QSPR (pp. 307–360). Amsterdam: Gordon and Breach Science Publishers.

    Google Scholar 

  • Hall, L. H., & Kier, L. B. (1999b). Molecular structure description: The electrotopological state. San Diego: Academic Press.

    Google Scholar 

  • Hansch, C., Gao, H., & Hoekman, D. (1998). A generalized approach to comparative QSAR. In J. Devillers (Ed.), Comparative QSAR (pp. 285–368). London: Taylor & Francis.

    Google Scholar 

  • Hollas, B., Gutman, I., & Trinajstić, N. (2005). On reducing correlations between topological indices. Croatica Chemica Acta, 78, 489–492.

    CAS  Google Scholar 

  • Hosoya, H. (1971). Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bulletin of the Chemical Society of Japan, 44, 2332–2339.

    Article  CAS  Google Scholar 

  • Huuskonen, J. J., Villa, A. E. P., & Tetko, I. V. (1999). Prediction of partition coefficient based on atom-type electrotopological state indices. Journal of Pharmaceutical Sciences, 88, 229–233.

    Article  CAS  Google Scholar 

  • Ivanciuc, O. (2000). QSAR comparative study of Wiener descriptors for weighted molecular graphs. Journal of Chemical Information and Computer Sciences, 40, 1412–1422.

    Article  CAS  Google Scholar 

  • Ivanciuc, O., & Balaban, A. T. (1999). The graph description of chemical structures. In J. Devillers & A. T. Balaban (Eds.), Topological indices and related descriptors in QSAR and QSPR (pp. 59–167). Amsterdam: Gordon and Breach Science Publishers.

    Google Scholar 

  • Iwamura, H. (1980). Structure-taste relationship of perillartine and nitro- and cyanoaniline derivatives. Journal of Medicinal Chemistry, 23, 308–312.

    Article  CAS  Google Scholar 

  • Jalali-Heravi, M., & Asadollahi-Baboli, M. (2008). QSAR analysis of platelet-derived growth inhibitors using GA-ANN and shuffling crossvalidation. QSAR &Combinatorial Science, 27, 750–757.

    Google Scholar 

  • Johnson, S. R. (2008). The trouble with QSAR (or how I learned to stop worrying and embrace fallacy). Journal of Chemical Information and Modeling, 48, 25–26.

    Article  CAS  Google Scholar 

  • Kellogg, G. E., Kier, L. B., Gaillard, P., & Hall, L. H. (1996). The E-state fields: Applications to 3D QSAR. Journal of Computer-Aided Molecular Design, 10, 513–520.

    Article  CAS  Google Scholar 

  • Kier, L. B., & Hall, L. H. (1976a). Molecular connectivity VII: Specific treatment of heteroatoms. Journal of Pharmaceutical Sciences, 65, 1806–1809.

    Article  CAS  Google Scholar 

  • Kier, L. B., & Hall, L. H. (1976b). Molecular connectivity in chemistry and drug research. New York: Academic Press.

    Google Scholar 

  • Kier, L. B., Di Paolo, T., & Hall, L. H. (1977). Structure-activity studies on odor molecules using molecular connectivity. Journal of Theoretical Biology, 67, 585–595.

    Article  CAS  Google Scholar 

  • Kier, L. B., & Hall, L. H. (1978). Molecular connectivity study of muscarinic receptor affinity of acetylcholine antagonists. Journal of Pharmaceutical Sciences, 67, 1408–1412.

    Article  CAS  Google Scholar 

  • Kier, L. B. (1985). A shape index from molecular graphs. Quantitative Structure-Activity Relationships, 4, 109–116.

    Article  CAS  Google Scholar 

  • Kier, L. B., & Hall, L. H. (1986). Molecular connectivity in structure-activity analysis. Chichester: Research Studies Press.

    Google Scholar 

  • Kier, L. B. (1986a). Shape indexes of orders one and three from molecular graphs. Quantitative Structure-Activity Relationships, 5, 1–7.

    Article  CAS  Google Scholar 

  • Kier, L. B. (1986b). Distinguishing atom differences in a molecular graph shape index. Quantitative Structure-Activity Relationships, 5, 7–12.

    Article  CAS  Google Scholar 

  • Kier, L. B. (1989). An index of molecular flexibility from kappa shape attributes. Quantitative Structure-Activity Relationships, 8, 221–224.

    Article  CAS  Google Scholar 

  • Kier, L. B., & Hall, L. H. (1990). An electrotopological-state index for atoms in molecules. Pharmaceutical Research, 7, 801–807.

