Skip to main content

Strain-Specific Virulence Differences in Listeria monocytogenes: Current Perspectives in Addressing an Old and Vexing Issue

  • Chapter
  • First Online:
Foodborne Pathogens

Part of the book series: Food Microbiology and Food Safety ((PRACT))

Abstract

The query of whether all strains of Listeria monocytogenes should be considered to be human pathogens and of equal public health relevance has long attracted keen interest and generated debates among public health professionals, regulatory agencies, the food industry, and scientists investigating virulence and pathogenesis of L. monocytogenes. Animal models have often given contradictory and ambiguous results and have frequently lacked sufficient biological relevance, further aggravating the controversy. Different regulatory bodies have instituted regulations varying in threshold (e.g. “zero” tolerance in ready-to-eat foods vs. a certain number of CFUs) permissible in a sample of a certain size, depending on the nature of the sample and the extent to which it is permissive of L. monocytogenes growth. The issue has remained unsettled. However, recent breakthroughs in L. monocytogenesgenotypic assessments and integration of whole genome sequence data with human susceptibility and disease outcome metrics are beginning to provide substantial evidence for differences in virulence among L. monocytogenes strains. Increasing evidence supports the disproportionately high contribution of a relatively small number of “hypervirulent clones” to human listeriosis.

Statements articulated in this chapter reflect the opinions of the authors (Peter Evans and Vikrant Dutta) and not necessarily those of the US Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbour, A. H., Rampling, A., & Hormaeche, C. E. (1996). Comparison of the infectivity of isolates of Listeria monocytogenes following intragastric and intravenous inoculation in mice. Microbial Pathogenesis, 20, 247–253.

    Article  CAS  PubMed  Google Scholar 

  • Barbour, A. H., Rampling, A., & Hormaeche, C. E. (2001). Variation in the infectivity of Listeria monocytogenes isolates following intragastric inoculation of mice. Infection and Immunity, 69, 4657–4660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bécavin, C., Bouchier, C., Lechat, P., Archambaud, C., Creno, S., Gouin, E., Wu, Z., Kühbacher, A., Brisse, S., Pucciarelli, M. G., García-del Portillo, F., Hain, T., Portnoy, D. A., Chakraborty, T., Lecuit, M., Pizarro-Cerdá, J., Moszer, I., Bierne, H., & Cossart, P. (2014). Comparison of widely used Listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic variations underlying differences in pathogenicity. MBio, 5(2), e00969–e00914. doi:10.1128/mBio.00969-14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bierne, H., Sabet, C., Personnic, N., & Cossart, P. (2007). Internalins: A complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes. Microbes and Infection, 9, 1156–1166.

    Article  CAS  PubMed  Google Scholar 

  • Bou Ghanem, E. N., Myers-Morales, T., & D’Orazio, S. E. (2013). A mouse model of foodborne Listeria monocytogenes infection. Current Protocols in Microbiology, 31, 9B.3.1–9B.3.16. doi:10.1002/9780471729259.mc09b03s31.

    Google Scholar 

  • Braun, L., Dramsi, S., Dehoux, P., Bierne, H., Lindahl, G., & Cossart, P. (1997). InlB: An invasion protein of Listeria monocytogenes with a novel type of surface association. Molecular Microbiology, 25, 285–294.

    Article  CAS  PubMed  Google Scholar 

  • Briers, Y., Klumpp, J., Schuppler, M., & Loessner, M. J. (2011). Genome sequence of Listeria monocytogenes Scott a, a clinical isolate from a food-borne listeriosis outbreak. Journal of Bacteriology, 193, 4284–4285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burall, L. S., Grim, C. J., Mammel, M. K., & Datta, A. R. (2016). Whole genome sequence analysis using jspecies tool establishes clonal relationships between Listeria monocytogenes strains from epidemiologically unrelated listeriosis outbreaks. PloS One, 11(3), e0150797. doi:10.1371/journal.pone.0150797. eCollection 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cabanes, D., Lecuit, M., & Cossart, P. (2008). Animal models of Listeria infection. Current Protocols in Microbiology, Chapter 9, Unit9B.1. doi: 10.1002/9780471729259.mc09b01s10.

  • Camejo, A., Buchrieser, C., Couvé, E., Carvalho, F., Reis, O., Ferreira, P., Sousa, S., Cossart, P., & Cabanes, D. (2009). In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PLoS Pathogens, 5(5), e1000449. doi:10.1371/journal.ppat.1000449. Epub 2009 May 29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cantinelli, T., Chenal-Francisque, V., Diancourt, L., Frezal, L., Leclercq, A., Wirth, T., Lecuit, M., & Brisse, S. (2013). “Epidemic clones” of Listeria monocytogenes are widespread and ancient clonal groups. Journal of Clinical Microbiology, 51, 3770–3779.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho, F., Atilano, M. L., Pombinho, R., Covas, G., Gallo, R. L., Filipe, S. R., Sousa, S., & Cabanes, D. (2015). L-Rhamnosylation of Listeria monocytogenes wall teichoic acids promotes resistance to antimicrobial peptides by delaying interaction with the membrane. PLoS Pathogens, 11(5), e1004919. doi:10.1371/journal.ppat.1004919. eCollection 2015 May.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (CDC). (1999). Update: Multistate outbreak of listeriosis—United States, 1998-1999. Morbidity and Mortality Weekly Report, 47, 1117–1118.

