Skip to main content

In Silico Approaches for the Prediction of In Vivo Biotransformation Rates

  • Chapter
  • First Online:
Advances in QSAR Modeling

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 24))

Abstract

The assessment of chemical bioaccumulation is a required procedure under several regulatory frameworks. However, since the experimental quantification of bioaccumulation and related metrics (such as the Bioconcentration Factor, BCF) is resource intensive (money, animals) and time consuming, several computational approaches have been proposed as an alternative. Most bioaccumulation model estimates based on the octanol water partition coefficient (KOW) alone can be inaccurate, if they do not take into account additional processes that influence chemical partitioning, chemical uptake and elimination rates. In particular, the biotransformation rate constant (k B) can play a significant role in mitigating the bioaccumulation potential of hydrophobic chemicals. Bioaccumulation model (e.g., BCF) estimates can be refined when experimental or predicted k Bvalues are available. The aim of this chapter is to illustrate the development and the application of in silico models for in vivo biotransformation rates, for the cost-effective estimation of k Bfor screening assessment. The chapter includes several examples of quantitative structure-activity relationships (QSARs), which predict k B or the associated half-life from the chemical structure. Furthermore, the chapter describes the complementary role of in vitro biotransformation rate estimation and the subsequent in vitro-to-in vivo extrapolation (IVIVE) calculations for refining bioaccumulation model predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armitage, J. M., Wania, F., & Arnot, J. A. (2014). Application of mass balance models and the chemical activity concept to facilitate the use of in vitro toxicity data for risk assessment. Environmental Science and Technology, 48, 9770–9779. doi:10.1021/es501955g.

    Article  CAS  Google Scholar 

  • Arnot, J. A., Brown, T. N., & Wania, F. (2014). Estimating screening-level organic chemical half-lives in humans. Environmental Science and Technology, 48, 723–730. doi:10.1021/es4029414.

    Article  CAS  Google Scholar 

  • Arnot, J. A., & Gobas, F. A. P. C. (2003). A generic QSAR for assessing the bioaccumulation potential of organic chemicals in aquatic food webs. QSAR & Combinatorial Science, 22, 337–345. doi:10.1002/qsar.200390023.

    Article  CAS  Google Scholar 

  • Arnot, J. A., & Gobas, F. A. P. C. (2006). A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environmental Reviews, 14, 257–297. doi:10.1139/a06-005.

    Article  CAS  Google Scholar 

  • Arnot, J. A., Mackay, D., & Bonnell, M. (2008a) Estimating metabolic biotransformation rates in fish from laboratory data. Environmental Toxicology and Chemistry, 27, 341–351. doi:10.1897/07-310r.1.

  • Arnot, J. A., Mackay, D., Parkerton, T. E., & Bonnell, M. (2008b). A database of fish biotransformation rates for organic chemicals. Environmental Toxicology and Chemistry, 27, 2263–2270. doi:10.1897/08-058.1.

    Article  CAS  Google Scholar 

  • Arnot, J. A., Meylan, W., Tunkel, J., Howard, P. H., Mackay, D., Bonnell, M., et al. (2009). A quantitative structure-activity relationship for predicting metabolic biotransformation rates for organic chemicals in fish. Environmental Toxicology and Chemistry, 28, 1168. doi:10.1897/08-289.1.

    Article  CAS  Google Scholar 

  • Austin, R. P., Barton, P., Cockroft, S. L., Wenlock, M. C., Riley, R. J., & Al, A. E. T. (2002). The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties. Drug Metabolism and Disposition, 30, 1497–1503.

    Article  CAS  Google Scholar 

  • Barber, M. C. (2008). Dietary uptake models used for modeling the bioaccumulation of organic contaminants in fish. Environmental Toxicology and Chemistry, 27, 755–777. doi:10.1897/07-462.1.

    Article  CAS  Google Scholar 

  • Basant, N., Gupta, S., & Singh, K. P. (2016). Predicting binding affinities of diverse pharmaceutical chemicals to human serum plasma proteins using QSPR modelling approaches. SAR and QSAR in Environmental Research, 27, 67–85. doi:10.1080/1062936X.2015.1133700.

