Skip to main content

Secondary Causes: Work-Up and Its Specificities in CKD: Influence of Autonomic Dysfunction

  • Chapter
  • First Online:
Resistant Hypertension in Chronic Kidney Disease

Abstract

Failure to achieve blood pressure goal, despite adherence to judiciously administered antihypertensive medication, defines resistant hypertension and raises a critical and costly health problem. Excessive activation of the sympathetic nervous system plays a major role in the development and maintenance of primary hypertension, and the frequent comorbidities associated with resistant hypertension appear to enhance this pathogenic mechanism. Chronic kidney disease (CKD) is a frequent comorbid condition linked to resistant hypertension in a bidirectional manner, and evidence of sympathetic activation in CKD is increasing. This chapter briefly reviews the mechanisms of blood pressure regulation by the kidneys and their control by the sympathetic nervous system to provide the conceptual framework for the review of clinical and experimental evidence for the sympathetic activation in resistant hypertension and the mechanisms responsible for this autonomic dysfunction. The use of novel non-pharmacological approaches for sympathoinhibition in resistant hypertension is discussed in light of the recent clinical trials. Finally, particular aspects regarding the mechanistic role of sympathetic activation in CKD and resistant hypertension are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lohmeier TE, Iliescu R. The baroreflex as a long-term controller of arterial pressure. Physiology (Bethesda). 2015;30:148–58. doi:10.1152/physiol.00035.2014.

    CAS  Google Scholar 

  2. Hall JE. Renal dysfunction, rather than nonrenal vascular dysfunction, mediates salt-induced hypertension. Circulation. 2016;133:894–906. doi:10.1161/CIRCULATIONAHA.115.018526.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Johns EJ, Kopp UC, DiBona GF. Neural control of renal function. Compr Physiol. 2011;1:731–67. doi:10.1002/cphy.c100043.

    PubMed  Google Scholar 

  4. Iliescu R, Tudorancea I, Lohmeier TE. Baroreflex activation: from mechanisms to therapy for cardiovascular disease. Curr Hypertens Rep. 2014;16:453. doi:10.1007/s11906-014-0453-9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015;116:976–90. doi:10.1161/CIRCRESAHA.116.303604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reinhart GA, Lohmeier TE, Hord CE. Hypertension induced by chronic renal adrenergic stimulation is angiotensin dependent. Hypertension. 1995;25:940–9.

    Article  CAS  PubMed  Google Scholar 

  7. Lohmeier TE, Dwyer TM, Irwin ED, Rossing MA, Kieval RS. Prolonged activation of the baroreflex abolishes obesity-induced hypertension. Hypertension. 2007;49:1307–14. doi:10.1161/HYPERTENSIONAHA.107.087874.

    Article  CAS  PubMed  Google Scholar 

  8. Robles RG, Villa E, Santirso R, Martínez J, Ruilope LM, Cuesta C, et al. Effects of captopril on sympathetic activity, lipid and carbohydrate metabolism in a model of obesity-induced hypertension in dogs. Am J Hypertens. 1993;6:1009–15.

    Article  CAS  PubMed  Google Scholar 

  9. Grassi G, Ram VS. Evidence for a critical role of the sympathetic nervous system in hypertension. J Am Soc Hypertens. 2016;10:457–66. doi:10.1016/j.jash.2016.02.015.

    Article  CAS  PubMed  Google Scholar 

  10. Esler M. The sympathetic nervous system in hypertension: back to the future? Curr Hypertens Rep. 2015;17:11. doi:10.1007/s11906-014-0519-8.

    Article  PubMed  Google Scholar 

  11. Esler M. The sympathetic nervous system through the ages: from Thomas Willis to resistant hypertension. Exp Physiol. 2011;96:611–22. doi:10.1113/expphysiol.2011.052332.

    PubMed  Google Scholar 

  12. Parati G, Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J. 2012;33:1058–66. doi:10.1093/eurheartj/ehs041.

    Article  CAS  PubMed  Google Scholar 

  13. Hering D, Schlaich M. The role of central nervous system mechanisms in resistant hypertension. Curr Hypertens Rep. 2015;17:58. doi:10.1007/s11906-015-0570-0.

