Skip to main content

Mitigation of Foodborne Illnesses by Probiotics

  • Chapter
  • First Online:
Foodborne Pathogens

Part of the book series: Food Microbiology and Food Safety ((PRACT))

Abstract

Foodborne illness is a serious global health concern. There are over 200 known microbial, chemical, and physical agents that have the potential to cause foodborne illness. There have been several advances in foodborne pathogen control and prevention, which include antibiotics, antimicrobial molecules, ionizing particles, ultraviolet radiation, and heat; however, foodborne illness remains a critical problem to the world’s food supply. Probiotics have been used for over 200 years to promote, not only general, but also gastrointestinal health. These probiotics offer a unique strategy for control and prevention of foodborne illness, while conferring the same additional health benefits that probiotics have been known to confer for years. This chapter will highlight both wild-type and bioengineered probiotic strains in order to control foodborne illness. Further, proposed modes of action will also be expanded upon. While probiotics hold promise as strategies for foodborne pathogen control and treatment, challenges remain in the realm of characterization, administration and dosing, as well as disparities in host-strain specificities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar, V. F., Donoghue, A. M., Arsi, K., Herrera, I. R., Metcalf, J. H., de los Santos, F. S., Blore, P. J., & Donoghue, D. J. (2013). Targeting motility properties of bacteria in the development of probiotic cultures against Campylobacter jejuni in broiler chickens. Foodborne Pathogens and Disease, 10(5), 435–441.

    Article  PubMed  Google Scholar 

  • Ahrne, S., & Hagslatt, M.-L. J. (2011). Effect of Lactobacilli on paracellular permeability in the gut. Nutrients, 3(1), 104–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alakomi, H.-L., Skyttä, E., Saarela, M., Mattila-Sandholm, T., Latva-Kala, K., & Helander, I. M. (2000). Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Applied and Environmental Microbiology, 66(5), 2001–2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alva-Murillo, N., Ochoa-Zarzosa, A., & LĂłpez-Meza, J. E. (2012). Short chain fatty acids (propionic and hexanoic) decrease Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression. Veterinary Microbiology, 155(2–4), 324–331.

    Article  CAS  PubMed  Google Scholar 

  • Amalaradjou, M. A. R., & Bhunia, A. K. (2012). Modern approaches in probiotics research to control foodborne pathogens. Advances in Food and Nutrition Research, 67, 185–239.

    Article  CAS  PubMed  Google Scholar 

  • Arunachalam, K., Gill, H. S., & Chandra, R. K. (2000). Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019). European Journal of Clinical Nutrition, 54(3), 263–267.

    Article  CAS  PubMed  Google Scholar 

  • Asahara, T., Shimizu, K., Takada, T., Kado, S., Yuki, N., Morotomi, M., Tanaka, R., & Nomoto, K. (2011). Protective effect of Lactobacillus casei strain Shirota against lethal infection with multi-drug resistant Salmonella enterica serovar Typhimurium DT104 in mice. Journal of Applied Microbiology, 110(1), 163–173.

    Article  CAS  PubMed  Google Scholar 

  • Azcarate-Peril, M. A., Sikes, M., & Bruno-Barcena, J. M. (2011). The intestinal microbiota, gastrointestinal environment and colorectal cancer: A putative role for probiotics in prevention of colorectal cancer? American Journal of Physiology. Gastrointestinal and Liver Physiology, 301(3), G401–G424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakardjiev, A., Theriot, J., & Portnoy, D. (2006). Listeria monocytogenes Traffics from maternal organs to the placenta and back. PLoS Pathogens, 2, e66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bandeira, A., Motasantos, T., Itohara, S., Degermann, S., Heusser, C., Tonegawa, S., & Coutinho, A. (1990). Localization of \( \mathrm{g}/\mathrm{d} \) T cells to the intestinal epithelium is independent of normal microbial colonization. The Journal of Experimental Medicine, 172(1), 239–244.

    Google Scholar 

  • Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beutin, L., & Martin, A. (2012). Outbreak of Shiga toxin-producing Escherichia coli (STEC) O104:H4 infection in Germany causes a paradigm shift with regard to human pathogenicity of STEC strains. Journal of Food Protection, 75(2), 408–418.

    Article  PubMed  Google Scholar 

  • Bhunia, A. K. (2012). Bioengineered probiotics – A solution to broaden probiotics efficacy. Journal of Nutrition & Food Sciences, 2(3), e105.

    CAS  Google Scholar 

  • Bhunia, A. K., Johnson, M. C., Ray, B., & Kalchayanand, N. (1991). Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. The Journal of Applied Bacteriology, 70(1), 25–33.

    Article  CAS  Google Scholar 

  • Biplab, B., & Mandal, N. C. (2014). Probiotics, prebiotics and synbiotics – In health improvement by modulating gut microbiota: The concept revisited. International Journal of Current Microbiology and Applied Sciences, 3(3), 410–420.

    Google Scholar 

  • Boehm, M., Krause-Gruszczynska, M., Rohde, M., Tegtmeyer, N., Takahashi, S., Oyarzabal, O. A., & Backert, S. (2011). Major host factors involved in epithelial cell invasion of Campylobacter jejuni: Role of fibronectin, integrin beta1, FAK, Tiam-1, and DOCK180 in activating Rho GTPase Rac1. Front Cell Infect Microbiol, 1. doi:10.3389/fcimb.2011.00017.

  • Boyle, R. J., Robins-Browne, R. M., & Tang, M. L. K. (2006). Probiotic use in clinical practice: What are the risks? The American Journal of Clinical Nutrition, 83(6), 1256–1264.

    CAS  PubMed  Google Scholar 

  • Brown, M. (2011). Modes of action of probiotics: Recent developments. Journal of Animal and Veterinary Advances, 10(14), 1895–1900.