    Article  CAS  Google Scholar 

  • Berellini, G., Waters, N. J., & Lombardo, F. (2012). In silico prediction of total human plasma clearance. Journal of Chemical Information and Modeling, 52, 2069–2078. doi:10.1021/ci300155y.

    Article  CAS  Google Scholar 

  • Borodina, Y., Sadym, A., Filimonov, D., Blinova, V., Dmitriev, A., & Poroikov, V. (2003). Predicting biotransformation potential from molecular structure. Journal of Chemical Information and Computer Sciences, 43, 1636–1646. doi:10.1021/ci034078l.

    Article  CAS  Google Scholar 

  • Brian Houston, J. (1994). Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochemical Pharmacology, 47, 1469–1479. doi:10.1016/0006-2952(94)90520-7.

    Article  Google Scholar 

  • Brown, T. N., Arnot, J. A., & Wania, F. (2012). Iterative fragment selection: A group contribution approach to predicting fish biotransformation half-lives. Environmental Science and Technology, 46, 8253–8260. doi:10.1021/es301182a.

    Article  CAS  Google Scholar 

  • Burkhard, L. P. (2003). Factors influencing the design of bioaccumulation factor and biota-sediment accumulation factor field studies. Environmental Toxicology and Chemistry, 22, 351–360. doi:10.1002/etc.5620220216.

    CAS  Google Scholar 

  • Burkhard, L. P., Arnot, J. A., Embry, M. R., Farley, K. J., Hoke, R. A., Kitano, M., et al. (2012). Comparing laboratory and field measured bioaccumulation endpoints. Integrated Environmental Assessment and Management, 8, 17–31. doi:10.1002/ieam.260.

    Article  CAS  Google Scholar 

  • Cassani, S., & Gramatica, P. (2015). Identification of potential PBT behavior of personal care products by structural approaches. Sustainable Chemistry and Pharmacy, 1, 19–27. doi:10.1016/j.scp.2015.10.002.

    Article  CAS  Google Scholar 

  • Cowan-Ellsberry, C. E., Dyer, S. D., Erhardt, S., Bernhard, M. J., Roe, A. L., Dowty, M. E., et al. (2008). Approach for extrapolating in vitro metabolism data to refine bioconcentration factor estimates. Chemosphere, 70, 1804–1817. doi:10.1016/j.chemosphere.2007.08.030.

    Article  CAS  Google Scholar 

  • Cravedi, J. P., Lafuente, A., Baradat, M., Hillenweck, A., & Perdu-Durand, E. (1999). Biotransformation of pentachlorophenol, aniline and biphenyl in isolated rainbow trout (Oncorhynchus mykiss) hepatocytes: Comparison with in vivo metabolism. Xenobiotica, 29, 499–509. doi:10.1080/004982599238506.

    Article  CAS  Google Scholar 

  • de Wolf, W., Seinen, W., & Hermens, J. L. M. (1993). Biotransformation and toxicokinetics of trichloroanilines in fish in relation to their hydrophobicity. Archives of Environmental Contamination and Toxicology, 25, 110–117. doi:10.1007/BF00230720.

    Article  Google Scholar 

  • Demir-Kavuk, O., Bentzien, J., Muegge, I., & Knapp, E.-W. (2011). DemQSAR: Predicting human volume of distribution and clearance of drugs. Journal of Computer-Aided Molecular Design, 25, 1121–1133. doi:10.1007/s10822-011-9496-z.

    Article  CAS  Google Scholar 

  • Dimitrov, S., Pavlov, T., Veith, G., & Mekenyan, O. (2011). Simulation of chemical metabolism for fate and hazard assessment. I. Approach for simulating metabolism. SAR and QSAR in Environmental Research, 22, 699–718. doi:10.1080/1062936X.2011.623323.

    Article  CAS  Google Scholar 

  • European Chemicals Agency. (2008). Guidance on information requirements and chemical safety assessment: QSARs and grouping of chemicals. Guidance for Implementing Reach R, 6, 134.

    Google Scholar 

  • European Union. (2006). Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/4. Official Journal of the European Communities, 1–520.