    Article  CAS  Google Scholar 

  • Kier, L. B., & Hall, L. H. (1991). A differential molecular connectivity index. Quantitative Structure-Activity Relationships, 10, 134–140.

    Article  CAS  Google Scholar 

  • Kier, L. B., & Hall, L. H. (1993). The generation of molecular structures from a graph-based QSAR equation. Quantitative Structure-Activity Relationships, 12, 383–388.

    Article  CAS  Google Scholar 

  • Kier, L. B., Hall, L. H., & Frazer, J. W. (1993a). Design of molecules from quantitative structure-activity relationship models. I. Information transfer between path and vertex degree counts. Journal of Chemical Information and Computer Sciences, 33, 143–147.

    CAS  Google Scholar 

  • Kier, L. B., Hall, L. H., & Frazer, J. W. (1993b). Design of molecules from quantitative structure-activity relationship models. II. Derivation and proof of information transfer relating equations. Journal of Chemical Information and Computer Sciences, 33, 148–152.

    Google Scholar 

  • Kier, L. B., & Hall, L. H. (1999). The kappa indices for modeling molecular shape and flexibility. In J. Devillers & A. T. Balaban (Eds.), Topological indices and related descriptors in QSAR and QSPR (pp. 455–489). Amsterdam: Gordon and Breach Science Publishers.

    Google Scholar 

  • Kier, L. B., & Hall, L. H. (2000). Intermolecular accessibility: The meaning of molecular connectivity. Journal of Chemical Information and Computer Sciences, 40, 792–795.

    Article  CAS  Google Scholar 

  • Kier, L. B., & Hall, L. H. (2001). Molecular connectivity: Intermolecular accessibility and encounter simulation. Journal of Molecular Graphics and Modelling, 20, 76–83.

    Article  CAS  Google Scholar 

  • Kier, L. B., Hall, L. H., Murray, W. J., & Randić, M. (1975). Molecular connectivity I: Relationship to local anesthesia. Journal of Pharmaceutical Sciences, 64, 1971–1974.

    Article  CAS  Google Scholar 

  • Kier, L. B., Murray, W. J., Randić, M., & Hall, L. H. (1976). Molecular connectivity V: Connectivity series concept applied to density. Journal of Pharmaceutical Sciences, 65, 1226–1230.

    Article  CAS  Google Scholar 

  • Krenkel, G., Castro, E. A., & Toropov, A. A. (2001). The variable molecular descriptors based on the optimization of correlation weights of local graph invariants. Journal of Molecular Structure (THEOCHEM), 542, 107–113.

    Article  CAS  Google Scholar 

  • Krishnasamy, C., Raghuraman, A., Kier, L. B., & Desai, U. R. (2008). Application of molecular connectivity and electro-topological indices in quantitative structure-activity analysis of pyrazole derivatives as inhibitors of factor Xa and thrombin. Chemistry & Biodiversity, 5, 2609–2620.

    Article  CAS  Google Scholar 

  • Kubinyi, H. (1993). QSAR: Hansch analysis and related approaches. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Kubinyi, H. (1997). A general view on similarity and QSAR studies. In H. van de Waterbeemd, B. Testa, & G. Folkers (Eds.), Computer-assisted lead finding and optimization: Current tools for medicinal chemistry (pp. 9–28). Basel, Verlag Helvetica Chimica Acta, & Weinheim, VCH.

    Google Scholar 

  • Li, X. H., Jalbout, A. F., & Solimannejad, M. (2003). Definition and application of a novel valence molecular connectivity index. Journal of Molecular Structure (THEOCHEM), 663, 81–85.

    Google Scholar 

  • Liang, Y.-Z., Kvalhcim, O. M., & Manne, R. (1993). White, grey and black multicomponent systems: A classification of mixture problems and methods for their quantitative analysis. Chemometrics and Intelligent Laboratory Systems, 18, 235–250.

    Article  CAS  Google Scholar 

  • Livingstone, D. (1995). Data analysis for chemists: Applications to QSAR and chemical product design. Oxford: Oxford University Press.

    Google Scholar 

  • Livingstone, D. J. (2000). The characterization of chemical structures using molecular properties. A survey. Journal of Chemical Information and Computer Sciences, 40, 195–209.