    Article  PubMed  Google Scholar 

  14. Lohmeier TE, Lohmeier JR, Reckelhoff JF, Hildebrandt DA. Sustained influence of the renal nerves to attenuate sodium retention in angiotensin hypertension. Am J Physiol Regul Integr Comp Physiol. 2001;281:R434–43.

    CAS  PubMed  Google Scholar 

  15. Lohmeier TE, Iliescu R. Chronic activation of the baroreflex and the promise for hypertension therapy. Handb Clin Neurol. 2013;117:395–406. doi:10.1016/B978-0-444-53491-0.00032-8.

    Article  PubMed  Google Scholar 

  16. Grassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Mancia G. Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension. 1998;31:68–72.

    Article  CAS  PubMed  Google Scholar 

  17. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117:e510–26. doi:10.1161/CIRCULATIONAHA.108.189141.

    Article  PubMed  Google Scholar 

  18. Grassi G. Sympathomodulatory effects of antihypertensive drug treatment. Am J Hypertens. 2016;29:665–75. doi:10.1093/ajh/hpw012.

    Article  PubMed  Google Scholar 

  19. Iliescu R, Irwin ED, Georgakopoulos D, Lohmeier TE. Renal responses to chronic suppression of central sympathetic outflow. Hypertension. 2012;60:749–56. doi:10.1161/HYPERTENSIONAHA.112.193607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lohmeier TE, Hildebrandt DA, Dwyer TM, Iliescu R, Irwin ED, Cates AW, et al. Prolonged activation of the baroreflex decreases arterial pressure even during chronic adrenergic blockade. Hypertension. 2009;53:833–8. doi:10.1161/HYPERTENSIONAHA.109.128884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rao A, Pandya V, Whaley-Connell A. Obesity and insulin resistance in resistant hypertension: implications for the kidney. Adv Chronic Kidney Dis. 2015;22:211–7. doi:10.1053/j.ackd.2014.12.004.

    Article  PubMed  Google Scholar 

  22. Grassi G, Seravalle G, Brambilla G, Buzzi S, Volpe M, Cesana F, et al. Regional differences in sympathetic activation in lean and obese normotensive individuals with obstructive sleep apnoea. J Hypertens. 2014;32:383–8. doi:10.1097/HJH.0000000000000034.

    Article  CAS  PubMed  Google Scholar 

  23. Lambert E, Straznicky N, Schlaich M, Esler M, Dawood T, Hotchkin E, et al. Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension. 2007;50:862–8. doi:10.1161/HYPERTENSIONAHA.107.094649.

    Article  CAS  PubMed  Google Scholar 

  24. Esler M, Straznicky N, Eikelis N, Masuo K, Lambert G, Lambert E. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension. 2006;48:787–96. doi:10.1161/01.HYP.0000242642.42177.49.

    Article  CAS  PubMed  Google Scholar 

  25. Shibao C, Gamboa A, Diedrich A, Ertl AC, Chen KY, Byrne DW, et al. Autonomic contribution to blood pressure and metabolism in obesity. Hypertension. 2007;49:27–33. doi:10.1161/01.HYP.0000251679.87348.05.

    Article  CAS  PubMed  Google Scholar 

  26. Wofford MR, Anderson DC, Brown CA, Jones DW, Miller ME, Hall JE. Antihypertensive effect of alpha- and beta-adrenergic blockade in obese and lean hypertensive subjects. Am J Hypertens. 2001;14:694–8.

    Article  CAS  PubMed  Google Scholar 

  27. Thorp AA, Schlaich MP. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J Diabetes Res. 2015;2015:341583. doi:10.1155/2015/341583.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Grassi G, Seravalle G, Dell’Oro R, Turri C, Bolla GB, Mancia G. Adrenergic and reflex abnormalities in obesity-related hypertension. Hypertension. 2000;36:538–42.