    Article  CAS  Google Scholar 

  • Burkholder, K., & Bhunia, A. (2009). Salmonella enterica serovar Typhimurium adhesion and cytotoxicity during epithelial cell stress is reduced by Lactobacillus rhamnosus GG. Gut Pathog, 1(1), 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burkholder, K. M., & Bhunia, A. K. (2010). Listeria monocytogenes Uses Listeria adhesion protein (LAP) to promote bacterial transepithelial translocation, and induces expression of LAP receptor Hsp60. Infection and Immunity, 78(12), 5062–5073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkholder, K. M., & Bhunia, A. K. (2013). Listeria monocytogenes And host Hsp60 – An invasive pairing. In B. Henderson (Ed.), Moonlighting cell stress proteins in microbial infections, heat Shok proteins (pp. 267–282). Dordrecht: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Burkholder, K. M., Kim, K.-P., Mishra, K., Medina, S., Hahm, B.-K., Kim, H., & Bhunia, A. K. (2009). Expression of LAP, a SecA2-dependent secretory protein, is induced under anaerobic environment. Microbes and Infection, 11, 859–867.

    Article  CAS  PubMed  Google Scholar 

  • Caballero-Franco, C., Keller, K., De Simone, C., & Chadee, K. (2007). The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. American Journal of Physiology. Gastrointestinal and Liver Physiology, 292(1), G315–G322.

    Article  CAS  PubMed  Google Scholar 

  • Carey, C. M., Kostrzynska, M., Ojha, S., & Thompson, S. (2008). The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohemorrhagic Escherichia coli O157: H7. Journal of Microbiological Methods, 73(2), 125–132.

    Article  CAS  PubMed  Google Scholar 

  • Carrasco, E., Morales-Rueda, A., & GarcĂ­a-Gimeno, R. M. (2012). Cross-contamination and recontamination by Salmonella in foods: A review. Food Research International, 45(2), 545–556.

    Article  Google Scholar 

  • Cate, D. M., Adkins, J. A., Mettakoonpitak, J., & Henry, C. S. (2015). Recent developments in paper-based microfluidic devices. Analytical Chemistry, 87(1), 19–41.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, H. R., Frokiaer, H., & Pestka, J. J. (2002). Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. Journal of Immunology, 168(1), 171–178.

    Article  CAS  Google Scholar 

  • Collado, M. C., Isolauri, E., Salminen, S., & Sanz, Y. (2009). The impact of probiotic on gut health. Current Drug Metabolism, 10(1), 68–78.

    Article  CAS  PubMed  Google Scholar 

  • Corr, S., Li, Y., Riedel, C. U., O’Toole, P. W., Hill, C., & Gahan, C. G. M. (2007). Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proceedings of the National Academy of Sciences of the United States of America, 104(18), 7617–7621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: Developing innate immunity for food. Nature Reviews. Microbiology, 3(10), 777–788.

    Article  CAS  PubMed  Google Scholar 

  • Cross, M. L. (2002). Microbes versus microbes: Immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunology and Medical Microbiology, 34(4), 245–253.

    Article  CAS  PubMed  Google Scholar 

  • Das, J.K., Mishra, D., Ray, P., Tripathy, P., Beuria, T.K., Singh, N., & Suar M. (2013). In vitro evaluation of anti-infective activity of a Lactobacillus plantarum strain against Salmonella enterica serovar Enteritidis. Gut Pathog, 5. 10.1186/1757-4749-5-1.

  • Dasti, J. I., Tareen, A. M., Lugert, R., Zautner, A. E., & Gross, U. (2010). Campylobacter jejuni: A brief overview on pathogenicity-associated factors and disease-mediating mechanisms. International Journal of Medical Microbiology, 300(4), 205–211.

    Article  CAS  PubMed  Google Scholar 

  • Davis, T. K., McKee, R., Schnadower, D., & Tarr, P. I. (2013). Treatment of Shiga toxin-producing Escherichia coli infections. Infectious Disease Clinics of North America, 27(3), 577–597.

    Article  PubMed  Google Scholar 

  • Daw, M. A., & Falkiner, F. R. (1996). Bacteriocins: Nature, function and structure. Micron, 27(6), 467–479.

    Article  CAS  PubMed  Google Scholar 

  • de LeBlanc, A. D., Castillo, N. A., & Perdigon, G. (2010). Anti-infective mechanisms induced by a probiotic Lactobacillus strain against Salmonella enterica serovar Typhimurium infection. International Journal of Food Microbiology, 138(3), 223–231.

    Article  CAS  Google Scholar 

  • de Vrese, M., & Schrezenmeir, J. (2008). Probiotics, prebiotics, and synbiotics. Advances in Biochemical Engineering/Biotechnology, 111, 1–66.

    Google Scholar 

  • de Waard, R., Garssen, J., Bokken, G., & Vos, J. G. (2002). Antagonistic activity of Lactobacillus casei strain Shirota against gastrointestinal Listeria monocytogenes infection in rats. International Journal of Food Microbiology, 73(1), 93–100.

    Article  CAS  PubMed  Google Scholar 

  • Deepti, K., & Vinod, K. K. (2014). Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum improves phagocytic potential of macrophages in aged mice. Journal of Food Science and Technology, 51(6), 1147–1153.

    Article  CAS  Google Scholar 

  • Degrandis, S., Law, H., Brunton, J., Gyles, C., & Lingwood, C. A. (1989). Globotetraosylceramide is recognized by the pig edema disease toxin. The Journal of Biological Chemistry, 264(21), 12520–12525.

    CAS  PubMed  Google Scholar 

  • Deshpande, G., Rao, S., Keil, A., & Patole, S. (2011). Evidence-based guidelines for use of probiotics in preterm neonates. BMC Medicine, 9(1), 92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Didari, T., Solki, S., Mozaffari, S., Nikfar, S., & Abdollahi, M. (2014). A systematic review of the safety of probiotics. Expert Opinion on Drug Safety, 13(2), 227–239.

    Article  PubMed  Google Scholar 

  • Dobson, A., Crispie, F., Rea, M. C., O’Sullivan, O., Casey, P. G., Lawlor, P. G., Cotter, P. D., Ross, P., Gardiner, G. E., & Hill, C. (2011). Fate and efficacy of lacticin 3147-producing Lactococcus lactis in the mammalian gastrointestinal tract. FEMS Microbiology Ecology, 76(3), 602–614.

    Article  CAS  PubMed  Google Scholar 

  • Dobson, A., Cotter, P. D., Ross, R. P., & Hill, C. (2012). Bacteriocin production: A probiotic trait? Applied and Environmental Microbiology, 78(1), 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, H., Rowland, I., Tuohy, K. M., Thomas, L. V., & Yaqoob, P. (2010). Selective effects of Lactobacillus casei Shirota on T cell activation, natural killer cell activity and cytokine production. Clinical and Experimental Immunology, 161(2), 378–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doron, S., & Snydman, D. R. (2015). Risk and safety of probiotics. Clinical Infectious Diseases, 60, S129–S134.