    Google Scholar 

  • Centers for Disease Control and Prevention (CDC). (2015a). Multistate outbreak of listeriosis linked to Blue Bell creameries products (final update). http://www.cdc.gov/listeria/outbreaks/ice-cream-03-15/index.html

  • Centers for Disease Control and Prevention (CDC). (2015b). Multistate outbreak of listeriosis linked to soft cheeses distributed by Karoun dairies, Inc. (Final Update). http://www.cdc.gov/listeria/outbreaks/soft-cheeses-09-15/

  • Centers for Disease Control and Prevention (CDC). (2015c). Multistate outbreak of listeriosis linked to commercially produced, prepackaged caramel apples made from Bidart Bros. apples (final update). http://www.cdc.gov/listeria/outbreaks/caramel-apples-12-14/index.html.

  • Centers for Disease Control and prevention (CDC). (2015d).Whole genome sequencing: The future of food safety. http://www.cdc.gov/listeria/pdf/whole-genome-sequencing-and-listeria-508c.pdf

  • Centers for Disease Control and Prevention (CDC). (2016). Multistate outbreak of listeriosis linked to frozen vegetables. http://www.cdc.gov/listeria/outbreaks/frozen-vegetables-05-16/

  • Chen, Y., & Knabel, S. J. (2007). Multiplex PCR for simultaneous detection of bacteria of the genus Listeria, Listeria monocytogenes, and major serotypes and epidemic clones of L. monocytogenes. Applied and Environmental Microbiology, 73, 6299–6304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chenal-Francisque, V., Lopez, J., Cantinelli, T., Caro, V., Tran, C., Leclercq, A., Lecuit, M., & Brisse, S. (2011). Worldwide distribution of major clones of Listeria monocytogenes. Emerging Infectious Diseases, 17, 1110–1112. doi:10.3201/eid/1706.101778.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chenal-Francisque, V., Diancourt, L., Cantinelli, T., Passet, V., Tran-Hykes, C., Bracq-Dieye, H., Leclercq, A., Pourcel, C., Lecuit, M., & Brisse, S. (2013). Optimized multilocus variable-number tandem-repeat analysis assay and its complementarity with pulsed-field gel electrophoresis and multilocus sequence typing for Listeria monocytogenes clone identification and surveillance. Journal of Clinical Microbiology, 51, 1868–1880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, Y., Yue, L., Elhanafi, D., & Kathariou, S. (2007). Absence of serotype-specific surface antigen in laboratory variants of epidemic-associated Listeria monocytogenes strains. Applied and Environmental Microbiology, 73, 6313–6316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, Y., Promadej, N., Kim, J. W., & Kathariou, S. (2008). Teichoic acid glycosylation mediated by gtcA is required for phage adsorption and susceptibility of Listeria monocytogenes serotype 4b. Applied and Environmental Microbiology, 74, 1653–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, Y., Kim, J. W., Lee, S., Siletzky, R. M., & Kathariou, S. (2010). DNA probes for unambiguous identification of Listeria monocytogenes epidemic clone II strains. Applied and Environmental Microbiology, 76, 3061–3068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, E. E., Wesley, I., Fiedler, F., Promadej, N., & Kathariou, S. (2000). Absence of serotype-specific surface antigen and altered teichoic acid glycosylation among epidemic-associated strains of Listeria monocytogenes. Journal of Clinical Microbiology, 38, 3856–3859.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cossart, P., & Lebreton, A. (2014). A trip in the “new microbiology” with the bacterial pathogen Listeria monocytogenes. FEBS Letters, 588, 2437–2445. doi:10.1016/j.febslet.2014.05.051.

    Article  CAS  PubMed  Google Scholar 

  • Cotter, P. D., Draper, L. A., Lawton, E. M., Daly, K. M., Groeger, D. S., Casey, P. G., Ross, R. P., & Hill, C. (2008). Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes. PLoS Pathogens, 4(9), e1000144. doi:10.1371/journal.ppat.1000144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Czuprynski, C. J., Faith, N. G., & Steinberg, H. (2002). Ability of the Listeria monocytogenes strain Scott a to cause systemic infection in mice infected by the intragastric route. Applied and Environmental Microbiology, 68, 2893–2900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton, C. B., Austin, C. C., Sobel, J., Hayes, P. S., Bibb, W. F., Graves, L. M., Swaminathan, B., Proctor, M. E., & Griffin, P. M. (1997). An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. The New England Journal of Medicine, 336, 100–105.

    Article  CAS  PubMed  Google Scholar 

  • de Valk, H., Vaillant, V., Jacquet, C., Rocourt, J., Le Querrec, F., Stainer, F., Quelquejeu, N., Pierre, O., Pierre, V., Desenclos, J. C., & Goulet, V. (2001). Two consecutive nationwide outbreaks of listeriosis in France, October 1999-February 2000. American Journal of Epidemiology, 154, 944–950.

    Article  CAS  PubMed  Google Scholar 

  • den Bakker, H. C., Didelot, X., Fortes, E. D., Nightingale, K. K., & Wiedmann, M. (2008). Lineage specific recombination rates and microevolution in Listeria monocytogenes. BMC Evolutionary Biology, 8, 277. doi:10.1186/1471-2148-8-277.

    Article  CAS  Google Scholar 

  • den Bakker, H. C., Fortes, E. D., & Wiedmann, M. (2010). Multilocus sequence typing of outbreak-associated Listeria monocytogenes isolates to identify epidemic clones. Foodborne Pathogens and Disease, 7, 257–265. doi:10.1089/fpd.2009.0342.

    Article  Google Scholar 

  • den Bakker, H. C., Bowen, B. M., Rodriguez-Rivera, L. D., & Wiedmann, M. (2012). FSL J1-208, a virulent uncommon phylogenetic lineage IV Listeria monocytogenes strain with a small chromosome size and a putative virulence plasmid carrying internalin-like genes. Applied and Environmental Microbiology, 78, 1876–1889.