    Article  CAS  Google Scholar 

  • Lopez de Compadre, R. L., Compadre, C. M., Castillo, R., & Dunn, W. J. (1983). On the use of connectivity indices in quantitative structure activity studies. European Journal of Medicinal Chemistry, 18, 569–571.

    CAS  Google Scholar 

  • Lu, X., Tao, S., Cao, J., & Dawson, R. W. (1999). Prediction of fish bioconcentration factors of nonpolar organic pollutants based on molecular connectivity indices. Chemosphere, 39, 987–999.

    Article  CAS  Google Scholar 

  • Luisi, P. L. (1977). Molecular conformational rigidity: An approach to quantification. Naturwissenschaften, 64, 569–574.

    Article  CAS  Google Scholar 

  • Maran, U., Sild, S., Tulp, I., Takkis, K., & Moosus, M. (2010). Molecular descriptors from two-dimensional chemical structure. In M. T. D. Cronin & J. C. Madden (Eds.), In silico toxicology: Principles and applications (pp. 148–192). Cambridge: RSC Publishing.

    Chapter  Google Scholar 

  • Mekenyan, O., Bonchev, D., Sabljić, A., & Trinajstić, N. (1987). Application of topological índices to QSAR. The use of the Balaban index and the electropy index for correlations with toxicity of ethers on mice. Acta Pharmaceutica Jugoslavica, 37, 75–86.

    CAS  Google Scholar 

  • Moreau, G., & Broto, P. (1980). The autocorrelation of a topological structure: A new molecular descriptor. Nouveau Journal de Chimie, 4, 359–360.

    CAS  Google Scholar 

  • Mowshowitz, A. (1968). Entropy and the complexity of graphs: I. An index of the relative complexity of a graph. Bulletin of Mathematical Biophysics, 30, 175–204.

    Article  CAS  Google Scholar 

  • Mu, L., He, H., Yang, W., & Feng, C. (2009). Variable molecular connectivity indices for predicting the diamagnetic susceptibilities of organic compounds. Industrial and Engineering Chemistry Research, 48, 4165–4175.

    Article  CAS  Google Scholar 

  • Murcia-Soler, M., Pérez-Giménez, F., Nalda-Molina, R., Salabert-Salvador, M. T., Garcia-March, F. J., Cercós-del-Pozo, R. A., et al. (2001). QSAR analysis of hypoglycaemic agents using the topological indices. Journal of Chemical Information and Computer Sciences, 41, 1345–1354.

    Article  CAS  Google Scholar 

  • Murray, W. J., Hall, L. H., & Kier, L. B. (1975). Molecular connectivity III. Relationship to partition coefficients. Journal of Pharmaceutical Sciences, 64, 1978–1981.

    Article  CAS  Google Scholar 

  • Nandy, A., & Basak, S. C. (2000). Simple numerical descriptor for quantifying effect of toxic substances on DNA sequences. Journal of Chemical Information and Computer Sciences, 40, 915–919.

    Article  CAS  Google Scholar 

  • Nandy, A., Harle, M., & Basak, S. C. (2006). Mathematical descriptors of DNA sequences: Development and applications. ARKIVOC, Ix, 211–238.

    Google Scholar 

  • Natarajan, R., Basak, S. C., & Neumann, T. S. (2007). Novel approach for the numerical characterization of molecular chirality. Journal of Chemical Information and Modeling, 47, 771–775.

    Article  CAS  Google Scholar 

  • Netzeva, T. I. (2004). Whole molecule and atom-based topological descriptors. In M. T. D. Cronin & D. J. Livingstone (Eds.), Predicting chemical toxicity and fate (pp. 61–83). Boca Raton: FL, CRC Press.

    Google Scholar 

  • Nikolić, S., Kovačević, G., Miličević, A., & Trinajstić, N. (2003). The Zagreb indices 30 years after. Croatica Chemica Acta, 76, 113–124.

    Google Scholar 

  • Noorizadeh, H., Farmany, A., & Noorizadeh, M. (2011). Quantitative structure-retention relationships analysis of retention index of essential oils. Quimica Nova, 34, 242–249.

    Google Scholar 

  • OECD (2004). Validation of (Q)SAR models. Retrieved May 26, 2016 from http://www.oecd.org/chemicalsafety/risk-assessment/validationofqsarmodels.htm.

  • Pal, D. K., Sengupta, C., & De, A. U. (1988). A new topochemical descriptor (TAU) in molecular connectivity concept: Part I—Aliphatic compounds. Indian Journal of Chemistry, 27B, 734–739.