    Article  PubMed  PubMed Central  Google Scholar 

  • dos Santos, L., Santos, M., de Souza, S. H., Arantes, R., Nicoli, J., & Vieira, L. (2011). Monoassociation with probiotic Lactobacillus delbrueckii UFV-H2b20 stimulates the immune system and protects germfree mice against Listeria monocytogenes infection. Medical Microbiology and Immunology, 200(1), 29–38.

    Article  PubMed  Google Scholar 

  • Dunne, C., O’Mahony, L., Murphy, L., Thornton, G., Morrissey, D., O’Halloran, S., Feeney, M., Flynn, S., Fitzgerald, G., Daly, C., Kiely, B., O’Sullivan, G., Shanahan, F., & Collins, J. (2001). In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo findings. The American Journal of Clinical Nutrition, 73(Suppl 2), 386S–392S.

    CAS  PubMed  Google Scholar 

  • Duquesne, S., Destoumieux-Garzon, D., Peduzzi, J., & Rebuffat, S. (2007). Microcins, gene-encoded antibacterial peptides from enterobacteria. Natural Product Reports, 24(4), 708–734.

    Article  CAS  PubMed  Google Scholar 

  • Eaton, K. A., Honkala, A., Auchtung, T. A., & Britton, R. A. (2011). Probiotic Lactobacillus reuteri ameliorates disease due to enterohemorrhagic Escherichia coli in germfree mice. Infection and Immunity, 79(1), 185–191.

    Article  CAS  PubMed  Google Scholar 

  • FAO/WHO. (2002). Guidelines for the evaluation of probiotics in food Food and Agriculture Organization of United Nations and World Health Organization (Working Group Report). London.

    Google Scholar 

  • Fayol-Messaoudi, D., Berger, U. N., Coconnier-Polter, M. H., Lievin-Le Moal, V., & Servin, A. L. (2005). pH-, lactic acid-, and non-lactic acid-dependent activities of probiotic lactobacilli against Salmonella enterica serovar typhimurium. Applied and Environmental Microbiology, 71(10), 6008–6013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez, B., Savard, P., & Fliss, I. (2016). Survival and metabolic activity of pediocin producer Pediococcus acidilactici UL5: Its impact on intestinal microbiota and Listeria monocytogenes in a model of the human terminal ileum. Microbial Ecology, 72, 931–942.

    Google Scholar 

  • Fernandez-Rubio, C., Ordonez, C., Abad-Gonzalez, J., Garcia-Gallego, A., Pilar Honrubia, M., Jose Mallo, J., & Balana-Fouce, R. (2009). Butyric acid-based feed additives help protect broiler chickens from Salmonella Enteritidis infection. Poultry Science, 88(5), 943–948.

    Article  CAS  PubMed  Google Scholar 

  • Figueroa-Gonzalez, I., Quijano, G., Ramirez, G., & Cruz-Guerrero, A. (2011). Probiotics and prebiotics – Perspectives and challenges. Journal of the Science of Food and Agriculture, 91(8), 1341–1348.

    Article  CAS  PubMed  Google Scholar 

  • Fijan, S. (2014). Microorganisms with claimed probiotic properties: An overview of recent literature. International Journal of Environmental Research and Public Health, 11(5), 4745–4767.

    Article  PubMed  PubMed Central  Google Scholar 

  • Flynn, S., van Sinderen, D., Thornton, G. M., Holo, H., Nes, I. F., & Collins, J. K. (2002). Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp salivarius UCC118. Microbiology-(UK), 148, 973–984.

    Article  CAS  Google Scholar 

  • Foley, S. L., & Lynne, A. M. (2008). Food animal-associated Salmonella challenges: Pathogenicity and antimicrobial resistance. Journal of Animal Science, 86(14 suppl), E173–E187.

    CAS  PubMed  Google Scholar 

  • Franchi, L., Kamada, N., Nakamura, Y., Burberry, A., Kuffa, P., Suzuki, S., Shaw, M. H., Kim, Y. G., & Nunez, G. (2012). NLRC4-driven production of IL-1 beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nature Immunology, 13(5), 449–U45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaggia, F., Mattarelli, P., & Biavati, B. (2010). Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, 141, S15–S28.

    Article  PubMed  Google Scholar 

  • Gebru, E., Lee, J. S., Son, J. C., Yang, S. Y., Shin, S. A., Kim, B., Kim, M. K., & Park, S. C. (2010). Effect of probiotic-, bacteriophage-, or organic acid-supplemented feeds or fermented soybean meal on the growth performance, acute-phase response, and bacterial shedding of grower pigs challenged with Salmonella enterica serotype Typhimurium. Journal of Animal Science, 88(12), 3880–3886.

    Article  CAS  PubMed  Google Scholar 

  • Gill, H. S. (2003). Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Practice & Research. Clinical Gastroenterology, 17(5), 755–773.

    Article  CAS  Google Scholar 

  • Gill, H. S., & Guarner, F. (2004). Probiotics and human health: A clinical perspective. Postgraduate Medical Journal, 80(947), 516–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill, H. S., & Rutherfurd, K. J. (2001a). Probiotic supplementation to enhance natural immunity in the elderly: Effects of a newly characterized immunostimulatory strain Lactobacillus rhamnosus HN001 (DR20 (TM)) on leucocyte phagocytosis. Nutrition Research, 21(1–2), 183–189.

    Article  CAS  Google Scholar 

  • Gill, H. S., & Rutherfurd, K. J. (2001b). Viability and dose-response studies on the effects of the immunoenhancing lactic acid bacterium Lactobacillus rhamnosus in mice. The British Journal of Nutrition, 86(2), 285–289.

    Article  CAS  PubMed  Google Scholar 

  • Goto, Y., & Kiyono, H. (2012). Epithelial barrier: An interface for the cross-communication between gut flora and immune system. Immunological Reviews, 245(1), 147–163.

    Article  CAS  PubMed  Google Scholar 

  • Gourbeyre, P., Denery, S., & Bodinier, M. (2011). Probiotics, prebiotics, and synbiotics: Impact on the gut immune system and allergic reactions. Journal of Leukocyte Biology, 89(5), 685–695.