    Article  CAS  PubMed  Google Scholar 

  29. McBryde FD, Abdala AP, Hendy EB, Pijacka W, Marvar P, Moraes DJ, et al. The carotid body as a putative therapeutic target for the treatment of neurogenic hypertension. Nat Commun. 2013;4:2395. doi:10.1038/ncomms3395.

    Article  PubMed  Google Scholar 

  30. Somers VK, Mark AL, Abboud FM. Potentiation of sympathetic nerve responses to hypoxia in borderline hypertensive subjects. Hypertension. 1988;11:608–12.

    Article  CAS  PubMed  Google Scholar 

  31. Lohmeier TE, Iliescu R, Tudorancea I, Cazan R, Cates AW, Georgakopoulos D, et al. Chronic interactions between carotid baroreceptors and chemoreceptors in obesity hypertension. Hypertension 2016. doi:10.1161/HYPERTENSIONAHA.116.07232.

  32. Mark AL, Somers VK. Obesity, hypoxemia, and hypertension: mechanistic insights and therapeutic implications. Hypertension. 2016; doi:10.1161/HYPERTENSIONAHA.116.07338.

    PubMed  PubMed Central  Google Scholar 

  33. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116:991–1006. doi:10.1161/CIRCRESAHA.116.305697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brands MW, Hall JE, Keen HL. Is insulin resistance linked to hypertension? Clin Exp Pharmacol Physiol. 1998;25:70–6.

    Article  CAS  PubMed  Google Scholar 

  35. Greenfield JR, Miller JW, Keogh JM, Henning E, Satterwhite JH, Cameron GS, et al. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med. 2009;360:44–52. doi:10.1056/NEJMoa0803085.

    Article  CAS  PubMed  Google Scholar 

  36. Iliescu R, Lohmeier TE, Tudorancea I, Laffin L, Bakris GL. Renal denervation for the treatment of resistant hypertension: review and clinical perspective. Am J Physiol Renal Physiol. 2015;309:F583–94. doi:10.1152/ajprenal.00246.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schwartz SI, Griffith LSC, Neistadt A, Hagfors N. Chronic carotid sinus nerve stimulation in the treatment of essential hypertension. Am J Surg. 1967;114:5–15. doi:10.1016/0002-9610(67)90034-7.

    Article  CAS  PubMed  Google Scholar 

  38. Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, et al. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010;56:1254–8. doi:10.1016/j.jacc.2010.03.089.

    Article  PubMed  Google Scholar 

  39. Bisognano JD, Bakris G, Nadim MK, Sanchez L, Kroon AA, Schafer J, et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled rheos pivotal trial. J Am Coll Cardiol. 2011;58:765–73. doi:10.1016/j.jacc.2011.06.008.

    Article  PubMed  Google Scholar 

  40. Bakris GL, Nadim MK, Haller H, Lovett EG, Schafer JE, Bisognano JD. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: results of long-term follow-up in the Rheos Pivotal Trial. J Am Soc Hypertens. 2012;6:152–8. doi:10.1016/j.jash.2012.01.003.

    Article  PubMed  Google Scholar 

  41. Hoppe UC, Brandt MC, Wachter R, Beige J, Rump LC, Kroon AA, et al. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J Am Soc Hypertens. 2012;6:270–6. doi:10.1016/j.jash.2012.04.004.

    Article  PubMed  Google Scholar 

  42. Lohmeier TE, Hildebrandt DA, Dwyer TM, Barrett AM, Irwin ED, Rossing MA, et al. Renal denervation does not abolish sustained baroreflex-mediated reductions in arterial pressure. Hypertension. 2007;49:373–9. doi:10.1161/01.HYP.0000253507.56499.bb.

    Article  CAS  PubMed  Google Scholar 

  43. Wallbach M, Halbach M, Reuter H, Passauer J, Lüders S, Böhning E, et al. Baroreflex activation therapy in patients with prior renal denervation. J Hypertens. 2016; doi:10.1097/HJH.0000000000000949.