    CAS  Google Scholar 

  • Platt, J. R. (1947). Influence of neighbor bonds on additive bond properties in paraffins. Journal of Chemical Physics, 15, 419–420.

    Article  CAS  Google Scholar 

  • Pompe, M., Veber, M., Randić, M., & Balaban, A. T. (2004). Using variable and fixed topological indices for the prediction of reaction rate constants of volatile unsaturated hydrocarbons with OH radicals. Molecules, 9, 1160–1176.

    Article  Google Scholar 

  • Prelog, V. (1976). Foreword. In A. T. Balaban (Ed.), Chemical applications of graph theory. London: Academic Press.

    Google Scholar 

  • Randić, M. (1975). On characterization of molecular branching. Journal of the American Chemical Society, 97, 6609–6615.

    Article  Google Scholar 

  • Randić, M., Jerman-Blažić, B., & Trinajstić, N. (1990). Development of 3-dimensional molecular descriptors. Computers & Chemistry, 14, 237–246.

    Article  Google Scholar 

  • Randić, M. (1991a). Novel graph theoretical approach to heteroatoms in quantitative structure-activity relationships. Chemometrics and Intelligent Laboratory Systems, 10, 213–227.

    Article  Google Scholar 

  • Randić, M. (1991b). On computation of optimal parameters for multivariate analysis of structure-property relationship. Journal of Computational Chemistry, 12, 970–980.

    Article  Google Scholar 

  • Randić, M., & Basak, S. C. (1999). Optimal molecular descriptors based on weighted path numbers. Journal of Chemical Information and Computer Sciences, 39, 261–266.

    Article  Google Scholar 

  • Randić, M., Vracko, M., Nandy, A., & Basak, S. C. (2000). On 3D graphical representation of DNA primary sequences and their numerical characterization. Journal of Chemical Information and Computer Sciences, 40, 1235–1244.

    Article  CAS  Google Scholar 

  • Randić, M. (2001). The connectivity index 25 years after. Journal of Molecular Graphics and Modelling, 20, 19–35.

    Article  Google Scholar 

  • Randić, M., & Zupan, J. (2001). On interpretation of well-known topological indices. Journal of Chemical Information and Computer Sciences, 41, 550–560.

    Article  CAS  Google Scholar 

  • Randić, M., Balaban, A. T., & Basak, S. C. (2001). On structural interpretation of several distance related topological indices. Journal of Chemical Information and Computer Sciences, 41, 593–601.

    Article  CAS  Google Scholar 

  • Randić, M., Pompe, M., Mills, D., & Basak, S. C. (2004). Variable connectivity index as a tool for modeling structure-property relationships. Molecules, 9, 1177–1193.

    Article  Google Scholar 

  • Randić, M. (2008). On history of the Randić index and emerging hostility toward chemical graph theory. MATCH Communications in Mathematical and in Computer Chemistry, 59, 5–124.

    Google Scholar 

  • Randić, M. (2014). On of molecular similarity based on a single descriptor. Chemical Physics Letters, 599, 1–6.

    Article  CAS  Google Scholar 

  • Randić, M. (2015). On the history of the connectivity index: From the connectivity index to the exact solution of the protein alignment problem. SAR& QSAR in Environmental Research, 26, 523–555.

    Article  CAS  Google Scholar 

  • Randić, M., Novič, M., & Plavšić, D. (2016). Solved and unsolved problems of structural chemistry. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Ray, S., Roy, P. P., Sengupta, C., & Roy, K. (2010). Exploring QSAR of hydroxyphenylureas as antioxidants using physicochemical and electrotopological state atom parameters. Molecular Simulation, 36, 484–492.

    Article  CAS  Google Scholar 

  • Ribo, J. M., & Kaiser, K. L. E. (1984). Toxicities of chloroanilines to Photobacterium phosphoreum and their correlations and effects on other organisms and structural parameters. In K. L. E. Kaiser (Ed.), QSAR in environmental toxicology (pp. 319–336). Dordrecht: D. Reidel Publishing Co.

    Chapter  Google Scholar 

  • Rose, K., Hall, L. H., & Kier, L. B. (2002). Modeling blood-brain barrier partitioning using the electrotopological state. Journal of Chemical Information and Computer Sciences, 42, 651–666.

    Article  CAS  Google Scholar 

  • Rouvray, D. H., & Crafford, B. C. (1976). The dependence of physicochemical properties on topological factors. South African Journal of Science, 72, 47–51.