    Article  CAS  PubMed  Google Scholar 

  • Graziani, F., Pujol, A., Nicoletti, C., Dou, S., Maresca, M., Giardina, T., Fons, M., & Perrier, J. (2016). Ruminococcus gnavus E1 modulates mucin expression and intestinal glycosylation. Journal of Applied Microbiology, 120(5), 1403–1417.

    Article  CAS  PubMed  Google Scholar 

  • Gronlund, M. M., Lehtonen, O. P., Eerola, E., & Kero, P. (1999). Fecal microflora in healthy infants born by different methods of delivery: Permanent changes in intestinal flora after cesarean delivery. Journal of Pediatric Gastroenterology and Nutrition, 28(1), 19–25.

    Article  CAS  PubMed  Google Scholar 

  • Guttman, J. A., & Finlay, B. B. (2009). Tight junctions as targets of infectious agents. Biochimica et Biophysica Acta, 1788(4), 832–841.

    Article  CAS  PubMed  Google Scholar 

  • Hakansson, A., & Molin, G. (2011). Gut Microbiota and inflammation. Nutrients, 3(6), 637–682.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall, J. A., Bouladoux, N., Sun, C. M., Wohlfert, E. A., Blank, R. B., Zhu, Q., Grigg, M. E., Berzofsky, J. A., & Belkaid, Y. (2008). Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity, 29(4), 637–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy, H., Harris, J., Lyon, E., Beal, J., & Foey, A. D. (2013). Probiotics, prebiotics and immunomodulation of gut mucosal defences: Homeostasis and immunopathology. Nutrients, 5(6), 1869–1912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hempel, S., Newberry, S., Ruelaz, A., Wang, Z., Miles, J. N. V., Suttorp, M. J., Johnsen, B., Shanman, R., Slusser, W., Fu, N., Smith, A., Roth, B., Polak, J., Motala, A., Perry, T., & Shekelle, P. G. (2011). Safety of probiotics used to reduce risk and prevent or treat disease. Evidence Report/Technology Assessment, 200, 1–645 (Report No. 11-E007).

    Google Scholar 

  • Higgins, S. E., Higgins, J. P., Wolfenden, A. D., Henderson, S. N., Torres-Rodriguez, A., Tellez, G., & Hargis, B. (2008). Evaluation of a Lactobacillus-based probiotic culture for the reduction of Salmonella enteritidis in neonatal broiler chicks. Poultry Science, 87(1), 27–31.

    Article  CAS  PubMed  Google Scholar 

  • Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document: The International scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology, 11(8), 506–514.

    Article  Google Scholar 

  • Hostetter, S. J., Helgerson, A. F., Paton, J. C., Paton, A. W., & Cornick, N. A. (2014). Therapeutic use of a receptor mimic probiotic reduces intestinal Shiga toxin levels in a piglet model of hemolytic uremic syndrome. BMC Research Notes, 7, 331–331.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutkins, R. W., Krumbeck, J. A., Bindels, L. B., Cani, P. D., Fahey Jr., G., Goh, Y. J., Hamaker, B., Martens, E. C., Mills, D. A., Rastal, R. A., Vaughan, E., & Sanders, M. E. (2016). Prebiotics: Why definitions matter. Current Opinion in Biotechnology, 37, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Jack, R. W., Tagg, J. R., & Ray, B. (1995). Bacteriocins of gram-positive bacteria. Microbiological Reviews, 59(2), 171–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jagadeesan, B., Koo, O. K., Kim, K. P., Burkholder, K. M., Mishra, K. K., Aroonnual, A., & Bhunia, A. K. (2010). LAP, an alcohol acetaldehyde dehydrogenase enzyme in Listeria promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species. Microbiology, 156, 2782–2795.

    Article  CAS  PubMed  Google Scholar 

  • Jianrong, L., Predmore, A., Divers, E., & Fangfei, L. (2012). New interventions against human norovirus: Progress, opportunities, and challenges. Annual Review of Food Science and Technology, 3, 331–352.

    Article  CAS  Google Scholar 

  • Jiao, Y., Zhang, W., Ma, J., Wen, C., Wang, P., Wang, Y., Xing, J., Liu, W., Yang, L., & He, J. (2011). Early onset of neonatal listeriosis. Pediatrics International, 53(6), 1034–1037.

    Article  CAS  PubMed  Google Scholar 

  • Johnson-Henry, K. C., Donato, K. A., Shen-Tu, G., Gordanpour, A., & Sherman, P. A. (2008). Lactobacillus rhamnosus strain GG prevents enterohemorrhagic Escherichia coli O157: H7-induced changes in epithelial barrier function. Infection and Immunity, 76(4), 1340–1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr, A. K., Farrar, A. M., Waddell, L. A., Wilkins, W., Wilhelm, B. J., Bucher, O., Wills, R. W., Bailey, R. H., Varga, C., McEwen, S. A., & Rajic, A. (2013). A systematic review-meta-analysis and meta-regression on the effect of selected competitive exclusion products on Salmonella spp. prevalence and concentration in broiler chickens. Preventive Veterinary Medicine, 111(1–2), 112–125.

    Article  PubMed  Google Scholar 

  • Kim, H., & Bhunia, A. K. (2013). Secreted Listeria adhesion protein (lap) influences lap-mediated Listeria monocytogenes paracellular translocation through epithelial barrier. Gut Pathog, 5, 16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, J.-H., Jeun, E.-J., Hong, C.-P., Kim, S.-H., Jang, M. S., Lee, E.-J., Moon, S. J., Yun, C. H., Im, S.-H., Jeong, S.-G., Park, B.-Y., Kim, K.-T., Seoh, J.-Y., Kim, Y.-K., Oh, S.-J., Ham, J.-S., Yang, B.-G., & Jang, M. H. (2016). Extracellular vesicle derived-protein from Bifidobacterium longum alleviates food allergy through mast cell suppression. The Journal of Allergy and Clinical Immunology, 137(2), 507–516.e8.