    Google Scholar 

  • European Union. (2009). Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Official Journal of the European Union L, 342, 342–359.

    Google Scholar 

  • European Union. (2012). Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products. Official Journal of the European Communities L, 269, 1–15.

    Google Scholar 

  • Fagerholm, U. (2007). Prediction of human pharmacokinetics–evaluation of methods for prediction of hepatic metabolic clearance. Journal of Pharmacy and Pharmacology, 59, 803–828. doi:10.1211/jpp.59.6.0007.

    Article  CAS  Google Scholar 

  • Fay, K. A., Mingoia, R. T., Goeritz, I., Nabb, D. L., Hoffman, A. D., Ferrell, B. D., et al. (2014). Intra- and interlaboratory reliability of a cryopreserved trout hepatocyte assay for the prediction of chemical bioaccumulation potential. Environmental Science and Technology, 48, 8170–8178. doi:10.1021/es500952a.

    Article  CAS  Google Scholar 

  • Fay, K. A., Nabb, D. L., Mingoia, R. T., Bischof, I., Nichols, J.W., Segner, H., et al. (2015). Determination of metabolic stability using cryopreserved hepatocytes from rainbow trout (Oncorhynchus mykiss). Current Protocols in Toxicology, 65, 4.42.1–4.42.29. doi:10.1002/0471140856.tx0442s65.

  • Fourches, D., Muratov, E., & Tropsha, A. (2010). Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research. Journal of Chemical Information and Modeling, 50, 1189–1204.

    Article  CAS  Google Scholar 

  • Gombar, V. K., & Hall, S. D. (2013). Quantitative structure-activity relationship models of clinical pharmacokinetics: Clearance and volume of distribution. Journal of Chemical Information and Modeling, 53, 948–957. doi:10.1021/ci400001u.

    Article  CAS  Google Scholar 

  • Gramatica, P. (2007). Principles of QSAR models validation: Internal and external. QSAR & Combinatorial Science, 26, 694–701.

    Article  CAS  Google Scholar 

  • Gramatica, P., Cassani, S., & Chirico, N. (2014). QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. Journal of Computational Chemistry, 35, 1036–1044. doi:10.1002/jcc.23576.

    Article  CAS  Google Scholar 

  • Gramatica, P., Cassani, S., Roy, P. P., Kovarich, S., Yap, C. W., & Papa, E. (2012). QSAR modeling is not “push a button and find a correlation”: A case study of toxicity of (Benzo-)triazoles on Algae. Molecular Informatics, 31, 817–835. doi:10.1002/minf.201200075.

    Article  CAS  Google Scholar 

  • Gramatica, P., Chirico, N., Papa, E., Cassani, S., & Kovarich, S. (2013). QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. Journal of Computational Chemistry, 34, 2121–2132. doi:10.1002/jcc.23361.

    Article  CAS  Google Scholar 

  • Han, X., Nabb, D. L., Mingoia, R. T., & Ching-Hui, Y. (2007). Determination of xenobiotic intrinsic clearance in freshly isolated hepatocytes from rainbow trout (Oncorhynchus mykiss) and rat and its application in bioaccumulation assessment. Environmental Science and Technology, 41, 3269–3276. doi:10.1021/ES0626279.

    Article  CAS  Google Scholar 

  • Hendriks, A. J., van der Linde, A., Cornelissen, G., & Sijm, D. T. (2001). The power of size. 1. Rate constants and equilibrium ratios for accumulation of organic substances related to octanol-water partition ratio and species weight. Environmental Toxicology and Chemistry, 20, 1399–1420. doi:10.1002/etc.5620200703.

    Article  CAS  Google Scholar 

  • Howard, P. H., & Muir, D. C. G. (2011). Identifying new persistent and bioaccumulative organics among chemicals in commerce II: Pharmaceuticals. Environmental Science and Technology, 45, 6938–6946. doi:10.1021/es201196x.

    Article  CAS  Google Scholar 

  • Hsiao, Y. W., Fagerholm, U., & Norinder, U. (2013). In silico categorization of in vivo intrinsic clearance using machine learning. Molecular Pharmaceutics, 10, 1318–1321. doi:10.1021/mp300484r.