    Article  CAS  Google Scholar 

  • den Bakker, H. C., Desjardins, C. A., Griggs, A. D., Peters, J. E., Zeng, Q., Young, S. K., Kodira, C. D., Yandava, C., Hepburn, T. A., Haas, B. J., Birren, B. W., & Wiedmann, M. (2013). Evolutionary dynamics of the accessory genome of Listeria monocytogenes. PloS One, 8(6), e67511. doi:10.1371/journal.pone.0067511.

    Article  CAS  Google Scholar 

  • Denes, T., den Bakker, H. C., Tokman, J. I., Guldimann, C., & Wiedmann, M. (2015). Selection and characterization of phage-resistant mutant strains of Listeria monocytogenes reveal host genes linked to phage adsorption. Applied and Environmental Microbiology, 81, 4295–4305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Disson, O., Grayo, S., Huillet, E., Nikitas, G., Langa-Vives, F., Dussurget, O., Ragon, M., Le Monnier, A., Babinet, C., Cossart, P., & Lecuit, M. (2008). Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature, 455(7216), 1114–1118.

    Article  CAS  PubMed  Google Scholar 

  • Disson, O., & Lecuit, M. (2013 Dec). In vitro and in vivo models to study human listeriosis: Mind the gap. Microbes and Infection, 15(14–15), 971–980.

    Article  CAS  PubMed  Google Scholar 

  • Ducey, T. F., Page, B., Usgaard, T., Borucki, M. K., Pupedis, K., & Ward, T. J. (2007). A single-nucleotide-polymorphism-based multilocus genotyping assay for subtyping lineage I isolates of Listeria monocytogenes. Applied and Environmental Microbiology, 73, 133–147.

    Article  CAS  PubMed  Google Scholar 

  • D’Orazio, S. E. (2014). Animal models for oral transmission of Listeria monocytogenes. Frontiers in Cellular and Infection Microbiology, 4, 15.

    PubMed  PubMed Central  Google Scholar 

  • Dominguez-Bernal, G., Muller-Altrock, S., Gonzalez-Zorn, B., Scortti, M., Herrmann, P., et al. (2006). A spontaneous genomic deletion in Listeria ivanovii identifies LIPI-2, a species-specific pathogenicity island encoding sphingomyelinase and numerous internalins. Molecular Microbiology, 59, 415–432.

    Article  CAS  PubMed  Google Scholar 

  • Doumith, M., Jacquet, C., Goulet, V., Oggioni, C., Van Loock, F., Buchrieser, C., & Martin, P. (2006). Use of DNA arrays for the analysis of outbreak-related strains of Listeria monocytogenes. International Journal of Medical Microbiology, 296, 559–562.

    Article  CAS  PubMed  Google Scholar 

  • Dutta, V., Elhanafi, D., Osborne, J., Martinez, M. R., & Kathariou, S. (2014). Genetic characterization of plasmid-associated triphenylmethane reductase in Listeria monocytogenes. Applied and Environmental Microbiology, 80, 5379–5385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elhanafi, D., Dutta, V., & Kathariou, S. (2010). Genetic characterization of plasmid-associated benzalkonium chloride resistance determinants in a Listeria monocytogenes strain from the 1998-1999 outbreak. Applied and Environmental Microbiology, 76, 8231–8238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faith, N. G., Peterson, L. D., Luchansky, J. B., & Czuprynski, C. J. (2006). Intragastric inoculation with a cocktail of Listeria monocytogenes strains does not potentiate the severity of infection in a/J mice compared to inoculation with the individual strains comprising the cocktail. Journal of Food Protection, 69, 2664–2670.

    Article  PubMed  Google Scholar 

  • Faith, N., Kathariou, S., Cheng, Y., Promadej, N., Neudeck, B. L., Zhang, Q., Luchansky, J., & Czuprynski, C. (2009). The role of L. monocytogenes serotype 4b gtcA in gastrointestinal listeriosis in a/J mice. Foodborne Pathogens and Disease, 6, 39–48.

    Article  CAS  PubMed  Google Scholar 

  • Faith, N. G., Kim, J. W., Azizoglu, R., Kathariou, S., & Czuprynski, C. (2012). Purine biosynthesis mutants (purA and purB) of serotype 4b Listeria monocytogenes are severely attenuated for systemic infection in intragastrically inoculated a/J mice. Foodborne Pathogens and Disease, 9, 480–486.

    Article  CAS  PubMed  Google Scholar 

  • Fiedler, F. (1988). Biochemistry of the cell surface of Listeria strains: A locating general view. Infection, 16(Suppl 2), S92–S97.

    Article  CAS  PubMed  Google Scholar 

  • Fiedler, F., Seger, J., Schrettenbrunner, A., & Seeliger, H. (1984). The biochemistry of murein and cell wall teichoic acids in the genus Listeria. System Applied Microbiology, 5, 360–376. doi:10.1016/S0723-2020(84)80038-7.

    Article  CAS  Google Scholar 

  • Garner, D., & Kathariou, S. (2016). Fresh produce-associated listeriosis outbreaks, sources of concern, teachable moments, and insights. Journal of Food Protection, 79, 337–344.