    Article  CAS  PubMed  Google Scholar 

  • Kinnebrew, M. A., Buffie, C. G., Diehl, G. E., Zenewicz, L. A., Leiner, I., Hohl, T. M., Flavell, R. A., Littman, D. R., & Pamer, E. G. (2012). Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosa! Innate immune defense. Immunity, 36(2), 276–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk, M. D., Pires, S. M., Black, R. E., Caipo, M., Crump, J. A., Devleesschauwer, B., Doepfer, D., Fazil, A., Fischer-Walker, C. L., Hald, T., Hall, A. J., Keddy, K. H., Lake, R. J., Lanata, C. F., Torgerson, P. R., Havelaar, A. H., & Angulo, F. J. (2015). World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: A data synthesis. PLoS Medicine, 12(12), e1001921.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews, 12, 39–85.

    Article  CAS  PubMed  Google Scholar 

  • Konieczna, P., Akdis, C. A., Quigley, E. M. M., Shanahan, F., & O’Mahony, L. (2012). Portrait of an immunoregulatory Bifidobacterium. Gut Microbes, 3(3), 261–266.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koo, O. K., Amalaradjou, M. A. R., & Bhunia, A. K. (2012). Recombinant probiotic expressing Listeria adhesion protein attenuates Listeria monocytogenes virulence in vitro. PloS One, 7(1), e29277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudryashova, E., Lu, W., & Kudryashov, D. S. (2015). Defensins versus pathogens: An unfolding story. Oncotarget, 6(30), 28533–28534.

    PubMed  PubMed Central  Google Scholar 

  • Kumar Tiwari, S., & Sheela, S. (2008). Purification and characterization of plantaricin LR14: A novel bacteriocin produced by Lactobacillus plantarum LR/14. Applied Microbiology and Biotechnology, 79(5), 759–767.

    Article  CAS  Google Scholar 

  • Latvala, S., Pietilae, T. E., Veckman, V., Kekkonen, R. A., Tynkkynen, S., Korpela, R., & Julkunen, I. (2008). Potentially probiotic bacteria induce efficient maturation but differential cytokine production in human monocyte-derived dendritic cells. World Journal of Gastroenterology, 14(36), 5570–5583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, L., Ibrahim, A. S., Xu, X., Farber, J. M., Avanesian, V., Baquir, B., Fu, Y., French, S. W., Edwards Jr., J. E., & Spellberg, B. (2009). Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathogens, 5(12), e1000703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ly, N. P., Litonjua, A., Gold, D. R., & Celedon, J. C. (2011). Gut microbiota, probiotics, and vitamin D: Interrelated exposures influencing allergy, asthma, and obesity? The Journal of Allergy and Clinical Immunology, 127(5), 1087–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mack, D. R., Ahrne, S., Hyde, L., Wei, S., & Hollingsworth, M. A. (2003). Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut, 52(6), 827–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackowiak, P. A. (2013). Recycling metchnikoff: Probiotics, the intestinal microbiome and the quest for long life. Frontiers in Public Health, 1, 52–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Macpherson, A., & Harris, N. (2004). Interactions between commensal intestinal bacteria and the immune system. Nature Reviews. Immunology, 4, 478–485.

    Article  CAS  PubMed  Google Scholar 

  • Manigandan, T., Mangaiyarkarasi, S. P., Hemalatha, R., Hemalatha, V. T., & Murali, N. P. (2012). Probiotics, prebiotics and synbiotics – A review. Biomedical and Pharmacology Journal, 5(2), 295–304.

    Google Scholar 

  • Mattison, K. (2011). Norovirus as a foodborne disease hazard. Advances in Food and Nutrition Research, 62, 1–39.

    Article  CAS  PubMed  Google Scholar 

  • Medellin-Pena, M. J., & Griffiths, M. W. (2009). Effect of molecules secreted by Lactobacillus acidophilus strain la-5 on Escherichia coli O157:H7 colonization. Applied and Environmental Microbiology, 75(4), 1165–1172.

    Article  CAS  PubMed  Google Scholar 

  • Muniesa, M., Hammerl, J. A., Hertwig, S., Appel, B., & BrĂĽssow, H. (2012). Shiga toxin-producing Escherichia coli O104:H4: A new challenge for microbiology. Applied and Environmental Microbiology, 78(12), 4065–4073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murate, L. S., Paiao, F. G., de Almeida, A. M., Berchieri Jr., A., & Shimokomaki, M. (2015). Efficacy of prebiotics, probiotics, and Synbiotics on laying hens and broilers challenged with Salmonella Enteritidis. The Journal of Poultry Science, 52(1), 52–56.

    Article  CAS  Google Scholar 

  • Nagata, S., Asahara, T., Ohta, T., Yamada, T., Kondo, S., Bian, L., Wang, C., Yamashiro, Y., & Nomoto, K. (2011). Effect of the continuous intake of probiotic-fermented milk containing Lactobacillus casei strain Shirota on fever in a mass outbreak of norovirus gastroenteritis and the faecal microflora in a health service facility for the aged. The British Journal of Nutrition, 106(4), 549–556.

    Article  CAS  PubMed  Google Scholar 

  • Nagpal, R., Kumar, A., Kumar, M., Behare, P. V., Jain, S., & Yadav, H. (2012). Probiotics, their health benefits and applications for developing healthier foods: A review. FEMS Microbiology Letters, 334(1), 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Neal-McKinney, J. M., Xiaonan, L., Tri, D., Larson, C. L., Call, D. R., Shah, D. H., & Konkel, M. E. (2012). Production of organic acids by probiotic lactobacilli can be used to reduce pathogen load in poultry. PloS One, 7(9), e43928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng, K. M., Ferreyra, J. A., Higginbottom, S. K., Lynch, J. B., Kashyap, P. C., Gopinath, S., Naidu, N., Choudhury, B., Weimer, B. C., Monack, D. M., & Sonnenburg, J. L. (2013). Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature, 502(7469), 96–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niers, L. E. M., Timmerman, H. M., Rijkers, G. T., van Bleek, G. M., van Uden, N. O. P., Knol, E. F., Kapsenberg, M. L., Kimpen, J. L. L., & Hoekstra, M. O. (2005). Identification of strong interleukin-10 inducing lactic acid bacteria which down-regulate T helper type 2 cytokines. Clinical and Experimental Allergy, 35(11), 1481–1489.

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama, K., Seto, Y., Yoshioka, K., Kakuda, T., Takai, S., Yamamoto, Y., & Mukai, T. (2014). Lactobacillus gasseri SBT2055 reduces infection by and colonization of Campylobacter jejuni. PloS One, 9(9), e108827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Hara, A. M., & Shanahan, F. (2007). Gut microbiota: Mining for therapeutic potential. Clinical Gastroenterology and Hepatology, 5(3), 274–284.