    Article  CAS  Google Scholar 

  • Huang, W., Geng, L., Deng, R., Lu, S., Ma, G., Yu, J., et al. (2015). Prediction of human clearance based on animal data and molecular properties. Chemical Biology & Drug Design, 86, 990–997. doi:10.1111/cbdd.12567.

    Article  CAS  Google Scholar 

  • Hutzler, J. M., Ring, B. J., & Anderson, S. R. (2015). Low-turnover drug molecules: A current challenge for drug metabolism scientists. Drug Metabolism and Disposition, 43, 1917–1928.

    Article  CAS  Google Scholar 

  • Ito, K., & Houston, J. B. (2005). Prediction of human drug clearance from in vitro and preclinical data using physiologically based and empirical approaches. Pharmaceutical Research, 22, 103–112. doi:10.1007/s11095-004-9015-1.

    Article  CAS  Google Scholar 

  • Iwatsubo, T., Hirota, N., Ooie, T., Suzuki, H., Shimada, N., Chiba, K., et al. (1997). Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacology & Therapeutics, 73, 147–171.

    Article  CAS  Google Scholar 

  • Johanning, K., Hancock, G., Escher, B., Adekola, A., Bernhard, M. J., Cowan-Ellsberry, C., et al. (2012). Assessment of metabolic stability using the rainbow trout (Oncorhynchus mykiss) liver S9 fraction. Current Protocols in Toxicology, 1, 14.10:14.10.1–14.10.28. doi:10.1002/0471140856.tx1410s53.

  • Jolivette, L. J., & Ward, K. W. (2005). Extrapolation of human pharmacokinetic parameters from rat, dog, and monkey data: Molecular properties associated with extrapolative success or failure. Journal of Pharmaceutical Sciences, 94, 1467–1483. doi:10.1002/jps.20373.

    Article  CAS  Google Scholar 

  • Kier, L. B., & Hall, L. H. (1999). Molecular structure description: The electrotopological state. Academic Press.

    Google Scholar 

  • Kim, J., Gobas, F. A. P. C., Arnot, J. A., Powell, D. E., Seston, R. M., & Woodburn, K. B. (2016). Evaluating the roles of biotransformation, spatial concentration differences, organism home range, and field sampling design on trophic magnification factors. Science of the Total Environment, 551–552, 438–451. doi:10.1016/j.scitotenv.2016.02.013.

    Article  Google Scholar 

  • Kramer, N. I., Busser, F. J. M., Oosterwijk, M. T. T., Schirmer, K., Escher, B. I., & Hermens, J. L. M. (2010). Development of a partition-controlled dosing system for cell assays. Chemical Research in Toxicology, 23, 1806–1814. doi:10.1021/tx1002595.

    Article  CAS  Google Scholar 

  • Kuo, D. T. F., & Di Toro, D. M. (2013). Biotransformation model of neutral and weakly polar organic compounds in fish incorporating internal partitioning. Environmental Toxicology and Chemistry, 32, 1873–1881. doi:10.1002/etc.2259.

    Article  CAS  Google Scholar 

  • Laue, H., Gfeller, H., Jenner, K. J., Nichols, J. W., Kern, S., & Natsch, A. (2014). Predicting the bioconcentration of fragrance ingredients by rainbow trout using measured rates of in vitro intrinsic clearance. Environmental Science and Technology, 48, 9486–9495. doi:10.1021/es500904h.

    Article  CAS  Google Scholar 

  • Lavé, T., Chapman, K., Goldsmith, P., & Rowland, M. (2009). Human clearance prediction: Shifting the paradigm. Expert Opinion in Drug Metabolism and Toxicology, 5, 1039–1048. doi:10.1517/17425250903099649.

    Article  Google Scholar 

  • Lech, J. J., & Bend, J. R. (1980). Relationship between biotransformation and the toxicity and fate of xenobiotic chemicals in fish. Environmental Health Perspectives, 34, 115–131.

    Article  CAS  Google Scholar 

  • Li, H., Sun, J., Sui, X., Liu, J., Yan, Z., Liu, X., et al. (2009). First-principle, structure-based prediction of hepatic metabolic clearance values in human. European Journal of Medicinal Chemistry, 44, 1600–1606. doi:10.1016/j.ejmech.2008.07.027.