    Article  PubMed  Google Scholar 

  • Gilmour, M. W., Graham, M., Van Domselaar, G., Tyler, S., Kent, H., Trout-Yakel, K. M., Larios, O., Allen, V., Lee, B., & Nadon, C. (2010). High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics, 11, 120. doi:10.1186/1471-2164-11-120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glaser, P., Frangeul, L., Buchrieser, C., Rusniok, C., Amend, A., Baquero, F., Berche, P., Bloecker, H., Brandt, P., Chakraborty, T., Charbit, A., Chetouani, F., Couvé, E., de Daruvar, A., Dehoux, P., Domann, E., Domínguez-Bernal, G., Duchaud, E., Durant, L., Dussurget, O., Entian, K. D., Fsihi, H., García-del Portillo, F., Garrido, P., Gautier, L., Goebel, W., Gómez-López, N., Hain, T., Hauf, J., Jackson, D., Jones, L. M., Kaerst, U., Kreft, J., Kuhn, M., Kunst, F., Kurapkat, G., Madueno, E., Maitournam, A., Vicente, J. M., Ng, E., Nedjari, H., Nordsiek, G., Novella, S., de Pablos, B., Pérez-Diaz, J. C., Purcell, R., Remmel, B., Rose, M., Schlueter, T., Simoes, N., Tierrez, A., Ja, V.-B., Voss, H., Wehland, J., & Cossart, P. (2001). Comparative genomics of Listeria species. Science, 294, 849–852.

    CAS  PubMed  Google Scholar 

  • Gottlieb, S. L., Newbern, E. C., Griffin, P. M., Graves, L. M., Hoekstra, R. M., Baker, N. L., Hunter, S. B., Holt, K. G., Ramsey, F., Head, M., Levine, P., Johnson, G., Schoonmaker-Bopp, D., Reddy, V., Kornstein, L., Gerwel, M., Nsubuga, J., Edwards, L., Stonecipher, S., Hurd, S., Austin, D., Jefferson, M. A., Young, S. D., Hise, K., Chernak, E. D., Sobel, J., & Listeriosis Outbreak Working Group. (2006). Multistate outbreak of listeriosis linked to turkey deli meat and subsequent changes in US regulatory policy. Clinical Infectious Diseases, 42, 29–36.

    Article  PubMed  Google Scholar 

  • Graves, L. M., Hunter, S. B., Ong, A. R., Schoonmaker-Bopp, D., Hise, K., Kornstein, L., DeWitt, W. E., Hayes, P. S., Dunne, E., Mead, P., & Swaminathan, B. (2005). Microbiological aspects of the investigation that traced the 1998 outbreak of listeriosis in the United States to contaminated hot dogs and establishment of molecular subtyping-based surveillance for Listeria monocytogenes in the PulseNet network. Journal of Clinical Microbiology, 43, 2350–2355.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haase, J. K., Didelot, X., Lecuit, M., Korkeala, H., L. monocytogenes MLST Study Group, & Achtman, M. (2014). The ubiquitous nature of Listeria monocytogenes clones: A large-scale multilocus sequence typing study. Environmental Microbiology, 16(2), 405–416.

    Article  CAS  PubMed  Google Scholar 

  • Halpin, J. L., Garrett, N. M., Ribot, E. M., Graves, L. M., & Cooper, K. L. (2010). Re-evaluation, optimization, and multilaboratory validation of the PulseNet-standardized pulsed-field gel electrophoresis protocol for Listeria monocytogenes. Foodborne Pathogens and Disease, 7, 293–298.

    Article  CAS  PubMed  Google Scholar 

  • Hoelzer, K., Pouillot, R., & Dennis, S. (2012). Animal models of listeriosis: A comparative review of the current state of the art and lessons learned. Veterinary Research, 43, 18. doi:10.1186/1297-9716-43-18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hof, H., & Hefner, P. (1988). Pathogenicity of Listeria monocytogenes in comparison to other Listeria species. Infection, 16(Suppl 2), S141–S144.

    Article  PubMed  Google Scholar 

  • Hof, H., & Rocourt, J. (1992). Is any strain of Listeria monocytogenes detected in food a health risk? International Journal of Food Microbiology, 16(3), 173–182.

    Article  CAS  PubMed  Google Scholar 

  • Holch, A., Ingmer, H., Licht, T. R., & Gram, L. (2013). Listeria monocytogenes strains encoding premature stop codons in inlA invade mice and guinea pig fetuses in orally dosed dams. Journal of Medical Microbiology, 62(Pt 12), 1799–1806. doi:10.1099/jmm.0.057505-0. Epub 2013 Sep 6.

    Article  PubMed  Google Scholar 

  • Imanishi, M., Routh, J. A., Klaber, M., Gu, W., Vanselow, M. S., Jackson, K. A., Sullivan-Chang, L., Heinrichs, G., Jain, N., Albanese, B., Callaghan, W. M., Mahon, B. E., & Silk, B. J. (2015). Estimating the attack rate of pregnancy-associated listeriosis during a large outbreak. Infectious Diseases in Obstetrics and Gynecology, 2015, 201479. doi:10.1155/2015/201479. Epub 2015 Feb 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson, B. R., Salter, M., Tarr, C., Conrad, A., Harvey, E., Steinbock, L., Saupe, A., Sorenson, A., Catz, L., Stroika, S., Jackson, K. A., Carleton, H., Kucerova, Z., Melka, D., Strain, E., Parish, M., & Mody, R. K. (2015). Notes from the field: Listeriosis associated with stone fruit –United States, 2014. Morbidity and Mortality Weekly Report, 64, 282–283.