    PubMed  Google Scholar 

  44. Iliescu R, Lohmeier TE. Lowering of blood pressure during chronic suppression of central sympathetic outflow: insight from computer simulations. Clin Exp Pharmacol Physiol. 2010;37:e24–33. doi:10.1111/j.1440-1681.2009.05291.x.

    Article  CAS  PubMed  Google Scholar 

  45. Esler MD, Böhm M, Sievert H, Rump CL, Schmieder RE, Krum H, et al. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur Heart J. 2014; doi:10.1093/eurheartj/ehu209.

    PubMed Central  Google Scholar 

  46. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370:1393–401. doi:10.1056/NEJMoa1402670.

    Article  CAS  PubMed  Google Scholar 

  47. Shibata H, Itoh H. Mineralocorticoid receptor-associated hypertension and its organ damage: clinical relevance for resistant hypertension. Am J Hypertens. 2012;25:514–23. doi:10.1038/ajh.2011.245.

    Article  CAS  PubMed  Google Scholar 

  48. Vemulapalli S, Tyson CC, Svetkey LP. Apparent treatment-resistant hypertension and chronic kidney disease: another cardiovascular-renal syndrome? Adv Chronic Kidney Dis. 2014;21:489–99. doi:10.1053/j.ackd.2014.08.006.

    Article  PubMed  Google Scholar 

  49. Hildebrandt DA, Irwin ED, Cates AW, Lohmeier TE. Regulation of renin secretion and arterial pressure during prolonged baroreflex activation: influence of salt intake. Hypertension. 2014;64:604–9. doi:10.1161/HYPERTENSIONAHA.114.03788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wolley MJ, Stowasser M. Resistant hypertension and chronic kidney disease: a dangerous liaison. Curr Hypertens Rep. 2016;18:36. doi:10.1007/s11906-016-0641-x.

    Article  PubMed  Google Scholar 

  51. Rossignol P, Massy ZA, Azizi M, Bakris G, Ritz E, Covic A, et al. The double challenge of resistant hypertension and chronic kidney disease. Lancet. 2015;386:1588–98. doi:10.1016/S0140-6736(15)00418-3.

    Article  PubMed  Google Scholar 

  52. Judd E, Calhoun DA. Management of hypertension in CKD: beyond the guidelines. Adv Chronic Kidney Dis. 2015;22:116–22. doi:10.1053/j.ackd.2014.12.001.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kaur M, Chandran DS, Jaryal AK, Bhowmik D, Agarwal SK, Deepak KK. Baroreflex dysfunction in chronic kidney disease. World J Nephrol. 2016;5:53–65. doi:10.5527/wjn.v5.i1.53.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Thomas P, Dasgupta I. The role of the kidney and the sympathetic nervous system in hypertension. Pediatr Nephrol. 2015;30:549–60. doi:10.1007/s00467-014-2789-4.

    Article  PubMed  Google Scholar 

  55. Garnier AS, Briet M. Arterial stiffness and chronic kidney disease. Pulse (Basel, Switzerland). 2016;3:229–41. doi:10.1159/000443616.

    Google Scholar 

  56. Sag AA, Covic A, London G, Vervloet M, Goldsmith D, Gorriz JL, et al. Clinical imaging of vascular disease in chronic kidney disease. Int Urol Nephrol. 2016; doi:10.1007/s11255-016-1240-0.

    PubMed  Google Scholar 

  57. Campese VM, Mitra N, Sandee D. Hypertension in renal parenchymal disease: why is it so resistant to treatment? Kidney Int. 2006;69:967–73. doi:10.1038/sj.ki.5000177.

    Article  CAS  PubMed  Google Scholar 

  58. De Nicola L, Gabbai FB, Agarwal R, Chiodini P, Borrelli S, Bellizzi V, et al. Prevalence and prognostic role of resistant hypertension in chronic kidney disease patients. J Am Coll Cardiol. 2013;61:2461–7. doi:10.1016/j.jacc.2012.12.061.