    Article  CAS  Google Scholar 

  • Lillicrap, A., Springer, T., & Tyler, C. R. (2016). A tiered assessment strategy for more effective evaluation of bioaccumulation of chemicals in fish. Regulatory Toxicology and Pharmacology, 75, 20–26. doi:10.1016/j.yrtph.2015.12.012.

    Article  CAS  Google Scholar 

  • Lombardo, F., Obach, R. S., Varma, M. V., Stringer, R., & Berellini, G. (2014). Clearance mechanism assignment and total clearance prediction in human based upon in silico models. Journal of Medicinal Chemistry, 57, 4397–4405. doi:10.1021/jm500436v.

    Article  CAS  Google Scholar 

  • Long, A., & Walker, J. D. (2003). Quantitative structure-activity relationships for predicting metabolism and modeling cytochrome P450 enzyme activities. Environmental Toxicology and Chemistry, 22, 1894–1899.

    Article  CAS  Google Scholar 

  • Mackay, D. (1982). Correlation of bioconcentration factors. Environmental Science and Technology, 16, 274–278. doi:10.1021/es00099a008.

    Article  CAS  Google Scholar 

  • Mackay, D., Celsie, A. K. D., Arnot, J. A., & Powell, D. E. (2016). Processes influencing chemical biomagnification and trophic magnification factors in aquatic ecosystems: Implications for chemical hazard and risk assessment. Chemosphere, 154, 99–108. doi:10.1016/j.chemosphere.2016.03.048.

    Article  CAS  Google Scholar 

  • McGinnity, D. F., Collington, J., Austin, R. P., & Riley, R. J. (2007). Evaluation of human pharmacokinetics, therapeutic dose and exposure predictions using marketed oral drugs. Current Drug Metabolism, 8, 463–479. doi:10.2174/138920007780866799.

    Article  CAS  Google Scholar 

  • Mekenyan, O., Dimitrov, S., Pavlov, T., Dimitrova, G., Todorov, M., Petkov, P., et al. (2012). Simulation of chemical metabolism for fate and hazard assessment. V. Mammalian hazard assessment. SAR and QSAR in Environmental Research, 23, 553–606. doi:10.1080/1062936X.2012.679689.

    Article  CAS  Google Scholar 

  • Meylan, W., Boethling, R., Aronson, D., Howard, P., & Tunkel, J. (2007). Chemical structure-based predictive model for methanogenic anaerobic biodegradation potential. Environmental Toxicology and Chemistry, 26, 1785–1792. doi:10.1897/06-579R.1.

    Article  CAS  Google Scholar 

  • Miranda, J. P., Leite, S. B., Müller-Vieira, U., Rodrigues, A., Carrondo, M. J. T., & Alves, P. M. (2009). Towards an extended functional hepatocyte in vitro culture. Tissue Engineering Part C, 15, 157–167. doi:10.1089/ten.tec.2008.0352.

    Article  CAS  Google Scholar 

  • Nichols, J. W., Fitzsimmons, P. N., & Burkhard, L. P. (2007). In vitro-in vivo extrapolation of quantitative hepatic biotransformation data for fish. II. Modeled effects on chemical bioaccumulation. Environmental Toxicology and Chemistry, 26, 1304–1319. doi:10.1897/06-259R.1.

    Article  CAS  Google Scholar 

  • Nichols, J. W., Huggett, D. B., Arnot, J. A., Fitzsimmons, P. N., & Cowan-Ellsberry, C. E. (2013). Toward improved models for predicting bioconcentration of well-metabolized compounds by rainbow trout using measured rates of in vitro intrinsic clearance. Environmental Toxicology and Chemistry, 32, 1611–1622. doi:10.1002/etc.2219.

    CAS  Google Scholar 

  • Nichols, J. W., Schultz, I. R., & Fitzsimmons, P. N. (2006). In vitro-in vivo extrapolation of quantitative hepatic biotransformation data for fish. I. A review of methods, and strategies for incorporating intrinsic clearance estimates into chemical kinetic models. Aquatic Toxicology, 78, 74–90.