    PubMed  Google Scholar 

  • Jackson, B. R., Tarr, C., Strain, E., Jackson, K. A., Conrad, A., Carleton, H., Katz, L. S., Stroika, S., Gould, L. H., Mody, R. K., Silk, B. J., Beal, J., Chen, Y., Timme, R., Doyle, M., Fields, A., Wise, M., Tillman, G., Defibaugh-Chavez, S., Kucerova, Z., Sabol, A., Roache, K., Trees, E., Simmons, M., Wasilenko, J., Kubota, K., Pouseele, H., Klimke, W., Besser, J., Brown, E., Allard, M., & Gerner-Smidt, P. (2016). Implementation of nationwide real-time whole-genome sequencing to enhance listeriosis outbreak detection and investigation. Clinical Infectious Diseases, pii, ciw242. [Epub ahead of print].

    Google Scholar 

  • Jacquet, C., Doumith, M., Gordon, J. I., Martin, P. M., Cossart, P., & Lecuit, M. (2004). A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes. The Journal of Infectious Diseases, 189, 2094–2100.

    Article  CAS  PubMed  Google Scholar 

  • Jonquières, R., Bierne, H., Mengaud, J., & Cossart, P. (1998). The inlA gene of Listeria monocytogenes LO28 harbors a nonsense mutation resulting in release of internalin. Infection and Immunity, 66, 3420–3422.

    PubMed  PubMed Central  Google Scholar 

  • Kastbjerg, V. G., Larsen, M. H., Gram, L., & Ingmer, H. (2010). Influence of sublethal concentrations of common disinfectants on expression of virulence genes in Listeria monocytogenes. Applied and Environmental Microbiology, 76, 303–309.

    Article  CAS  PubMed  Google Scholar 

  • Kathariou, S. (2002). Listeria monocytogenesVirulence and pathogenicity, a food safety perspective. Journal of Food Protection, 65, 1811–1829.

    Article  PubMed  Google Scholar 

  • Kathariou, S. (2003). Foodborne Outbreaks of Listeriosis and Epidemic-Associated Lineages of Listeria monocytogenes. M. E. Torrence and R. E. Isaacson (ed). Microbial Food Safety in Animal Agriculture: Current Topics. Iowa State University Press.

    Google Scholar 

  • Kathariou, S., Graves, L., Buchrieser, C., Glaser, P., Siletzky, R. M., & Swaminathan, B. (2006). Involvement of closely related strains of a new clonal group of Listeria monocytogenes in the 1998-99 and 2002 multistate outbreaks of foodborne listeriosis in the United States. Foodborne Pathogens and Disease, 3, 292–302.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. W., Siletzky, R. M., & Kathariou, S. (2008). Host ranges of Listeria-specific bacteriophages from the turkey processing plant environment in the United States. Applied and Environmental Microbiology, 74, 6623–6630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J. W., Dutta, V., Elhanafi, D., Lee, S., Osborne, J. A., & Kathariou, S. (2012). A novel restriction-modification system is responsible for temperature-dependent phage resistance in Listeria monocytogenes ECII. Applied and Environmental Microbiology, 78, 1995–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovács, M., Halfmann, A., Fedtke, I., Heintz, M., Peschel, A., Vollmer, W., Hakenbeck, R., & Brückner, R. (2006). A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in Gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. Journal of Bacteriology, 188, 5797–5805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovacevic, J., Ziegler, J., Wałecka-Zacharska, E., Reimer, A., Kitts, D. D., & Gilmour, M. W. (2015). Tolerance of Listeria monocytogenes to quaternary ammonium sanitizers is mediated by a novel efflux pump encoded by emrE. Applied and Environmental Microbiology, 82, 939–953.

    Article  PubMed  CAS  Google Scholar 

  • Kuenne, C., Billion, A., Mraheil, M. A., Strittmatter, A., Daniel, R., Goesmann, A., Barbuddhe, S., Hain, T., & Chakraborty, T. (2013). Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome. BMC Genomics, 14, 47. doi:10.1186/1471-2164-14-47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong, J. C., Mercoulia, K., Tomita, T., Easton, M., Li, H. Y., Bulach, D. M., Stinear, T. P., Seemann, T., & Howden, B. P. (2016). Prospective whole-genome sequencing enhances national surveillance of Listeria monocytogenes. Journal of Clinical Microbiology, 54, 333–342. doi:10.1128/JCM.02344-15. Epub 2015 Nov 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammerding, A. M., Glass, K. A., Gendron-Fitzpatrick, A., & Doyle, M. P. (1992). Determination of virulence of different strains of Listeria monocytogenes and Listeria innocua by oral inoculation of pregnant mice. Applied and Environmental Microbiology, 58, 3991–4000.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lecuit, M., Dramsi, S., Gottardi, C., Fedor-Chaiken, M., Gumbiner, B., & Cossart, P. (1999). A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. The EMBO Journal, 18, 3956–3963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecuit, M. (2007). Human listeriosis and animal models. Microbes and Infection, 9, 1216–1225.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S., Rakic-Martinez, M., Graves, L. M., Ward, T. J., Siletzky, R. M., & Kathariou, S. (2013). Genetic determinants for cadmium and arsenic resistance among Listeria monocytogenes serotype 4b isolates from sporadic human listeriosis patients. Applied and Environmental Microbiology, 79, 2471–2476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S., Ward, T. J., Graves, L. M., Tarr, C. L., Siletzky, R. M., & Kathariou, S. (2014). Population structure of Listeria monocytogenes serotype 4b isolates from sporadic human listeriosis cases in the United States from 2003 to 2008. Applied and Environmental Microbiology, 80, 3632–3644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lomonaco, S., Verghese, B., Gerner-Smidt, P., Tarr, C., Gladney, L., Joseph, L., Catz, L., Turnsek, M., Frace, M., Chen, Y., Brown, E., Meinersmann, R., Berrang, M., & Knabel, S. (2013). Novel epidemic clones of Listeria monocytogenes, United States, 2011. Emerging Infectious Diseases, 19, 147–150.