    Article  PubMed  Google Scholar 

  59. Siddiqui M, Dudenbostel T, Calhoun DA. Resistant and refractory hypertension: antihypertensive treatment resistance vs treatment failure. Can J Cardiol. 2016;32:603–6. doi:10.1016/j.cjca.2015.06.033.

    Article  PubMed  Google Scholar 

  60. Augustyniak RA, Tuncel M, Zhang W, Toto RD, Victor RG. Sympathetic overactivity as a cause of hypertension in chronic renal failure. J Hypertens. 2002;20:3–9.

    Article  CAS  PubMed  Google Scholar 

  61. Grassi G, Quarti-Trevano F, Seravalle G, Arenare F, Volpe M, Furiani S, et al. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension. 2011;57:846–51. doi:10.1161/HYPERTENSIONAHA.110.164780.

    Article  CAS  PubMed  Google Scholar 

  62. Salman IM, Hildreth CM, Ameer OZ, Phillips JK. Differential contribution of afferent and central pathways to the development of baroreflex dysfunction in chronic kidney disease. Hypertension. 2014;63:804–10. doi:10.1161/HYPERTENSIONAHA.113.02110.

    Article  CAS  PubMed  Google Scholar 

  63. Hoch H, Stegbauer J, Potthoff SA, Hein L, Quack I, Rump LC, et al. Regulation of renal sympathetic neurotransmission by renal α(2A)-adrenoceptors is impaired in chronic renal failure. Br J Pharmacol. 2011;163:438–46. doi:10.1111/j.1476-5381.2011.01223.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tomiyama O, Shiigai T, Ideura T, Tomita K, Mito Y, Shinohara S, et al. Baroreflex sensitivity in renal failure. Clin Sci. 1980;58:21–7.

    Article  CAS  PubMed  Google Scholar 

  65. Wallbach M, Lehnig LY, Schroer C, Hasenfuss G, Müller GA, Wachter R, et al. Impact of baroreflex activation therapy on renal function—a pilot study. Am J Nephrol. 2014;40:371–80. doi:10.1159/000368723.

    Article  PubMed  Google Scholar 

  66. Beige J, Koziolek MJ, Hennig G, Hamza A, Wendt R, Müller GA, et al. Baroreflex activation therapy in patients with end-stage renal failure: proof of concept. J Hypertens. 2015;33:2344–9. doi:10.1097/HJH.0000000000000697.

    Article  CAS  PubMed  Google Scholar 

  67. Ameer OZ, Hildreth CM, Phillips JK. Sympathetic overactivity prevails over the vascular amplifier phenomena in a chronic kidney disease rat model of hypertension. Physiol Rep. 2014;2 doi:10.14814/phy2.12205.

  68. Salman IM, Sarma Kandukuri D, Harrison JL, Hildreth CM, Phillips JK. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease. Front Physiol. 2015;6:218. doi:10.3389/fphys.2015.00218.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ott C, Mahfoud F, Schmid A, Toennes SW, Ewen S, Ditting T, et al. Renal denervation preserves renal function in patients with chronic kidney disease and resistant hypertension. J Hypertens. 2015;33:1261–6. doi:10.1097/HJH.0000000000000556.

    Article  CAS  PubMed  Google Scholar 

  70. Kiuchi MG, Graciano ML, Carreira MA, Kiuchi T, Chen S, Lugon JR. Long-term effects of renal sympathetic denervation on hypertensive patients with mild to moderate chronic kidney disease. J Clin Hypertens (Greenwich). 2016;18:190–6. doi:10.1111/jch.12724.

    Article  Google Scholar 

  71. Schmieder RE, Ott C, Schmid A, Friedrich S, Kistner I, Ditting T, et al. Adherence to antihypertensive medication in treatment-resistant hypertension undergoing renal denervation. J Am Heart Assoc. 2016;5 doi:10.1161/JAHA.115.002343.

  72. Zuern CS, Eick C, Rizas KD, Bauer S, Langer H, Gawaz M, et al. Impaired cardiac baroreflex sensitivity predicts response to renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol. 2013;62:2124–30. doi:10.1016/j.jacc.2013.07.046.