    Article  CAS  Google Scholar 

  • Obach, R. S. (2011). Predicting clearance in humans from in vitro data. Current Topics in Medicinal Chemistry, 11, 334–339. doi:10.2174/156802611794480873.

    Article  CAS  Google Scholar 

  • Obach, R. S., Baxter, J. G., Liston, T. E., Silber, B. M., Jones, B. C., MacIntyre, F., et al. (1997). The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. Journal of Pharmacology and Experimental Therapeutics, 283, 46–58.

    CAS  Google Scholar 

  • Obach, R. S., Lombardo, F., & Waters, N. J. (2008). Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metabolism and Disposition, 36, 1385–1405. doi:10.1124/dmd.108.020479.

    Article  CAS  Google Scholar 

  • OECD. (2012). Test No 305: Bioaccumulation in fish : Aqueous and dietary exposure. Test No 305 Bioaccumulation Fish Aqueous Diet Expo Section, 3, 1–72. doi:10.1787/2074577x.

  • OECD. (2007). Guidance document on the validation of (quantitative) structure-activity relationship [(Q)Sar] models. 2, 1–154. doi:10.1787/9789264085442-en.

  • Paixão, P., Gouveia, L. F., & Morais, J. A. G. (2010). Prediction of the in vitro intrinsic clearance determined in suspensions of human hepatocytes by using artificial neural networks. European Journal of Pharmaceutical Sciences, 39, 310–321. doi:10.1016/j.ejps.2009.12.007.

    Article  Google Scholar 

  • Papa, E., & Gramatica, P. (2010). QSPR as a support for the EU REACH regulation and rational design of environmentally safer chemicals: PBT identification from molecular structure. Green Chemistry, 12, 836–843. doi:10.1039/B923843C.

    Article  CAS  Google Scholar 

  • Papa, E., Sangion, A., Arnot, J. A., & Gramatica, P. (2016). Development of human biotransformation QSARs and application for PBT assessment refinement. Food and Chemical Toxicology. doi:10.1016/j.fct.2017.04.016.

    Google Scholar 

  • Papa, E., van der Wal, L., Arnot, J. A., & Gramatica, P. (2014). Metabolic biotransformation half-lives in fish: QSAR modeling and consensus analysis. Science of the Total Environment, 470–471, 1040–1046. doi:10.1016/j.scitotenv.2013.10.068.

    Article  Google Scholar 

  • Peach, M. L., Liu, R., Pugliese, A., Wallqvist, A., & Nicklaus, M. C. (2012). Technology Review Computational tools and resources for metabolism-related property predictions. 1. Overview of publicly available (free and commercial) databases and software. Future Medical Chemistry, 4, 1907–1932.

    Article  CAS  Google Scholar 

  • Peters, R. H. (1983). The ecological implications of body size. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Pinheiro, P. F., Pereira, S. A., Harjivan, S. G., Martins, I. L., Marinho, A. T., Cipriano, M., et al. (2016). Hepatocyte spheroids as a competent in vitro system for drug biotransformation studies: Nevirapine as a bioactivation case study. Archives of Toxicology, 1–13. doi:10.1007/s00204-016-1792-x.

  • Pirovano, A., Brandmaier, S., Huijbregts, M. A. J., Ragas, A. M. J., Veltman, K., & Hendriks, A. J. (2015). The utilisation of structural descriptors to predict metabolic constants of xenobiotics in mammals. Environmental Toxicology and Pharmacology, 39, 247–258. doi:10.1016/j.etap.2014.11.025.

    Article  CAS  Google Scholar 

  • Pirovano, A., Brandmaier, S., Huijbregts, M. A. J., Ragas, A. M. J., Veltman, K., & Hendriks, A. J. (2016). QSARs for estimating intrinsic hepatic clearance of organic chemicals in humans. Environmental Toxicology and Pharmacology, 42, 190–197. doi:10.1016/j.etap.2016.01.017.

    Article  CAS  Google Scholar 

  • Pirovano, A., Huijbregts, M. A. J., Ragas, A. M. J., & Hendriks, A. J. (2012). Compound lipophilicity as a descriptor to predict binding affinity (1/Km) in mammals. Environmental Science and Technology, 46, 5168–5174. doi:10.1021/es204506g.

    Article  CAS  Google Scholar 

  • Rane, A., Wilkinson, G. R., & Shand, D. G. (1977). Prediction of hepatic extraction ratio from in vitro measurement of intrinsic clearance. Journal of Pharmacology and Experimental Therapeutics, 200, 420–424. doi:10.1016/0014-2999(77)90123-6.

    CAS  Google Scholar 

  • Riley, R. J., Mcginnity, D. F., & Austin, R. P. (2005). A unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes. Pharmacology, 33, 1304–1311. doi:10.1124/dmd.105.004259.lenged.

    CAS  Google Scholar 

  • Rotroff, D. M., Wetmore, B. A., Dix, D. J., Ferguson, S. S., Clewell, H. J., Houck, K. A., et al. (2010). Incorporating human dosimetry and exposure into high-throughput in vitro toxicity screening. Toxicological Sciences, 117, 348–358. doi:10.1093/toxsci/kfq220.

    Article  CAS  Google Scholar 

  • Sangion, A., & Gramatica, P. (2016). PBT assessment and prioritization of contaminants of emerging concern: Pharmaceuticals. Environmental Research, 147, 297–306. doi:10.1016/j.envres.2016.02.021.

    Article  CAS  Google Scholar 

  • Schneider, G., Coassolo, P., & Lavé, T. (1999). Combining in vitro and in vivo pharmacokinetic data for prediction of hepatic drug clearance in humans by artificial neural networks and multivariate statistical techniques. Journal of Medicinal Chemistry, 42, 5072–5076. doi:10.1021/jm991030j.

    Article  CAS  Google Scholar 

  • Segner, H. (2015). In vitro methodologies in ecotoxicological hazard assessment: The case of bioaccumulation testing for fish. ATLA Alternatives to Laboratory Animals, 43, P14–P16.

    Google Scholar 

  • Sevior, D. K., Pelkonen, O., & Ahokas, J. T. (2012). Hepatocytes: The powerhouse of biotransformation. International Journal of Biochemistry & Cell Biology, 44, 257–261. doi:10.1016/j.biocel.2011.11.011.

    Article  CAS  Google Scholar 

  • Sijm, D. T. H. M., Rikken, M. G. J., Rorije, E., Traas, T. P., McLAchlan, M. S., & Peijnenburg, W. J. G. M. (2007). Transport, accumulation and transformation processes. In C. J. van Leeuwen & T. G. Vermeire (Eds.), Risk assessment of chemicals: An introduction, second (pp. 73–158). Netherlands, Dordrecht: Springer.

    Chapter  Google Scholar 

  • Todeschini, R., & Consonni, V. (2000). Handbook of molecular descriptors. Weinheim, Germany: Wiley-VCH Verlag GmbH.

    Book  Google Scholar 

  • Tonnelier, A., Coecke, S., & Zaldívar, J. M. (2012). Screening of chemicals for human bioaccumulative potential with a physiologically based toxicokinetic model. Archives of Toxicology, 86, 393–403. doi:10.1007/s00204-011-0768-0.

    Article  CAS  Google Scholar 

  • UNEP. (2016). In Stockholm Convention 2008. http://chm.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx.

  • US EPA. (2006). PBT Profiler. http://www.pbtprofiler.net/.

  • Van der Linde, A., Jan Hendriks, A., & Sijm, D. T. H. M. (2001). Estimating biotransformation rate constants of organic chemicals from modeled and measured elimination rates. Chemosphere, 44, 423–435. doi:10.1016/S0045-6535(00)00213-7.

    Article  Google Scholar 

  • van Leeuwen, C. J., & Vermeire, T. G. (Eds.). (2007). Risk assessment of chemicals: An introduction. Springer, Netherlands, Dordrecht: Second.

    Google Scholar 

  • Varma, M. V., Steyn, S. J., Allerton, C., & El-Kattan, A. F. (2015). Predicting clearance mechanism in drug discovery: Extended clearance classification system (ECCS). Pharmaceutical Research, 32, 3785–3802.

    Article  CAS  Google Scholar 

  • Veith, G. D., DeFoe, D. L., & Bergstedt, B. V. (1979). Measuring and estimating the bioconcentration factor of chemicals in fish. Journal of the Fisheries Research Board of Canada, 36, 1040–1048. doi:10.1139/f79-146.

    Article  CAS  Google Scholar 

  • Wajima, T., Fukumura, K., Yano, Y., & Oguma, T. (2002). Prediction of human clearance from animal data and molecular structural parameters using multivariate regression analysis. Journal of Pharmaceutical Sciences, 91, 2489–2499. doi:10.1002/jps.10242.

    Article  CAS  Google Scholar 

  • Walker, C. H., Sibly, R. M., Hopkin, S. P., & Peakall, D. B. (2012). Principles of ecotoxicology (3rd ed.). Fourth Edi: CRC Press, Taylor and Francis Group.

    Google Scholar 

  • Weisbrod, A. V., Sahi, J., Segner, H., James, M. O., Nichols, J. W., Chultz, I. R. S., et al. (2009). The state of in vitro science for use in bioaccumulation assessments for fish. Environmental Toxicology and Chemistry, 28, 86–96. doi:10.1897/08-015.1.

    Article  CAS  Google Scholar 

  • Wetmore, B. A., Allen, B., Clewell, H. J., III, Parker, T., Wambaugh, J. F., Almond, L. M., et al. (2014). Incorporating population variability and susceptible subpopulations into dosimetry for high-throughput toxicity testing. Toxicological Sciences, 142, 210–224. doi:10.1093/toxsci/kfu169.

    Article  CAS  Google Scholar 

  • Wilkinson, G. R. (1987). Clearance approaches in pharmacology. Pharmacological Reviews, 39, 1–47.

    CAS  Google Scholar 

  • Wilkinson, G. R., & Shand, D. G. (1975). A physiological approach to hepatic drug clearance. Clinical Pharmacology and Therapeutics, 18, 377–390.

    Article  CAS  Google Scholar 

  • Wilk-Zasadna, I., Bernasconi, C., Pelkonen, O., & Coecke, S. (2015). Biotransformation in vitro: An essential consideration in the quantitative in vitro-to-in vivo extrapolation (QIVIVE) of toxicity data. Toxicology, 332, 8–19. doi:10.1016/j.tox.2014.10.006.

    Article  CAS  Google Scholar 

  • Yang, J., Jamei, M., Yeo, K. R., Rostami-Hodjegan, A., & Tucker, G. T. (2007). Misuse of the well-stirred model of hepatic drug clearance. Pharmacology, 35, 501–502. doi:10.1124/dmd.106.013359.This.

    CAS  Google Scholar 

  • Yap, C. W., Li, Z. R., & Chen, Y. Z. (2006). Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods. Journal of Molecular Graphics and Modelling, 24, 383–395. doi:10.1016/j.jmgm.2005.10.004.

    Article  CAS  Google Scholar 

  • Yu, M. J. (2010). Predicting total clearance in humans from chemical structure. Journal of Chemical Information and Modeling, 50, 1284–1295. doi:10.1021/ci1000295.

    Article  CAS  Google Scholar 

  • Zhu, H., Tropsha, A., Fourches, D., Varnek, A., Papa, E., Gramatical, P., et al. (2008). Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena piriformis. Journal of Chemical Information and Modeling, 48, 766–784. doi:10.1021/ci700443v.

    Article  CAS  Google Scholar 

  • Zhu, X. W., Sedykh, A., Zhu, H., Liu, S. S., & Tropsha, A. (2013). The use of pseudo-equilibrium constant affords improved QSAR models of human plasma protein binding. Pharmaceutical Research, 30, 1790–1798. doi:10.1007/s11095-013-1023-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ester Papa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Papa, E., Arnot, J.A., Sangion, A., Gramatica, P. (2017). In Silico Approaches for the Prediction of In Vivo Biotransformation Rates. In: Roy, K. (eds) Advances in QSAR Modeling. Challenges and Advances in Computational Chemistry and Physics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-56850-8_11

Download citation

Publish with us

Policies and ethics