    Article  PubMed  CAS  Google Scholar 

  • Oelschlaeger, T. A. (2010). Mechanisms of probiotic actions – A review. International Journal of Medical Microbiology, 300(1), 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Ohland, C. L., & MacNaughton, W. K. (2010). Probiotic bacteria and intestinal epithelial barrier function. American Journal of Physiology. Gastrointestinal and Liver Physiology, 298(6), G807–G819.

    Article  CAS  PubMed  Google Scholar 

  • Ohwaki, M., Yasutake, N., Yasui, H., & Ogura, R. (1977). A comparative study on the humoral immune responses in germ-free and conventional mice. Immunology, 32(1), 43–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey, K. R., Naik, S. R., & Vakil, B. V. (2015). Probiotics, prebiotics and synbiotics – A review. Journal of Food Science and Technology, 52(12), 7577–7587.

    Google Scholar 

  • Patel, M. M., Hall, A. J., VinjĂ©, J., & Parashar, U. D. (2009). Noroviruses: A comprehensive review. Journal of Clinical Virology, 44(1), 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Pelaseyed, T., Bergstrom, J. H., Gustafsson, J. K., Ermund, A., Birchenough, G. M. H., Schutte, A., van der Post, S., Svensson, F., Rodriguez-Pineiro, A. M., Nystrom, E. E. L., Wising, C., Johansson, M. E. V., & Hansson, G. C. (2014). The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological Reviews, 260(1), 8–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson, D. A., McNulty, N. P., Guruge, J. L., & Gordon, J. I. (2007). IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host & Microbe, 2(5), 328–339.

    Article  CAS  Google Scholar 

  • Phuong Mai, H., Cho, S., Kim, K., Byun, S., Lee, T., & Lee, S. (2015). Development of Lactobacillus paracasei harboring nucleic acid-hydrolyzing 3D8 scFv as a preventive probiotic against murine norovirus infection. Applied Microbiology and Biotechnology, 99(6), 2793–2803.

    Article  CAS  Google Scholar 

  • Pokusaeva, K., Fitzgerald, G. F., & van Sinderen, D. (2011). Carbohydrate metabolism in Bifidobacteria. Genes & Nutrition, 6(3), 285–306.

    Article  CAS  Google Scholar 

  • Puertollano, E., Puertollano, M. A., Cruz-Chamorro, L., de Cienfuegos, G. A., Ruiz-Bravo, A., & de Pablo, M. A. (2008). Orally administered Lactobacillus plantarum reduces pro-inflammatory interleukin secretion in sera from Listeria monocytogenes infected mice. The British Journal of Nutrition, 99(4), 819–825.

    Article  CAS  PubMed  Google Scholar 

  • Raqib, R., Sarker, P., Bergman, P., Ara, G., Lindh, M., Sack, D. A., Islam, K. M. N., Gudmundsson, G. H., Andersson, J., & Agerberth, B. (2006). Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9178–9183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rea, M. C., Clayton, E., O’Connor, P. M., Shanahan, F., Kiely, B., Ross, R. P., & Hill, C. (2007). Antimicrobial activity of lacticin 3147 against clinical Clostridium Difficile strains. Journal of Medical Microbiology, 56(7), 940–946.

    Article  CAS  PubMed  Google Scholar 

  • Rea, M. C., Dobson, A., O’Sullivan, O., Crispie, F., Fouhy, F., Cotter, P. D., Shanahan, F., Kiely, B., Hill, C., & Ross, R. P. (2011). Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proceedings of the National Academy of Sciences of the United States of America, 108, 4639–4644.

    Article  CAS  PubMed  Google Scholar 

  • Ribet, D., & Cossart, P. (2015). How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes and Infection, 17(3), 173–183.

    Article  CAS  PubMed  Google Scholar 

  • Roberfroid, M. (2007). Prebiotics: The concept revisited. The Journal of Nutrition, 137(3), 830S–837S.

    CAS  PubMed  Google Scholar 

  • Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., Wolvers, D., Watzl, B., Szajewska, H., Stahl, B., Guarner, F., Respondek, F., Whelan, K., Coxam, V., Davicco, M.-J., Leotoing, L., Wittrant, Y., Delzenne, N. M., Cani, P. D., Neyrinck, A. M., & Meheust, A. (2010). Prebiotic effects: Metabolic and health benefits. The British Journal of Nutrition, 104, S1–S63.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Lazaro, D., Cook, N., Ruggeri, F. M., Sellwood, J., Nasser, A., Nascimento, M. S., D’Agostino, M., Santos, R., Saiz, J. C., Rzezutka, A., Bosch, A., Girones, R., Carducci, A., Muscillo, M., Kovac, K., Diez-Valcarce, M., Vantarakis, A., von Bonsdorff, C. H., Husman, A. M. D., Hernandez, M., & van der Poel, W. H. M. (2012). Virus hazards from food, water and other contaminated environments. FEMS Microbiology Reviews, 36(4), 786–814.

    Article  CAS  PubMed  Google Scholar 

  • Rubio-del-Campo, A., Coll-Marques, J. M., Yebra, M. J., Buesa, J., Perez-Martinez, G., Monedero, V., & Rodriguez-Diaz, J. (2014). Noroviral P-particles as an in vitro model to assess the interactions of noroviruses with probiotics. PloS One, 9(2), e89586.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakai, F., Hosoya, T., Ono-Ohmachi, A., Ukibe, K., Ogawa, A., Moriya, T., Kadooka, Y., Shiozaki, T., Nakagawa, H., Nakayama, Y., & Miyazaki, T. (2014). Lactobacillus gasseri SBT2055 induces TGF-beta expression in dendritic cells and activates TLR2 signal to produce IgA in the small intestine. PloS One, 9(8), e105370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salminen, S., Nybom, S., Meriluoto, J., Collado, M. C., Vesterlund, S., & El-Nezami, H. (2010). Interaction of probiotics and pathogens – Benefits to human health? Current Opinion in Biotechnology, 21(2), 157–167.

    Article  CAS  PubMed  Google Scholar 

  • Sanders, M. E., Akkermans, L. M. A., Haller, D., Hammerman, C., Heimbach, J., Hormannsperger, G., Huys, G., Levy, D. D., Lutgendorff, F., Mack, D., Phothirath, P., Solano-Aguilar, G., & Vaughan, E. (2010). Safety assessment of probiotics for human use. Gut Microbes, 1(3), 164–185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanders, M. E., Guarner, F., Guerrant, R., Holt, P. R., Quigley, E. M., Sartor, R. B., Sherman, P. M., & Mayer, E. A. (2013). An update on the use and investigation of probiotics in health and disease. Gut, 62(5), 787–796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders, M. E., Lenoir-Wijnkoop, I., Salminen, S., Merenstein, D. J., Gibson, G. R., Petschow, B. W., Nieuwdorp, M., Tancredi, D. J., Cifelli, C. J., Jacques, P., & Pot, B. (2014). Probiotics and prebiotics: Prospects for public health and nutritional recommendations. Annals of the New York Academy of Sciences, 1309(1), 19–29.

    Article  CAS  PubMed  Google Scholar 

  • Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., Jones, J. L., & Griffin, P. M. (2011). Foodborne illness acquired in the United States – Major pathogens. Emerging Infectious Diseases, 17(1), 7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schachtsiek, M., Hammes, W. P., & Hertel, C. (2004). Characterization of Lactobacillus coryniformis DSM 20001(T) surface protein Cpf mediating coaggregation with and aggregation among pathogens. Applied and Environmental Microbiology, 70(12), 7078–7085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schauber, J., Svanholm, C., Termen, S., Iffland, K., Menzel, T., Scheppach, W., Melcher, R., Agerberth, B., Luhrs, H., & Gudmundsson, G. H. (2003). Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: Relevance of signalling pathways. Gut, 52(5), 735–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlee, M., Wehkamp, J., Altenhoefer, A., Oelschlaeger, T. A., Stange, E. F., & Fellermann, K. (2007). Induction of human beta-defensin 2 by the probiotic Escherichia coli nissle 1917 is mediated throuah flagellin. Infection and Immunity, 75(5), 2399–2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlee, M., Harder, J., Koten, B., Stange, E. F., Wehkamp, J., & Fellermann, K. (2008). Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clinical and Experimental Immunology, 151(3), 528–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo, E. J., Weibel, S., Wehkamp, J., & Oelschlaeger, T. A. (2012). Construction of recombinant E. coli Nissle 1917 (EcN) strains for the expression and secretion of defensins. International Journal of Medical Microbiology, 302(6), 276–287.

    Article  CAS  PubMed  Google Scholar 

  • Shanahan, F., & Quigley, E. M. M. (2014). Manipulation of the microbiota for treatment of IBS and IBD-challenges and controversies. Gastroenterology, 146(6), 1554–1563.

    Article  PubMed  Google Scholar 

  • Shen-Shih, C., & Tzu-Ming, P. (2012). Beneficial effects of Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products. Applied Microbiology and Biotechnology, 93(3), 903–916.

    Article  CAS  Google Scholar 

  • Sherman, P. M., Ossa, J. C., & Johnson-Henry, K. (2009). Unraveling mechanisms of action of probiotics. Nutrition in Clinical Practice, 24(1), 10–14.

    Article  PubMed  Google Scholar 

  • Shida, K., Kiyoshima-Shibata, J., Nagaoka, M., Watanabe, K., & Nanno, M. (2006). Induction of interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular digestion. Journal of Dairy Science, 89(9), 3306–3317.

    Article  CAS  PubMed  Google Scholar 

  • Shiu-Ming, K. (2013). The interplay between fiber and the intestinal microbiome in the inflammatory response. Advances in Nutrition, 4(1), 16–28.

    Article  CAS  Google Scholar 

  • Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly-Y, M., Glickman, J. N., & Garrett, W. S. (2013). The microbial metabolites, short-chain fatty acids, regulate colonic T-reg cell homeostasis. Science, 341(6145), 569–573.

    Article  CAS  PubMed  Google Scholar 

  • Stecher, B., & Hardt, W.-D. (2011). Mechanisms controlling pathogen colonization of the gut. Current Opinion in Microbiology, 14(1), 82–91.

    Article  CAS  PubMed  Google Scholar 

  • Sunkara, L. T., Achanta, M., Schreiber, N. B., Bommineni, Y. R., Dai, G., Jiang, W., Lamont, S., Lillehoj, H. S., Beker, A., Teeter, R. G., & Zhang, G. (2011). Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression. PloS One, 6(11), e27225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkara, L. T., Jiang, W., & Zhang, G. (2012). Modulation of antimicrobial host defense deptide gene expression by free fatty acids. PloS One, 7(11), e49558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan, B., & Gerner-Smidt, P. (2007). The epidemiology of human listeriosis. Microbes and Infection, 9(10), 1236–1243.

    Article  PubMed  Google Scholar 

  • Tanner, S. A., Chassard, C., Rigozzi, E., Lacroix, C., & Stevens, M. J. A. (2016). Bifidobacterium thermophilum RBL67 impacts on growth and virulence gene expression of Salmonella enterica subsp enterica serovar Typhimurium. BMC Microbiology, 16, 46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tareb, R., Bernardeau, M., Gueguen, M., & Vernoux, J.-P. (2013). In vitro characterization of aggregation and adhesion properties of viable and heat-killed forms of two probiotic Lactobacillus strains and interaction with foodborne zoonotic bacteria, especially Campylobacter jejuni. Journal of Medical Microbiology, 62, 637–649.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, L. V., & Ockhuizen, T. (2012). New insights into the impact of the intestinal microbiota on health and disease: A symposium report. The British Journal of Nutrition, 107, S1–S13.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, C. M., & Versalovic, J. (2010). Probiotics-host communication: Modulation of signaling pathways in the intestine. Gut Microbes, 1(3), 148–163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomas, J., Wrzosek, L., Bouznad, N., Bouet, S., Mayeur, C., Noordine, M.-L., Honvo-Houeto, E., Langella, P., Thomas, M., & Cherbuy, C. (2013). Primocolonization is associated with colonic epithelial maturation during conventionalization. The FASEB Journal, 27(2), 645–655.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, Y. T., Cheng, P. C., & Pan, T. M. (2010). Immunomodulating cctivity of Lactobacillus paracasei subsp. paracasei NTU 101 in Enterohemorrhagic Escherichia coli O157H7 – Infected mice. Journal of Agricultural and Food Chemistry, 58(21), 11265–11272.

    Article  CAS  PubMed  Google Scholar 

  • Van Coillie, E., Goris, J., Cleenwerck, I., Grijspeerdt, K., Botteldoorn, N., Van Immerseel, F., De Buck, J., Vancanneyt, M., Swings, J., Herman, L., & Heyndrickx, M. (2007). Identification of lactobacilli isolated from the cloaca and vagina of laying hens and characterization for potential use as probiotics to control Salmonella Enteritidis. Journal of Applied Microbiology, 102(4), 1095–1106.

    PubMed  Google Scholar 

  • Vandeplas, S., Dubois Dauphin, R., Beckers, Y., Thonart, P., & ThĂ©wis, A. (2010). Salmonella in chicken: Current and developing strategies to reduce contamination at farm level. Journal of Food Protection, 73(4), 774–785.

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., Goebel, W., Gonzalez-Zorn, B., Wehland, J., & Kreft, J. (2001). Listeria pathogenesis and molecular virulence determinants. Clinical Microbiology Reviews, 14(3), 584–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vila, B., Esteve-Garcia, E., & Brufau, J. (2010). Probiotic micro-organisms: 100 years of innovation and efficacy; modes of action. World’s Poultry Science Journal, 66(3), 369–380.

    Article  Google Scholar 

  • Vissers, Y., Snel, J., Zuurendonk, P., Smit, B., Wichers, H., & Savelkoul, H. (2010). Differential effects of Lactobacillus acidophilus and Lactobacillus plantarum strains on cytokine induction in human peripheral blood mononuclear cells. FEMS Immunology and Medical Microbiology, 59, 60–70.

    Article  CAS  PubMed  Google Scholar 

  • Voetsch, A. C., Angulo, F. J., Jones, T. F., Moore, M. R., Nadon, C., McCarthy, P., Shiferaw, B., Megginson, M. B., Hurd, S., Anderson, B. J., Cronquist, A., Vugia, D. J., Medus, C., Segler, S., Graves, L. M., Hoekstra, R. M., & Griffin, P. M. (2007). Reduction in the incidence of invasive listeriosis in foodborne diseases active surveillance network sites, 1996–2003. Clinical Infectious Diseases, 44(4), 513–520.

    Article  PubMed  Google Scholar 

  • Volzing, K., Borrero, J., Sadowsky, M. J., & Kaznessis, Y. N. (2013). Antimicrobial peptides targeting gram-negative pathogens, produced and delivered by lactic acid bacteria. ACS Synthetic Biology, 2(11), 643–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner, R. D., Johnson, S. J., & Rubin, D. K. (2009). Probiotic bacteria are antagonistic to Salmonella enterica and Campylobacter jejuni and influence host lymphocyte responses in human microbiota-associated immunodeficient and immunocompetent mice. Molecular Nutrition & Food Research, 53(3), 377–388.

    Article  CAS  Google Scholar 

  • Wehkamp, J., Harder, J., Wehkamp, K., Wehkamp-von Meissner, B., Schlee, M., Enders, C., Sonnenborn, U., Nuding, S., Bengmark, S., Fellermann, K., Schroder, J. M., & Stange, E. F. (2004). NF-kappa B- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: A novel effect of a probiotic bacterium. Infection and Immunity, 72(10), 5750–5758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, N. T. (2010). Probiotics. American Journal of Health-System Pharmacy, 67(6), 449–458.

    Article  CAS  PubMed  Google Scholar 

  • Wine, E., Gareau, M. G., Johnson-Henry, K., & Sherman, P. M. (2009). Strain-specific probiotic (Lactobacillus helveticus) inhibition of Campylobacter jejuni invasion of human intestinal epithelial cells. FEMS Microbiology Letters, 300(1), 146–152.

    Article  CAS  PubMed  Google Scholar 

  • Xavier, R. J., & Podolsky, D. K. (2007). Unravelling the pathogenesis of inflammatory bowel disease. Nature, 448(7152), 427–434.

    Article  CAS  PubMed  Google Scholar 

  • Xiaojian, Y., Brisbin, J., Hai, Y., Qi, W., Fugui, Y., Yonggang, Z., Sabour, P., Shayan, S., & Gong, J. (2014). Selected lactic acid-producing bacterial isolates with the capacity to reduce Salmonella translocation and virulence gene expression in chickens. PloS One, 9(4), e93022.

    Article  CAS  Google Scholar 

  • Young, K. T., Davis, L. M., & DiRita, V. J. (2007). Campylobacter jejuni: Molecular biology and pathogenesis. Nature Reviews. Microbiology, 5(9), 665–679.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., Jang, S.-O., Kim, B.-J., Song, Y.-H., Kwon, J.-W., Kang, M.-J., Choi, W.-A., Jung, H.-D., & Hong, S.-J. (2010). The effects of Lactobacillus rhamnosus on the prevention of asthma in a murine model. Allergy, Asthma & Immunology Research, 2(3), 199–205.

    Article  CAS  Google Scholar 

  • Yuanmin, Z., Luo, T. M., Jobin, C., & Young, H. A. (2011). Gut microbiota and probiotics in colon tumorigenesis. Cancer Letters, 309(2), 119–127.

    Article  CAS  Google Scholar 

  • Zareie, M., Johnson-Henry, K., Jury, J., Yang, P. C., Ngan, B. Y., McKay, D. M., Soderholm, J. D., Perdue, M. H., & Sherman, P. M. (2006). Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut, 55(11), 1553–1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., Qin, H., Zhang, M., Shen, T., Chen, H., Ma, Y., Chu, Z., Zhang, P., & Liu, Z. (2010). Lactobacillus plantarum inhibits intestinal epithelial barrier dysfunction induced by unconjugated bilirubin. Brit J Nutr, 104(3), 390–401.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Research in author’s laboratory on probiotics and Listeria pathogenesis was supported in part by AgSEED and Showalter Trust Funds at Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K. Bhunia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ryan, V., Bhunia, A.K. (2017). Mitigation of Foodborne Illnesses by Probiotics. In: Gurtler, J., Doyle, M., Kornacki, J. (eds) Foodborne Pathogens. Food Microbiology and Food Safety(). Springer, Cham. https://doi.org/10.1007/978-3-319-56836-2_21

Download citation

Publish with us

Policies and ethics