    Article  PubMed  PubMed Central  Google Scholar 

  • MacDonald, P. D., Whitwam, R. E., Boggs, J. D., MacCormack, J. N., Anderson, K. L., Reardon, J. W., Saah, J. R., Graves, L. M., Hunter, S. B., & Sobel, J. (2005). Outbreak of listeriosis among Mexican immigrants as a result of consumption of illicitly produced Mexican-style cheese. Clinical Infectious Diseases, 40, 677–682.

    Article  PubMed  Google Scholar 

  • Mandin, P., Repoila, F., Vergassola, M., Geissmann, T., & Cossart, P. (2007). Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Research, 35, 962–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maury MM, Tsai YH, Charlier C, Touchon M, Chenal-Francisque V, Leclercq A, Criscuolo A, Gaultier C, Roussel S, Brisabois A, Disson O, Rocha EP, Brisse S, Lecuit M. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat Genet. 2016 Mar;48(3):308–13. doi:10.1038/ng.3501. Epub 2016 Feb 1.

  • McCollum, J. T., Cronquist, A. B., Silk, B. J., Jackson, K. A., O’Connor, K. A., Cosgrove, S., Gossack, J. P., Parachini, S. S., Jain, N. S., Ettestad, P., Ibraheen, M., Cantu, V., Joshi, M., DuVernoy, T., Fogg, N. W., Gorny, J. R., Mogen, K. M., Spires, C., Teitell, P., Joseph, L. A., Tarr, C. L., Imanishi, M., Neil, K. P., Tauxe, R. V., & Mahon, B. E. (2013). Multistate outbreak of listeriosis associated with cantaloupe. N Engl J of Med., 369, 944–953.

    Article  CAS  Google Scholar 

  • Müller, A., Rychli, K., Zaiser, A., Wieser, C., Wagner, M., & Schmitz-Esser, S. (2014). The Listeria monocytogenes transposon Tn6188 provides increased tolerance to various quaternary ammonium compounds and ethidium bromide. FEMS Microbiology Letters, 361(2), 166–173. doi:10.1111/1574-6968.12626. Epub 2014 Oct 31.

  • Nelson, K. E., Fouts, D. E., Mongodin, E. F., Ravel, J., DeBoy, R. T., Kolonay, J. F., Rasko, D. A., Angiuoli, S. V., Gill, S. R., Paulsen, I. T., Peterson, J., White, O., Nelson, W. C., Nierman, W., Beanan, M. J., Brinkac, L. M., Daugherty, S. C., Dodson, R. J., Durkin, A. S., Madupu, R., Haft, D. H., Selengut, J., Van Aken, S., Khouri, H., Fedorova, N., Forberger, H., Tran, B., Kathariou, S., Wonderling, L. D., Uhlich, G. A., Bayles, D. O., Luchansky, J. B., & Fraser, C. M. (2004). Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Research, 32, 2386–2395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nightingale, K. K., Milillo, S. R., Ivy, R. A., Ho, A. J., Oliver, H. F., & Wiedmann, M. (2007). Listeria monocytogenes F2365 carries several authentic mutations potentially leading to truncated gene products, including InlB, and demonstrates atypical phenotypic characteristics. Journal of Food Protection, 70, 482–488.

    Article  CAS  PubMed  Google Scholar 

  • Orsi, R. H., Borowsky, M. L., Lauer, P., Young, S. K., Nusbaum, C., Galagan, J. E., Birren, B. W., Ivy, R. A., Sun, Q., Graves, L. M., Swaminathan, B., & Wiedmann, M. (2008). Short-term genome evolution of Listeria monocytogenes in a non-controlled environment. BMC Genomics, 9, 539. doi:10.1186/1471-2164-9-539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orsi, R. H., den Bakker, H. C., & Wiedmann, M. (2011). Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. International Journal of Medical Microbiology, 301, 79–96.

    Article  CAS  PubMed  Google Scholar 

  • Peschel, A., Otto, M., Jack, R. W., Kalbacher, H., Jung, G., & Götz, F. (1999). Inactivation of thedlt operon inStaphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. The Journal of Biological Chemistry, 274, 8405–8410. doi:10.1074/jbc.274.13.8405 pmid:10085071.

    Article  CAS  PubMed  Google Scholar 

  • Piffaretti, J. C., Kressebuch, H., Aeschbacher, M., Bille, J., Bannerman, E., Musser, J. M., Selander, R. K., & Rocourt, J. (1989). Genetic characterization of clones of the bacterium Listeria monocytogenes causing epidemic disease. Proceedings of the National Academy of Sciences of the United States of America, 86, 3818–3822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilgrim, S., Kolb-Mäurer, A., Gentschev, I., Goebel, W., & Kuhn, M. (2003). Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility. Infection and Immunity, 71, 3473–3484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pine, L., Malcolm, G. B., & Plikaytis, B. D. (1990). Listeria monocytogenes intragastric and intraperitoneal approximate 50% lethal doses for mice are comparable, but death occurs earlier by intragastric feeding. Infection and Immunity, 58, 2940–2945.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pine, L., Kathariou, S., Quinn, F., George, V., Wenger, J. D., & Weaver, R. E. (1991). Cytopathogenic effects in enterocytelike Caco-2 cells differentiate virulent from avirulent Listeria strains. Journal of Clinical Microbiology, 29, 990–996.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poulsen, K. P., Faith, N. G., Steinberg, H., & Czuprynski, C. J. (2011). Pregnancy reduces the genetic resistance of C57BL/6 mice to Listeria monocytogenes infection by intragastric inoculation. Microbial Pathogenesis, 50, 360–366.

    Article  PubMed  PubMed Central  Google Scholar 

  • Proctor, M. E., Brosch, R., Mellen, J. W., Garrett, L. A., Kaspar, C. W., & Luchansky, J. B. (1995). Use of pulsed-field gel electrophoresis to link sporadic cases of invasive listeriosis with recalled chocolate milk. Applied and Environmental Microbiology, 61, 3177–3179.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Promadej, N., Fiedler, F., Cossart, P., Dramsi, S., & Kathariou, S. (1999). Cell wall teichoic acid glycosylation in Listeria monocytogenes serotype 4b requires gtcA, a novel, serogroup-specific gene. Journal of Bacteriology, 181, 418–425.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovich, L., Sigal, N., Borovok, I., Nir-Paz, R., & Herskovits, A. A. (2012). Prophage excision activates Listeria competence genes that promote phagosomal escape and virulence. Cell, 150, 792–802.

    Article  CAS  PubMed  Google Scholar 

  • Ragon, M., Wirth, T., Hollandt, F., Lavenir, R., Lecuit, M., Le Monnier, A., & Brisse, S. (2008). A new perspective on Listeria monocytogenes evolution. PLoS Pathogens, 4, e1000146. doi:10.1371/journal.ppat.1000146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ripio, M. T., Domínguez-Bernal, G., Lara, M., Suárez, M., & Vazquez-Boland, J. A. (1997). A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes. Journal of Bacteriology, 179, 1533–1540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roche, S. M., Gracieux, P., Milohanic, E., Albert, I., Virlogeux-Payant, I., Témoin, S., Grépinet, O., Kerouanton, A., Jacquet, C., Cossart, P., & Velge, P. (2005). Investigation of specific substitutions in virulence genes characterizing phenotypic groups of low-virulence field strains of Listeria monocytogenes. Applied and Environmental Microbiology, 71, 6039–6048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roche, S. M., Grépinet, O., Kerouanton, A., Ragon, M., Leclercq, A., Témoin, S., Schaeffer, B., Skorski, G., Mereghetti, L., Le Monnier, A., & Velge, P. (2012). Polyphasic characterization and genetic relatedness of low-virulence and virulent Listeria monocytogenes isolates. BMC Microbiology, 12, 304. doi:10.1186/1471-2180-12-304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruppitsch, W., Pietzka, A., Prior, K., Bletz, S., Fernandez, H. L., Allerberger, F., Harmsen, D., & Mellmann, A. (2015). Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of Listeria monocytogenes. Journal of Clinical Microbiology, 53, 2869–2876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salcedo, C., Arreaza, L., Alcala, B., de la Fuente, L., & Vazquez, J. A. (2003). Development of a multilocus sequence typing method for analysis of Listeria monocytogenes clones. Journal of Clinical Microbiology, 41, 757–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlech 3rd, W. F. (1997). Listeria gastroenteritis – old syndrome, new pathogen. The New England Journal of Medicine, 336, 130–132.

    Article  PubMed  Google Scholar 

  • Schultze, T., Izar, B., Qing, X., Mannala, G. K., & Hain, T. (2014). Current status of antisense RNA-mediated gene regulation in Listeria monocytogenes. Frontiers in Cellular and Infection Microbiology, 4, 135. doi:10.3389/fcimb.2014.00135. eCollection 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmid, D., Allerberger, F., Huhulescu, S., Pietzka, A., Amar, C., Kleta, S., Prager, R., Preussel, K., Aichinger, E., & Mellmann, A. (2014). Whole genome sequencing as a tool to investigate a cluster of seven cases of listeriosis in Austria and Germany, 2011-2013. Clinical Microbiology and Infection, 20, 431–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sesto, N., Touchon, M., Andrade, J. M., Kondo, J., Rocha, E. P., Arraiano, C. M., Archambaud, C., Westhof, É., Romby, P., & Cossart, P. (2014). A PNPase dependent CRISPR System in Listeria. PLoS Genetics, 10(1), e1004065. doi:10.1371/journal.pgen.1004065. Epub 2014 Jan 9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stelma Jr., G. N., Reyes, A. L., Peeler, J. T., Francis, D. W., Hunt, J. M., Spaulding, P. L., Johnson, C. H., & Lovett, J. (1987). Pathogenicity test for Listeria monocytogenes using immunocompromised mice. Journal of Clinical Microbiology, 25, 2085–2089.

    PubMed  PubMed Central  Google Scholar 

  • Stephan, R., Althaus, D., Kiefer, S., Lehner, A., Hatz, C., Schmutz, C., Jost, M., Gerber, N., Baumgartner, A., Haechler, H., & Mäusezahl-Feuz, M. (2015). Foodborne transmission of Listeria monocytogenes via ready-to-eat salad: A nationwide outbreak in Switzerland, 2013–2014. Food Control, 57, 14–17. doi:10.1016/j.foodcont.2015.03.034.

    Article  Google Scholar 

  • Swaminathan, B., & Gerner-Smidt, P. (2007). The epidemiology of human listeriosis. Microbes and Infection, 9, 1236–1243.

    Article  PubMed  Google Scholar 

  • Takeuchi, K., Smith, M. A., & Doyle, M. P. (2003). Pathogenicity of food and clinical Listeria monocytogenes isolates in a mouse bioassay. Journal of Food Protection, 66, 2362–2366.

    Article  PubMed  Google Scholar 

  • Takeuchi, K., Mytle, N., Lambert, S., Coleman, M., Doyle, M. P., & Smith, M. A. (2006). Comparison of Listeria monocytogenes virulence in a mouse model. Journal of Food Protection, 69(4), 842–846.

    Article  PubMed  Google Scholar 

  • Tasara, T., Ebner, R., Klumpp, J., & Stephan, R.(2015). Complete genome sequence of Listeria monocytogenes N2306, a strain associated with the 2013-2014 listeriosis outbreak in Switzerland. Genome Announcements, 3(3). pii: e00553–e00515. doi: 10.1128/genomeA.00553-15.

  • Témoin, S., Roche, S. M., Grépinet, O., Fardini, Y., & Velge, P. (2008). Multiple point mutations in virulence genes explain the low virulence of Listeria monocytogenes field strains. Microbiology, 154(Pt 3), 939–948. doi:10.1099/mic.0.2007/011106-0.

    Article  PubMed  CAS  Google Scholar 

  • Toledo-Arana, A., Dussurget, O., Nikitas, G., Sesto, N., Guet-Revillet, H., Balestrino, D., Loh, E., Gripenland, J., Tiensuu, T., Vaitkevicius, K., Barthelemy, M., Vergassola, M., Nahori, M. A., Soubigou, G., Régnault, B., Coppée, J. Y., Lecuit, M., Johansson, J., & Cossart, P. (2009). The Listeria transcriptional landscape from saprophytism to virulence. Nature, 459(7249), 950–956.

    Article  CAS  PubMed  Google Scholar 

  • Van Stelten, A., Simpson, J. M., Ward, T. J., & Nightingale, K. K. (2010). Revelation by single-nucleotide polymorphism genotyping that mutations leading to a premature stop codon in inlA are common among Listeria monocytogenes isolates from ready-to-eat foods but not human listeriosis cases. Applied and Environmental Microbiology, 76, 2783–2790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Stelten, A., Simpson, J. M., Chen, Y., Scott, V. N., Whiting, R. C., Ross, W. H., & Nightingale, K. K. (2011). Significant shift in median guinea pig infectious dose shown by an outbreak-associated Listeria monocytogenes epidemic clone strain and a strain carrying a premature stop codon mutation in inlA. Applied and Environmental Microbiology, 77, 2479–2487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vasanthakrishnan, R. B., de Las, H. A., Scortti, M., Deshayes, C., Colegrave, N., & Vázquez-Boland, J. A. (2015). PrfA regulation offsets the cost of Listeria virulence outside the host. Environmental Microbiology, 17, 4566–4579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., et al. (2001). Listeria pathogenesis and molecular virulence determinants. Clinical Microbiology Reviews, 14, 584–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verghese, B., Lok, M., Wen, J., Alessandria, V., Chen, Y., Kathariou, S., & Knabel, S. (2011). comK prophage junction fragments as markers for Listeria monocytogenes genotypes unique to individual meat and poultry processing plants and a model for rapid niche-specific adaptation, biofilm formation, and persistence. Applied and Environmental Microbiology, 77, 3279–3292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Koenig, C. H., Heymer, B., Hof, H., & Finger, H. (1983). Course of infection and development of immunity in experimental infection of mice with Listeria serotypes. Infection and Immunity, 40, 1170–1177.

    Google Scholar 

  • Ward, T. J., Ducey, T. F., Usgaard, T., Dunn, K. A., & Bielawski, J. P. (2008). Multilocus genotyping assays for single nucleotide polymorphism-based subtyping of Listeria monocytogenes isolates. Applied and Environmental Microbiology, 74, 7629–7642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward, T. J., Evans, P., Wiedmann, M., Usgaard, T., Roof, S. E., Stroika, S. G., & Hise, K. (2010). Molecular and phenotypic characterization of Listeria monocytogenes from U.S. Department of Agriculture Food Safety and Inspection Service surveillance of ready-to-eat foods and processing facilities. Journal of Food Protection, 73, 861–869.

    Article  PubMed  Google Scholar 

  • Wong, K. K., & Freitag, N. E. (2004). A novel mutation within the central Listeria monocytogenes regulator PrfA that results in constitutive expression of virulence gene products. Journal of Bacteriology, 186, 6265–6276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildirim, S., Lin, W., Hitchins, A. D., Jaykus, L. A., Altermann, E., Klaenhammer, T. R., & Kathariou, S. (2004). Epidemic clone I-specific genetic markers in strains of Listeria monocytogenes serotype 4b from foods. Applied and Environmental Microbiology, 70, 4158–4164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildirim, S., Elhanafi, D., Lin, W., Hitchins, A. D., Siletzky, R. M., & Kathariou, S. (2010). Conservation of genomic localization and sequence content of Sau3AI-like restriction-modification gene cassettes among Listeria monocytogenes epidemic clone I and selected strains of serotype 1/2a. Applied and Environmental Microbiology, 76, 5577–5584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge partial support by USDA-AFRI Food Safety grant no. 2011-03603. We are especially grateful to Dr. Yi Chen for feedback utilized in this work. We apologize to many colleagues whose investigations may have been inadvertently omitted from discussion in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia Kathariou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kathariou, S., Evans, P., Dutta, V. (2017). Strain-Specific Virulence Differences in Listeria monocytogenes: Current Perspectives in Addressing an Old and Vexing Issue. In: Gurtler, J., Doyle, M., Kornacki, J. (eds) Foodborne Pathogens. Food Microbiology and Food Safety(). Springer, Cham. https://doi.org/10.1007/978-3-319-56836-2_3

Download citation

Publish with us

Policies and ethics