    CAS  Google Scholar 

  • Rouvray, D. H., & King, R. B. (Eds.) (2002). Topology in chemistry. Chichester: Horwood Publishing Limited.

    Google Scholar 

  • Roy, K., & Ghosh, G. (2003). Introduction of extended topochemical atom (ETA) indices in the valence electron mobile (VEM) environment as tools for QSAR/QSPR studies. Internet Electronic Journal of Molecular Design, 2, 599–620.

    Google Scholar 

  • Roy, K., & Ghosh, G. (2004). QSTR with extended topochemical atom indices. 2. Fish toxicity of substituted benzenes. Journal of Chemical Information & Computer Sciences, 44, 559–567.

    Article  CAS  Google Scholar 

  • Roy, K., & Ghosh, G. (2009). QSTR with extended topochemical atom (ETA) indices. 12. QSAR for the toxicity of diverse aromatic compounds to Tetrahymena pyriformis. Chemosphere, 77, 999–1009.

    Article  CAS  Google Scholar 

  • Roy, K., & Mitra, I. (2012). Electrotopological state atom (E-state) index in drug design, QSAR, property prediction and toxicity assessment. Current Computer-Aided Drug Design, 8, 135–158.

    Article  CAS  Google Scholar 

  • Roy, K., Kar, S., & Das, R. N. (2015). Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Amsterdam: Academic Press.

    Google Scholar 

  • Roy, K., & Saha, A. (2003). QSPR with TAU indices: Water solubility of diverse functional acyclic compounds. Internet Electronic Journal of Molecular Design, 2, 475–491. http://biochempress.com/Files/iejmd_2003_2_0475.pdf.

  • Sabljić, A. (1985). Calculation of retention indices by molecular topology: Chlorinated benzenes. Journal of Chromatography, 319, 1–8.

    Article  Google Scholar 

  • Sabljić, A. (1990). Topological indices and environmental chemistry. In W. Karcher & J. Devillers (Eds.), Practical applications of quantitative structure-activity relationships (QSAR) in environmental chemistry and toxicology (pp. 61–82). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Sabljić, A., & Protić-Sabljić, M. (1983). Quantitative structure-activity study of the mechanism of inhibition of microsomal p-hydroxylation of aniline by alcohols. Role of steric factors. Molecular Pharmacology, 23, 213–218.

    Google Scholar 

  • Schultz, H. P., Schultz, E. B., & Schultz, T. P. (1995). Topological organic chemistry. 9. Graph theory and molecular topological indices of stereoisomeric organic compounds. Journal of Chemical Information & Computer Sciences, 35, 864–870.

    CAS  Google Scholar 

  • Shafiei, F. (2015). Relationship between topological indices and thermodynamic properties and of the monocarboxylic acids applications in QSPR. Iranian Journal of Mathematical Chemistry, 6, 15–28.

    Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.

    Article  Google Scholar 

  • Singh, M., Das, K. C., Gupta, S., & Madan, A. K. (2014). Refined variable Zagreb indices: Highly discriminating topological descriptors for QSAR/QSPR. International Journal of Chemical Modeling, 6, 403–428.

    Google Scholar 

  • Skvortsova, M. I., Baskin, I. I., Slovokhotova, O. L., Palyulin, V. A., & Zefirov, N. S. (1992). Inverse problem in QSAR/QSPR analysis for case of topological indexes characterizing molecular form (Kier indexes). Doklady Chemistry, 324, 103–107.

    Google Scholar 

  • Skvortsova, M. I., Baskin, I. I., Slovokhotova, O. L., Palyulin, V. A., & Zefirov, N. S. (1993). Inverse problem in QSAR/QSPR studies for the case of topological indices characterizing molecular shape (Kier indices). Journal of Chemical Information & Computer Sciences, 33, 630–634.

    CAS  Google Scholar 

  • Solomon, K. A., Sundararajan, S., & Abirami, V. (2009). QSAR studies on N-aryl derivative activity towards Alzheimer’s disease. Molecules, 14, 1448–1455.

    Article  CAS  Google Scholar 

  • Stankevich, I. V., Skvortsova, M. I., & Zefirov, N. S. (1995). On a quantum chemical interpretation of molecular connectivity indices for conjugated hydrocarbons. Journal of Molecular Structure (THEOCHEM), 342, 173–179.

    Article  CAS  Google Scholar 

  • Stiel, L. I., & Thodos, G. (1962). The normal boiling points and critical constants of saturated aliphatic hydrocarbons. American Institute of Chemical Engineers Journal, 8, 527–529.

    Article  CAS  Google Scholar 

  • Thakur, A., Thakur, M., Khadikar, P. V., Supuran, C. T., & Sudele, P. (2004). QSAR study on benzenesulphonamide carbonic anhydrase inhibitors: Topological approach using Balaban index. Bioorganic & Medicinal Chemistry, 12, 789–793.

    Article  CAS  Google Scholar 

  • Todeschini, R., & Gramatica, P. (1997). The WHIM theory: New 3D molecular descriptors for QSAR in environmental modelling. SAR and QSAR in Environmental Research, 7, 89–115.

    Article  CAS  Google Scholar 

  • Todeschini, R., & Consonni, V. (2009). Molecular descriptors for chemoinformatics. Alphabetical listing (2nd ed., Vol. 1). Weinheim: Wiley-VCH.

    Google Scholar 

  • Todeschini, R., Lasagni, M., & Marengo, E. (1994). New molecular descriptors for 2D and 3D structures theory. Journal of Chemometrics, 8, 263–272.

    Article  CAS  Google Scholar 

  • Tong, J., Liu, S., Zhou, P., Wu, B., & Li, Z. (2008). A novel descriptor of amino acids and its application in peptide QSAR. Journal of Theoretical Biology, 253, 90–97.

    Article  CAS  Google Scholar 

  • Tseng, Y. J., Hopfinger, A. J., & Esposito, E. X. (2012). The great descriptor melting pot: Mixing descriptors for the common good of QSAR models. Journal of Computer-Aided Molecular Design, 26, 39–43.

    Article  CAS  Google Scholar 

  • Unger, S. H. (1987). Molecular connectivity in structure-activity analysis (book review). Journal of Pharmaceutical Sciences, 76, 269–270.

    Article  Google Scholar 

  • Vlaia, V., Olariu, T., Vlaia, L., Butur, M., Ciubotariu, C., Medeleanu, M., et al. (2009). Quantitative structure-activity relationship (QSAR). IV. Analysis of the toxicity of aliphatic esters by means of weighted holistic invariant molecular (WHIM) descriptors. Farmacia, 57, 511–522.

    CAS  Google Scholar 

  • Wells, P. R. (1968). Linear free energy relationships. London: Academic Press.

    Google Scholar 

  • Wiener, H. (1947). Structural determination of paraffin boiling points. Journal of the American Chemical Society, 69, 17–20.

    Article  CAS  Google Scholar 

  • Wiener, H. (1948). Relation of the physical properties of the isomeric alkanes to molecular structure. Journal of Physical Chemistry, 52, 1082–1089.

    Article  CAS  Google Scholar 

  • Wilson, E. B. (1952). Introduction to scientific research. New York: McGraw-Hill.

    Google Scholar 

  • Yilmaz, B., & Göktürk, M. (2009). Interactive data mining for molecular graphs. Journal of Automated Methods & Management in Chemistry. doi:10.1155/2009/502527.

    Google Scholar 

  • Zefirov, N. S., Palyulin, V. A., & Radchenko, E. V. (1991). Problem of generation of structures with definite properties. Solution of inverse problem for Balaban centric index. Doklady Chemistry, 316, 921–924.

    CAS  Google Scholar 

  • Zhang, S. G., Lei, W., Xia, M. Z., & Wang, F. W. (2005). QSAR study of N-containing corrosion inhibitors: Quantum chemical approach assisted by topological index. Journal of Molecular Structure (THEOCHEM), 732, 173–182.

    Article  CAS  Google Scholar 

  • Zheng, W., Cho, S. J., & Tropsha, A. (1998a). Rational combinatorial design. 1. Focus 2-D: A new approach to the design of targeted combinatorial chemical libraries. Journal of Chemical Information and Computer Sciences, 38, 251–258.

    Article  CAS  Google Scholar 

  • Zheng, W., Cho, S. J., & Tropsha, A. (1998b). Rational combinatorial design. 2. Rational design of targeted combinatorial peptide libraries using chemical similarity probe and inverse QSAR approaches. Journal of Chemical Information and Computer Sciences, 38, 259–268.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Dearden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dearden, J.C. (2017). The Use of Topological Indices in QSAR and QSPR Modeling. In: Roy, K. (eds) Advances in QSAR Modeling. Challenges and Advances in Computational Chemistry and Physics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-56850-8_2

Download citation

Publish with us

Policies and ethics