    Article  PubMed  Google Scholar 

  73. Gmitrov J. Baroreceptor stimulation enhanced nitric oxide vasodilator responsiveness, a new aspect of baroreflex physiology. Microvasc Res. 2015;98:139–44. doi:10.1016/j.mvr.2014.11.004.

    Article  CAS  PubMed  Google Scholar 

  74. Cai GJ, Miao CY, Xie HH, Lu LH, Su DF. Arterial baroreflex dysfunction promotes atherosclerosis in rats. Atherosclerosis. 2005;183:41–7. doi:10.1016/j.atherosclerosis.2005.03.037.

    Article  CAS  PubMed  Google Scholar 

  75. Tomiyama H, Matsumoto C, Kimura K, Odaira M, Shiina K, Yamashina A. Pathophysiological contribution of vascular function to baroreflex regulation in hypertension. Circ J. 2014;78:1414–9.

    Article  CAS  PubMed  Google Scholar 

  76. Chesterton LJ, Sigrist MK, Bennett T, Taal MW, McIntyre CW. Reduced baroreflex sensitivity is associated with increased vascular calcification and arterial stiffness. Nephrol Dial Transplant. 2005;20:1140–7. doi:10.1093/ndt/gfh808.

    Article  PubMed  Google Scholar 

  77. Hogas S, Ardeleanu S, Segall L, Serban DN, Serban IL, Hogas M, et al. Changes in arterial stiffness following dialysis in relation to overhydration and to endothelial function. Int Urol Nephrol. 2012;44:897–905. doi:10.1007/s11255-011-9933-x.

    Article  CAS  PubMed  Google Scholar 

  78. Pettersen KH, Bugenhagen SM, Nauman J, Beard DA, Omholt SW. Arterial stiffening provides sufficient explanation for primary hypertension. PLoS Comput Biol. 2014;10:e1003634. doi:10.1371/journal.pcbi.1003634.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lipponen JA, Tarvainen MP, Laitinen T, Karjalainen PA, Vanninen J, Koponen T, et al. Causal estimation of neural and overall baroreflex sensitivity in relation to carotid artery stiffness. Physiol Meas. 2013;34:1633–44. doi:10.1088/0967-3334/34/12/1633.

    Article  PubMed  Google Scholar 

  80. Thuesen AD, Andersen H, Cardel M, Toft A, Walter S, Marcussen N, et al. Differential effect of T-type voltage-gated Ca2+ channel disruption on renal plasma flow and glomerular filtration rate in vivo. Am J Physiol Renal Physiol. 2014;307:F445–52. doi:10.1152/ajprenal.00016.2014.

    Article  CAS  PubMed  Google Scholar 

  81. Gupta A, Jain G, Kaur M, Jaryal AK, Deepak KK, Bhowmik D, et al. Association of impaired baroreflex sensitivity and increased arterial stiffness in peritoneal dialysis patients. Clin Exp Nephrol. 2016;20:302–8. doi:10.1007/s10157-015-1158-3.

    Article  PubMed  Google Scholar 

  82. Kaur M, Chandran D, Lal C, Bhowmik D, Jaryal AK, Deepak KK, et al. Renal transplantation normalizes baroreflex sensitivity through improvement in central arterial stiffness. Nephrol Dial Transplant. 2013;28:2645–55. doi:10.1093/ndt/gft099.

    Article  PubMed  Google Scholar 

  83. Lucini D, Palombo C, Malacarne M, Pagani M. Relationship between carotid artery mechanics and the spontaneous baroreflex: a noninvasive investigation in normal humans. J Hypertens. 2012;30:1809–16. doi:10.1097/HJH.0b013e3283568055.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Iliescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iliescu, R., Şerban, D.N. (2017). Secondary Causes: Work-Up and Its Specificities in CKD: Influence of Autonomic Dysfunction. In: Covic, A., Kanbay, M., Lerma, E. (eds) Resistant Hypertension in Chronic Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-56827-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56827-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56825-6

  • Online ISBN: 978-3-319-56827-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics