Next-Generation Sequencing in Glioblastoma Personalized Therapy

  • Jagriti Pal
  • Vikas Patil
  • Kumaravel Somasundaram
Part of the Current Cancer Research book series (CUCR)


The most common and aggressive form of intracranial tumors is glioblastoma (GBM). These tumors show significant amount of proliferation, invasion, angiogenesis and necrosis. The current treatment modality that includes surgery, radiotherapy and temozolomide chemotherapy fails to provide great benefit with the median survival remaining at a dismal 15–17 months. The response to standard therapy is highly variable which is primarily determined by the differences in the genetic makeup of the tumor. Hence, it is required that clinicians stratify the patients based on prognostic features such that appropriate therapy can be given as per aggressiveness of the tumor. However, it has been observed that almost all GBM tumors recur. This demands the necessity of alternative therapeutic options for the treatment of GBM. In recent times, Next Generation Sequencing (NGS) based techniques help us to interrogate the genome of cells in a comprehensive manner. Intensive studies have revealed various genetic alterations typical to GBM, e.g., TP53 mutation and loss, EGFR amplification and mutation, INK4a/ARF mutation, MDM2/4 amplification or overexpression, PTEN mutation and loss of heterozygosity (LOH) in chromosome 10p and 10q. Through the past few decades, many studies have been carried out to identify small molecule inhibitors and antibodies against various molecules deregulated in different cancers such that they can be used for targeted therapy. Moreover, each tumor harbors a spectrum of genetic alterations that are different from another tumor. Hence, personalized therapy, tailored to target tumor-specific alterations is the approach to be developed for improvement of survival of GBM patients. For identification of genetic alterations in each tumor, sequencing of the tumor DNA has to be carried out. For that purpose, NGS-based targeted sequencing of all known GBM-specific driver alterations is a lucrative option. In this chapter, we have discussed about how targeted sequencing can be used for identifying all driver genetic alterations in each GBM tumor such that those molecules can be targeted using small molecule inhibitors and antibodies against them.


Personalized therapy Driver genetic alterations Patient stratification Next generation sequencing Targeted sequencing Targeted therapy 



Copy Number Alteration


Central Nervous System






Next Generation Sequencing


Single Nucleotide Variation


The Cancer Genome Atlas


World Health Organization



JP and VP are thankful to DBT, Government of India, for scholarship. Infrastructural support by funding from DBT, DST and UGC to MCB is acknowledged. KS thanks DST and DBT, Government of India for financial support. KS is a J. C. Bose Fellow of the Department of Science and Technology.


  1. American Brain Tumor Association. 2014. Glioblastoma and malignant astrocytoma USA.Google Scholar
  2. Almendro, V., A. Marusyk, and K. Polyak. 2013. Cellular heterogeneity and molecular evolution in cancer. Annual Review of Pathology 8: 277–302.CrossRefPubMedGoogle Scholar
  3. Amer, M.H. 2014. Gene therapy for cancer: present status and future perspective. Molecular and Cellular Therapies 2: 27.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arimappamagan, A., K. Somasundaram, K. Thennarasu, S. Peddagangannagari, H. Srinivasan, B.C. Shailaja, C. Samuel, I.R. Patric, S. Shukla, B. Thota, K.V. Prasanna, P. Pandey, A. Balasubramaniam, V. Santosh, B.A. Chandramouli, A.S. Hegde, P. Kondaiah, and M.R. Sathyanarayana Rao. 2013. A fourteen gene GBM prognostic signature identifies association of immune response pathway and mesenchymal subtype with high risk group. PLoS One 8: e62042.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arita, H., Y. Narita, H. Takami, S. Fukushima, Y. Matsushita, A. Yoshida, Y. Miyakita, M. Ohno, S. Shibui, and K. Ichimura. 2013. TERT promoter mutations rather than methylation are the main mechanism for TERT upregulation in adult gliomas. Acta Neuropathologica 126: 939–941.CrossRefPubMedGoogle Scholar
  6. Arvold, N.D., and D.A. Reardon. 2014. Treatment options and outcomes for glioblastoma in the elderly patient. Clinical Interventions in Aging 9: 357–367.PubMedPubMedCentralGoogle Scholar
  7. Balduzzi, S., S. Mantarro, V. Guarneri, L. Tagliabue, V, Pistotti, L Moja, R. D’Amico. 2014. Trastuzumab-containing regimens for metastatic breast cancer. The Cochrane Database of Systematic Reviews: 12;(6): CD006242.Google Scholar
  8. Bastien, J.I., K.A. McNeill, and H.A. Fine. 2015. Molecular characterizations of glioblastoma, targeted therapy, and clinical results to date. Cancer 121: 502–516.CrossRefPubMedGoogle Scholar
  9. Baudino, T.A. 2015. Targeted cancer therapy: The next generation of cancer treatment. Current Drug Discovery Technologies 12: 3–20.CrossRefPubMedGoogle Scholar
  10. Brennan, C.W., R.G. Verhaak, A. McKenna, B. Campos, H. Noushmehr, S.R. Salama, S. Zheng, D. Chakravarty, J.Z. Sanborn, S.H. Berman, R. Beroukhim, B. Bernard, C.J. Wu, G. Genovese, I. Shmulevich, J. Barnholtz-Sloan, L. Zou, R. Vegesna, S.A. Shukla, G. Ciriello, W.K. Yung, W. Zhang, C. Sougnez, T. Mikkelsen, K. Aldape, D.D. Bigner, E.G. Van Meir, M. Prados, A. Sloan, K.L. Black, J. Eschbacher, G. Finocchiaro, W. Friedman, D.W. Andrews, A. Guha, M. Iacocca, B.P. O'Neill, G. Foltz, J. Myers, D.J. Weisenberger, R. Penny, R. Kucherlapati, C.M. Perou, D.N. Hayes, R. Gibbs, M. Marra, G.B. Mills, E. Lander, P. Spellman, R. Wilson, C. Sander, J. Weinstein, M. Meyerson, S. Gabriel, P.W. Laird, D. Haussler, G. Getz, L. Chin, and T.R. Network. 2013. The somatic genomic landscape of glioblastoma. Cell 155: 462–477.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Burger, P.C. 1995. Revising the World Health Organization (WHO) blue book–‘Histological typing of tumours of the central nervous system’. Journal of Neuro-Oncology 24: 3–7.CrossRefPubMedGoogle Scholar
  12. Cai, J., P. Zhu, C. Zhang, Q. Li, Z. Wang, G. Li, G. Wang, P. Yang, J. Li, B. Han, C. Jiang, Y. Sun, and T. Jiang. 2016. Detection of ATRX and IDH1-R132H immunohistochemistry in the progression of 211 paired gliomas. Oncotarget 7: 16384–16395.PubMedPubMedCentralGoogle Scholar
  13. Cancer Genome Atlas Research N. 2008. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061–1068.CrossRefGoogle Scholar
  14. Chen, C.Y. 2014. DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present. Frontiers in Microbiology 5: 305.PubMedPubMedCentralGoogle Scholar
  15. Choe, G., S. Horvath, T.F. Cloughesy, K. Crosby, D. Seligson, A. Palotie, L. Inge, B.L. Smith, C.L. Sawyers, and P.S. Mischel. 2003. Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Research 63: 2742–2746.PubMedGoogle Scholar
  16. Choi, M., U.I. Scholl, W. Ji, T. Liu, I.R. Tikhonova, P. Zumbo, A. Nayir, A. Bakkaloglu, S. Ozen, S. Sanjad, C. Nelson-Williams, A. Farhi, S. Mane, and R.P. Lifton. 2009. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America 106: 19096–19101.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cibulskis, K., M.S. Lawrence, S.L. Carter, A. Sivachenko, D. Jaffe, C. Sougnez, S. Gabriel, M. Meyerson, E.S. Lander, and G. Getz. 2013. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature Biotechnology 31: 213–219.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Colman, H., L. Zhang, E.P. Sulman, J.M. McDonald, N.L. Shooshtari, A. Rivera, S. Popoff, C.L. Nutt, D.N. Louis, J.G. Cairncross, M.R. Gilbert, H.S. Phillips, M.P. Mehta, A. Chakravarti, C.E. Pelloski, K. Bhat, B.G. Feuerstein, R.B. Jenkins, and K. Aldape. 2010. A multigene predictor of outcome in glioblastoma. Neuro-Oncology 12: 49–57.CrossRefPubMedGoogle Scholar
  19. Doyle, D., G. Hanks and N. Cherny. 2005. Oxford textbook of palliative medicine. Oxford University Press PMID: 17618441; PMCID: PMC1929165.Google Scholar
  20. Ewing, B., L. Hillier, M.C. Wendl, and P. Green. 1998. Base-calling of automated sequencer traces using phred I. Accuracy assessment. Genome Research 8: 175–185.CrossRefPubMedGoogle Scholar
  21. Ferrara, N., K.J. Hillan, H.P. Gerber, and W. Novotny. 2004. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Reviews Drug Discovery 3: 391–400.CrossRefPubMedGoogle Scholar
  22. Frattini, V., V. Trifonov, J.M. Chan, A. Castano, M. Lia, F. Abate, S.T. Keir, A.X. Ji, P. Zoppoli, F. Niola, C. Danussi, I. Dolgalev, P. Porrati, S. Pellegatta, A. Heguy, G. Gupta, D.J. Pisapia, P. Canoll, J.N. Bruce, R.E. McLendon, H. Yan, K. Aldape, G. Finocchiaro, T. Mikkelsen, G.G. Prive, D.D. Bigner, A. Lasorella, R. Rabadan, and A. Iavarone. 2013. The integrated landscape of driver genomic alterations in glioblastoma. Nature Genetics 45: 1141–1149.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Friday, B.B., S.K. Anderson, J. Buckner, C. Yu, C. Giannini, F. Geoffroy, J. Schwerkoske, M. Mazurczak, H. Gross, E. Pajon, K. Jaeckle, and E. Galanis. 2012. Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: A north central cancer treatment group study. Neuro-Oncology 14: 215–221.CrossRefPubMedGoogle Scholar
  24. Furnari, F.B., T. Fenton, R.M. Bachoo, A. Mukasa, J.M. Stommel, A. Stegh, W.C. Hahn, K.L. Ligon, D.N. Louis, C. Brennan, L. Chin, R.A. DePinho, and W.K. Cavenee. 2007. Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes & Development 21: 2683–2710.CrossRefGoogle Scholar
  25. Giacinti, C., and A. Giordano. 2006. RB and cell cycle progression. Oncogene 25: 5220–5227.CrossRefPubMedGoogle Scholar
  26. Gilbert, M.R., J.J. Dignam, T.S. Armstrong, J.S. Wefel, D.T. Blumenthal, M.A. Vogelbaum, H. Colman, A. Chakravarti, S. Pugh, M. Won, R. Jeraj, P.D. Brown, K.A. Jaeckle, D. Schiff, V.W. Stieber, D.G. Brachman, M. Werner-Wasik, I.W. Tremont-Lukats, E.P. Sulman, K.D. Aldape, W.J. Curran Jr., and M.P. Mehta. 2014. A randomized trial of bevacizumab for newly diagnosed glioblastoma. The New England Journal of Medicine 370: 699–708.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Glantz, M., M. Chamberlain, Q. Liu, N.S. Litofsky, and L.D. Recht. 2003. Temozolomide as an alternative to irradiation for elderly patients with newly diagnosed malignant gliomas. Cancer 97: 2262–2266.CrossRefPubMedGoogle Scholar
  28. Goldman, J.M., and J.V. Melo. 2003. Chronic myeloid leukemia–advances in biology and new approaches to treatment. The New England Journal of Medicine 349: 1451–1464.CrossRefPubMedGoogle Scholar
  29. Goodwin, S., J.D. McPherson, and W.R. McCombie. 2016. Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics 17: 333–351.CrossRefPubMedGoogle Scholar
  30. Goya, R., M.G. Sun, R.D. Morin, G. Leung, G. Ha, K.C. Wiegand, J. Senz, A. Crisan, M.A. Marra, M. Hirst, D. Huntsman, K.P. Murphy, S. Aparicio, and S.P. Shah. 2010. SNVMix: Predicting single nucleotide variants from next-generation sequencing of tumors. Bioinformatics 26: 730–736.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Guha, A., M.M. Feldkamp, N. Lau, G. Boss, and A. Pawson. 1997. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 15: 2755–2765.CrossRefPubMedGoogle Scholar
  32. Herculano-Houzel, S. 2014. The glia/neuron ratio: How it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 62: 1377–1391.CrossRefPubMedGoogle Scholar
  33. Hermanson, M., K. Funa, M. Hartman, L. Claesson-Welsh, C.H. Heldin, B. Westermark, and M. Nister. 1992. Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Research 52: 3213–3219.PubMedGoogle Scholar
  34. Holland, E.C., W.P. Hively, R.A. DePinho, and H.E. Varmus. 1998. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes and Development 12: 3675–3685.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kaliberova, L.N., V. Krendelchtchikova, D.K. Harmon, C.R. Stockard, A.S. Petersen, J.M. Markert, G.Y. Gillespie, W.E. Grizzle, D.J. Buchsbaum, and S.A. Kaliberov. 2009. CRAdRGDflt-IL24 virotherapy in combination with chemotherapy of experimental glioma. Cancer Gene Therapy 16: 794–805.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kandoth, C., M.D. McLellan, F. Vandin, K. Ye, B. Niu, C. Lu, M. Xie, Q. Zhang, J.F. McMichael, M.A. Wyczalkowski, M.D. Leiserson, C.A. Miller, J.S. Welch, M.J. Walter, M.C. Wendl, T.J. Ley, R.K. Wilson, B.J. Raphael, and L. Ding. 2013. Mutational landscape and significance across 12 major cancer types. Nature 502: 333–339.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Keime-Guibert, F., O. Chinot, L. Taillandier, S. Cartalat-Carel, M. Frenay, G. Kantor, J.S. Guillamo, E. Jadaud, P. Colin, P.Y. Bondiau, P. Menei, H. Loiseau, V. Bernier, J. Honnorat, M. Barrie, K. Mokhtari, J.J. Mazeron, A. Bissery, J.Y. Delattre, and Association of French-Speaking N-O. 2007. Radiotherapy for glioblastoma in the elderly. The New England Journal of Medicine 356: 1527–1535.CrossRefPubMedGoogle Scholar
  38. Killela, P.J., Z.J. Reitman, Y. Jiao, C. Bettegowda, N. Agrawal, L.A. Diaz Jr., A.H. Friedman, H. Friedman, G.L. Gallia, B.C. Giovanella, A.P. Grollman, T.C. He, Y. He, R.H. Hruban, G.I. Jallo, N. Mandahl, A.K. Meeker, F. Mertens, G.J. Netto, B.A. Rasheed, G.J. Riggins, T.A. Rosenquist, M. Schiffman, M. Shih Ie, D. Theodorescu, M.S. Torbenson, V.E. Velculescu, T.L. Wang, N. Wentzensen, L.D. Wood, M. Zhang, R.E. McLendon, D.D. Bigner, K.W. Kinzler, B. Vogelstein, N. Papadopoulos, and H. Yan. 2013. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proceedings of the National Academy of Sciences of the United States of America 110: 6021–6026.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Knobbe, C.B., and G. Reifenberger. 2003. Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3′-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathology 13: 507–518.CrossRefPubMedGoogle Scholar
  40. Koboldt, D.C., Q. Zhang, D.E. Larson, D. Shen, M.D. McLellan, L. Lin, C.A. Miller, E.R. Mardis, L. Ding, and R.K. Wilson. 2012. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Research 22: 568–576.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kotliarova, S., and H.A. Fine. 2012. SnapShot: Glioblastoma multiforme. Cancer cell 21: 710–710 e711.CrossRefPubMedGoogle Scholar
  42. Lander, E.S., L.M. Linton, B. Birren, C. Nusbaum, M.C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh, R. Funke, D. Gage, K. Harris, A. Heaford, J. Howland, L. Kann, J. Lehoczky, R. LeVine, P. McEwan, K. McKernan, J. Meldrim, J.P. Mesirov, C. Miranda, W. Morris, J. Naylor, C. Raymond, M. Rosetti, R. Santos, A. Sheridan, C. Sougnez, Y. Stange-Thomann, N. Stojanovic, A. Subramanian, D. Wyman, J. Rogers, J. Sulston, R. Ainscough, S. Beck, D. Bentley, J. Burton, C. Clee, N. Carter, A. Coulson, R. Deadman, P. Deloukas, A. Dunham, I. Dunham, R. Durbin, L. French, D. Grafham, S. Gregory, T. Hubbard, S. Humphray, A. Hunt, M. Jones, C. Lloyd, A. McMurray, L. Matthews, S. Mercer, S. Milne, J.C. Mullikin, A. Mungall, R. Plumb, M. Ross, R. Shownkeen, S. Sims, R.H. Waterston, R.K. Wilson, L.W. Hillier, J.D. McPherson, M.A. Marra, E.R. Mardis, L.A. Fulton, A.T. Chinwalla, K.H. Pepin, W.R. Gish, S.L. Chissoe, M.C. Wendl, K.D. Delehaunty, T.L. Miner, A. Delehaunty, J.B. Kramer, L.L. Cook, R.S. Fulton, D.L. Johnson, P.J. Minx, S.W. Clifton, T. Hawkins, E. Branscomb, P. Predki, P. Richardson, S. Wenning, T. Slezak, N. Doggett, J.F. Cheng, A. Olsen, S. Lucas, C. Elkin, E. Uberbacher, M. Frazier, R.A. Gibbs, D.M. Muzny, S.E. Scherer, J.B. Bouck, E.J. Sodergren, K.C. Worley, C.M. Rives, J.H. Gorrell, M.L. Metzker, S.L. Naylor, R.S. Kucherlapati, D.L. Nelson, G.M. Weinstock, Y. Sakaki, A. Fujiyama, M. Hattori, T. Yada, A. Toyoda, T. Itoh, C. Kawagoe, H. Watanabe, Y. Totoki, T. Taylor, J. Weissenbach, R. Heilig, W. Saurin, F. Artiguenave, P. Brottier, T. Bruls, E. Pelletier, C. Robert, P. Wincker, D.R. Smith, L. Doucette-Stamm, M. Rubenfield, K. Weinstock, H.M. Lee, J. Dubois, A. Rosenthal, M. Platzer, G. Nyakatura, S. Taudien, A. Rump, H. Yang, J. Yu, J. Wang, G. Huang, J. Gu, L. Hood, L. Rowen, A. Madan, S. Qin, R.W. Davis, N.A. Federspiel, A.P. Abola, M.J. Proctor, R.M. Myers, J. Schmutz, M. Dickson, J. Grimwood, D.R. Cox, M.V. Olson, R. Kaul, C. Raymond, N. Shimizu, K. Kawasaki, S. Minoshima, G.A. Evans, M. Athanasiou, R. Schultz, B.A. Roe, F. Chen, H. Pan, J. Ramser, H. Lehrach, R. Reinhardt, W.R. McCombie, M. de la Bastide, N. Dedhia, H. Blocker, K. Hornischer, G. Nordsiek, R. Agarwala, L. Aravind, J.A. Bailey, A. Bateman, S. Batzoglou, E. Birney, P. Bork, D.G. Brown, C.B. Burge, L. Cerutti, H.C. Chen, D. Church, M. Clamp, R.R. Copley, T. Doerks, S.R. Eddy, E.E. Eichler, T.S. Furey, J. Galagan, J.G. Gilbert, C. Harmon, Y. Hayashizaki, D. Haussler, H. Hermjakob, K. Hokamp, W. Jang, L.S. Johnson, T.A. Jones, S. Kasif, A. Kaspryzk, S. Kennedy, W.J. Kent, P. Kitts, E.V. Koonin, I. Korf, D. Kulp, D. Lancet, T.M. Lowe, A. McLysaght, T. Mikkelsen, J.V. Moran, N. Mulder, V.J. Pollara, C.P. Ponting, G. Schuler, J. Schultz, G. Slater, A.F. Smit, E. Stupka, J. Szustakowki, D. Thierry-Mieg, J. Thierry-Mieg, L. Wagner, J. Wallis, R. Wheeler, A. Williams, Y.I. Wolf, K.H. Wolfe, S.P. Yang, R.F. Yeh, F. Collins, M.S. Guyer, J. Peterson, A. Felsenfeld, K.A. Wetterstrand, A. Patrinos, M.J. Morgan, P. de Jong, J.J. Catanese, K. Osoegawa, H. Shizuya, S. Choi, Y.J. Chen, J. Szustakowki, and International Human Genome Sequencing C. 2001. Initial sequencing and analysis of the human genome. Nature 409: 860–921.Google Scholar
  43. Larson, D.E., C.C. Harris, K. Chen, D.C. Koboldt, T.E. Abbott, D.J. Dooling, T.J. Ley, E.R. Mardis, R.K. Wilson, and L. Ding. 2012. SomaticSniper: Identification of somatic point mutations in whole genome sequencing data. Bioinformatics 28: 311–317.CrossRefPubMedGoogle Scholar
  44. Lathia, J.D., S.C. Mack, E.E. Mulkearns-Hubert, C.L.L. Valentim, and J.N. Rich. 2015. Cancer stem cells in glioblastoma. Genes and Development 29: 1203–1217.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lavin, M.F., and N. Gueven. 2006. The complexity of p53 stabilization and activation. Cell Death and Differentiation 13: 941–950.CrossRefPubMedGoogle Scholar
  46. Levsky, J.M., and R.H. Singer. 2003. Fluorescence in situ hybridization: Past, present and future. Journal of Cell Science 116: 2833–2838.CrossRefPubMedGoogle Scholar
  47. Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, and Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Logan, J., K. Edwards, and N. Saunders. 2009. Real-time PCR : Current technology and applications. Norfolk: Caister Academic Press.Google Scholar
  49. Louis, D.N., H. Ohgaki, O.D. Wiestler, W.K. Cavenee, P.C. Burger, A. Jouvet, B.W. Scheithauer, and P. Kleihues. 2007. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathologica 114: 97–109.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Louis, D.N., A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W.K. Cavenee, H. Ohgaki, O.D. Wiestler, P. Kleihues, and D.W. Ellison. 2016. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathologica 131: 803–820.CrossRefPubMedGoogle Scholar
  51. Luckey, J.A., H. Drossman, A.J. Kostichka, D.A. Mead, J. D’Cunha, T.B. Norris, and L.M. Smith. 1990. High speed DNA sequencing by capillary electrophoresis. Nucleic Acids Research 18: 4417–4421.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mangum, R. and Nakano, I. 2011. Glioma stem cells and their therapy resistance. Journal of Carcinogene Mutagene S1: 002.Google Scholar
  53. Mao, J.M., J. Liu, G. Guo, X.G. Mao, and C.X. Li. 2015. Glioblastoma vasculogenic mimicry: Signaling pathways progression and potential anti-angiogenesis targets. Biomarker Research 3: 8.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Mardis, E.R. 2008. Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics 9: 387–402.CrossRefPubMedGoogle Scholar
  55. Martinez, R., and M. Esteller. 2010. The DNA methylome of glioblastoma multiforme. Neurobiology of Disease 39: 40–46.CrossRefPubMedGoogle Scholar
  56. Maxam, A.M., and W. Gilbert. 1977. A new method for sequencing DNA. Proceedings of the National Academy of Sciences of the United States of America 74: 560–564.CrossRefPubMedPubMedCentralGoogle Scholar
  57. McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and M.A. DePristo. 2010. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20: 1297–1303.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Mechtler, L. 2009. Neuroimaging in Neuro-Oncology. Neurologic Clinics 27: 171–201.CrossRefPubMedGoogle Scholar
  59. Meldrum, C., M.A. Doyle, and R.W. Tothill. 2011. Next-generation sequencing for cancer diagnostics: A practical perspective. The Clinical Biochemist Reviews / Australian Association of Clinical Biochemists 32: 177–195.Google Scholar
  60. Mirebrahim, H., T.J. Close, and S. Lonardi. 2015. De novo meta-assembly of ultra-deep sequencing data. Bioinformatics 31: i9–16.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mitchison, T.J. 2012. The proliferation rate paradox in antimitotic chemotherapy. Molecular Biology of the Cell 23: 1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Mittal, S., S. Pradhan, and T. Srivastava. 2015. Recent advances in targeted therapy for glioblastoma. Expert Review of Neurotherapeutics 15: 935–946.CrossRefPubMedGoogle Scholar
  63. Morozova, O., and M.A. Marra. 2008. Applications of next-generation sequencing technologies in functional genomics. Genomics 92: 255–264.CrossRefPubMedGoogle Scholar
  64. Nathanson, D.A., B. Gini, J. Mottahedeh, K. Visnyei, T. Koga, G. Gomez, A. Eskin, K. Hwang, J. Wang, K. Masui, A. Paucar, H. Yang, M. Ohashi, S. Zhu, J. Wykosky, R. Reed, S.F. Nelson, T.F. Cloughesy, C.D. James, P.N. Rao, H.I. Kornblum, J.R. Heath, W.K. Cavenee, F.B. Furnari, and P.S. Mischel. 2014. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343: 72–76.CrossRefPubMedGoogle Scholar
  65. Ng, P.C., and E.F. Kirkness. 2010. Whole genome sequencing. Methods in Molecular Biology 628: 215–226.CrossRefPubMedGoogle Scholar
  66. Ng, S.B., E.H. Turner, P.D. Robertson, S.D. Flygare, A.W. Bigham, C. Lee, T. Shaffer, M. Wong, A. Bhattacharjee, E.E. Eichler, M. Bamshad, D.A. Nickerson, and J. Shendure. 2009. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461: 272–276.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Nieto-Sampedro, M., B. Valle-Argos, D. Gomez-Nicola, A. Fernandez-Mayoralas, and M. Nieto-Diaz. 2011. Inhibitors of glioma growth that reveal the tumour to the immune system. Clinical Medicine Insights Oncology 5: 265–314.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Nijaguna, M.B., V. Patil, S. Urbach, S.D. Shwetha, K. Sravani, A.S. Hegde, B.A. Chandramouli, A. Arivazhagan, P. Marin, V. Santosh, and K. Somasundaram. 2015. Glioblastoma-derived Macrophage Colony-stimulating Factor (MCSF) Induces Microglial Release of Insulin-like Growth Factor-binding Protein 1 (IGFBP1) to promote angiogenesis. The Journal of Biological Chemistry 290: 23401–23415.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Nikiforova, M.N., A.I. Wald, M.A. Melan, S. Roy, S. Zhong, R.L. Hamilton, F.S. Lieberman, J. Drappatz, N.M. Amankulor, I.F. Pollack, Y.E. Nikiforov, and C. Horbinski. 2016. Targeted next-generation sequencing panel (GlioSeq) provides comprehensive genetic profiling of central nervous system tumors. Neuro-Oncology 18: 379–387.CrossRefPubMedGoogle Scholar
  70. Nonoguchi, N., T. Ohta, J.E. Oh, Y.H. Kim, P. Kleihues, and H. Ohgaki. 2013. TERT promoter mutations in primary and secondary glioblastomas. Acta Neuropathologica 126: 931–937.CrossRefPubMedGoogle Scholar
  71. Noushmehr, H., D.J. Weisenberger, K. Diefes, H.S. Phillips, K. Pujara, B.P. Berman, F. Pan, C.E. Pelloski, E.P. Sulman, K.P. Bhat, R.G. Verhaak, K.A. Hoadley, D.N. Hayes, C.M. Perou, H.K. Schmidt, L. Ding, R.K. Wilson, D. Van Den Berg, H. Shen, H. Bengtsson, P. Neuvial, L.M. Cope, J. Buckley, J.G. Herman, S.B. Baylin, P.W. Laird, K. Aldape, and Cancer Genome Atlas Research Network. 2010. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer cell 17: 510–522.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Ohgaki, H., and P. Kleihues. 2013. The definition of primary and secondary glioblastoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 19: 764–772.CrossRefGoogle Scholar
  73. Osoegawa, K., A.G. Mammoser, C. Wu, E. Frengen, C. Zeng, J.J. Catanese, and P.J. de Jong. 2001. A bacterial artificial chromosome library for sequencing the complete human genome. Genome Research 11: 483–496.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Padfield, E., H.P. Ellis, and K.M. Kurian. 2015. Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma. Frontiers in Oncology 5: 5.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Quinn, J.A., S.X. Jiang, D.A. Reardon, A. Desjardins, J.J. Vredenburgh, J.N. Rich, S. Gururangan, A.H. Friedman, D.D. Bigner, J.H. Sampson, R.E. McLendon, J.E. Herndon 2nd, A. Walker, and H.S. Friedman. 2009. Phase II trial of temozolomide plus o6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 27: 1262–1267.CrossRefGoogle Scholar
  76. Reardon, D.A., B. Neyns, M. Weller, J.C. Tonn, L.B. Nabors, and R. Stupp. 2011. Cilengitide: An RGD pentapeptide alphanubeta3 and alphanubeta5 integrin inhibitor in development for glioblastoma and other malignancies. Future Oncology 7: 339–354.CrossRefPubMedGoogle Scholar
  77. Ries, S., and W.M. Korn. 2002. ONYX-015: Mechanisms of action and clinical potential of a replication-selective adenovirus. British Journal of Cancer 86: 5–11.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Rizzo, T., and C. Rhonda. 2002. Chemotherapy. Gale Encyclopedia of Cancer. Farmington Hills, MI, USAGoogle Scholar
  79. Rohlin, A., J. Wernersson, Y. Engwall, L. Wiklund, J. Bjork, and M. Nordling. 2009. Parallel sequencing used in detection of mosaic mutations: Comparison with four diagnostic DNA screening techniques. Human Mutation 30: 1012–1020.CrossRefPubMedGoogle Scholar
  80. Sanborn, J.Z., S.R. Salama, M. Grifford, C.W. Brennan, T. Mikkelsen, S. Jhanwar, S. Katzman, L. Chin, and D. Haussler. 2013. Double minute chromosomes in glioblastoma multiforme are revealed by precise reconstruction of oncogenic amplicons. Cancer Research 73: 6036–6045.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74: 5463–5467.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sathornsumetee, S., J.N. Rich, and D.A. Reardon. 2007. Diagnosis and treatment of high-grade astrocytoma. Neurologic Clinics 25: 1111–1139. x.CrossRefPubMedGoogle Scholar
  83. Schadt, E.E., S. Turner, and A. Kasarskis. 2010. A window into third-generation sequencing. Human Molecular Genetics 19: R227–R240.CrossRefPubMedGoogle Scholar
  84. Schapira, A.H.V. 2007. Neurology and clinical neuroscience, 1336. Philadelphia: Mosby Elsevier.Google Scholar
  85. See, W.L., I.L. Tan, J. Mukherjee, T. Nicolaides, and R.O. Pieper. 2012. Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency. Cancer Research 72: 3350–3359.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Shukla, S., S. Bhargava, and K. Somasundaram. 2014. Cancer gene signatures in risk stratification: Use in personalized medicine. Current Science 107: 815–823.Google Scholar
  87. Shukla, S., I.R. Pia Patric, S. Thinagararjan, S. Srinivasan, B. Mondal, A.S. Hegde, B.A. Chandramouli, V. Santosh, A. Arivazhagan, and K. Somasundaram. 2013. A DNA methylation prognostic signature of glioblastoma: Identification of NPTX2-PTEN-NF-kappaB nexus. Cancer Research 73: 6563–6573.CrossRefPubMedGoogle Scholar
  88. Srinivasan, S., I.R. Patric, and K. Somasundaram. 2011. A ten-microRNA expression signature predicts survival in glioblastoma. PLoS One 6: e17438.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Stratton, M.R., P.J. Campbell, and P.A. Futreal. 2009. The cancer genome. Nature 458: 719–724.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Stupp, R., M.E. Hegi, W.P. Mason, M.J. van den Bent, M.J. Taphoorn, R.C. Janzer, S.K. Ludwin, A. Allgeier, B. Fisher, K. Belanger, P. Hau, A.A. Brandes, J. Gijtenbeek, C. Marosi, C.J. Vecht, K. Mokhtari, P. Wesseling, S. Villa, E. Eisenhauer, T. Gorlia, M. Weller, D. Lacombe, J.G. Cairncross, R.O. Mirimanoff, European Organisation for Research, Treatment of Cancer Brain Tumour, Radiation Oncology Groups, and National Cancer Institute of Canada Clinical Trials Groups. 2009. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. The Lancet Oncology 10: 459–466.CrossRefPubMedGoogle Scholar
  91. Stupp, R., W.P. Mason, M.J. van den Bent, M. Weller, B. Fisher, M.J. Taphoorn, K. Belanger, A.A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R.C. Janzer, S.K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J.G. Cairncross, E. Eisenhauer, R.O. Mirimanoff, European Organisation for Research, Treatment of Cancer Brain Tumour, Radiotherapy Groups, and National Cancer Institute of Canada Clinical Trials Group. 2005. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England Journal of Medicine 352: 987–996.CrossRefPubMedGoogle Scholar
  92. Tamborero, D., A. Gonzalez-Perez, C. Perez-Llamas, J. Deu-Pons, C. Kandoth, J. Reimand, M.S. Lawrence, G. Getz, G.D. Bader, L. Ding, and N. Lopez-Bigas. 2013. Comprehensive identification of mutational cancer driver genes across 12 tumor types. Scientific Reports 3: 2650.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Thon, N., S. Kreth, and F.W. Kreth. 2013. Personalized treatment strategies in glioblastoma: MGMT promoter methylation status. Oncotargets Therapy 6: 1363–1372.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Tucker, T., M. Marra, and J.M. Friedman. 2009. Massively parallel sequencing: The next big thing in genetic medicine. American Journal of Human Genetics 85: 142–154.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Venter, J.C., M.D. Adams, E.W. Myers, P.W. Li, R.J. Mural, G.G. Sutton, H.O. Smith, M. Yandell, C.A. Evans, R.A. Holt, J.D. Gocayne, P. Amanatides, R.M. Ballew, D.H. Huson, J.R. Wortman, Q. Zhang, C.D. Kodira, X.H. Zheng, L. Chen, M. Skupski, G. Subramanian, P.D. Thomas, J. Zhang, G.L. Gabor Miklos, C. Nelson, S. Broder, A.G. Clark, J. Nadeau, V.A. McKusick, N. Zinder, A.J. Levine, R.J. Roberts, M. Simon, C. Slayman, M. Hunkapiller, R. Bolanos, A. Delcher, I. Dew, D. Fasulo, M. Flanigan, L. Florea, A. Halpern, S. Hannenhalli, S. Kravitz, S. Levy, C. Mobarry, K. Reinert, K. Remington, J. Abu-Threideh, E. Beasley, K. Biddick, V. Bonazzi, R. Brandon, M. Cargill, I. Chandramouliswaran, R. Charlab, K. Chaturvedi, Z. Deng, V. Di Francesco, P. Dunn, K. Eilbeck, C. Evangelista, A.E. Gabrielian, W. Gan, W. Ge, F. Gong, Z. Gu, P. Guan, T.J. Heiman, M.E. Higgins, R.R. Ji, Z. Ke, K.A. Ketchum, Z. Lai, Y. Lei, Z. Li, J. Li, Y. Liang, X. Lin, F. Lu, G.V. Merkulov, N. Milshina, H.M. Moore, A.K. Naik, V.A. Narayan, B. Neelam, D. Nusskern, D.B. Rusch, S. Salzberg, W. Shao, B. Shue, J. Sun, Z. Wang, A. Wang, X. Wang, J. Wang, M. Wei, R. Wides, C. Xiao, C. Yan, A. Yao, J. Ye, M. Zhan, W. Zhang, H. Zhang, Q. Zhao, L. Zheng, F. Zhong, W. Zhong, S. Zhu, S. Zhao, D. Gilbert, S. Baumhueter, G. Spier, C. Carter, A. Cravchik, T. Woodage, F. Ali, H. An, A. Awe, D. Baldwin, H. Baden, M. Barnstead, I. Barrow, K. Beeson, D. Busam, A. Carver, A. Center, M.L. Cheng, L. Curry, S. Danaher, L. Davenport, R. Desilets, S. Dietz, K. Dodson, L. Doup, S. Ferriera, N. Garg, A. Gluecksmann, B. Hart, J. Haynes, C. Haynes, C. Heiner, S. Hladun, D. Hostin, J. Houck, T. Howland, C. Ibegwam, J. Johnson, F. Kalush, L. Kline, S. Koduru, A. Love, F. Mann, D. May, S. McCawley, T. McIntosh, I. McMullen, M. Moy, L. Moy, B. Murphy, K. Nelson, C. Pfannkoch, E. Pratts, V. Puri, H. Qureshi, M. Reardon, R. Rodriguez, Y.H. Rogers, D. Romblad, B. Ruhfel, R. Scott, C. Sitter, M. Smallwood, E. Stewart, R. Strong, E. Suh, R. Thomas, N.N. Tint, S. Tse, C. Vech, G. Wang, J. Wetter, S. Williams, M. Williams, S. Windsor, E. Winn-Deen, K. Wolfe, J. Zaveri, K. Zaveri, J.F. Abril, R. Guigo, M.J. Campbell, K.V. Sjolander, B. Karlak, A. Kejariwal, H. Mi, B. Lazareva, T. Hatton, A. Narechania, K. Diemer, A. Muruganujan, N. Guo, S. Sato, V. Bafna, S. Istrail, R. Lippert, R. Schwartz, B. Walenz, S. Yooseph, D. Allen, A. Basu, J. Baxendale, L. Blick, M. Caminha, J. Carnes-Stine, P. Caulk, Y.H. Chiang, M. Coyne, C. Dahlke, A. Mays, M. Dombroski, M. Donnelly, D. Ely, S. Esparham, C. Fosler, H. Gire, S. Glanowski, K. Glasser, A. Glodek, M. Gorokhov, K. Graham, B. Gropman, M. Harris, J. Heil, S. Henderson, J. Hoover, D. Jennings, C. Jordan, J. Jordan, J. Kasha, L. Kagan, C. Kraft, A. Levitsky, M. Lewis, X. Liu, J. Lopez, D. Ma, W. Majoros, J. McDaniel, S. Murphy, M. Newman, T. Nguyen, N. Nguyen, M. Nodell, S. Pan, J. Peck, M. Peterson, W. Rowe, R. Sanders, J. Scott, M. Simpson, T. Smith, A. Sprague, T. Stockwell, R. Turner, E. Venter, M. Wang, M. Wen, D. Wu, M. Wu, A. Xia, A. Zandieh, and X. Zhu. 2001. The sequence of the human genome. Science 291: 1304–1351.CrossRefPubMedGoogle Scholar
  96. Verhaak, R.G., K.A. Hoadley, E. Purdom, V. Wang, Y. Qi, M.D. Wilkerson, C.R. Miller, L. Ding, T. Golub, J.P. Mesirov, G. Alexe, M. Lawrence, M. O'Kelly, P. Tamayo, B.A. Weir, S. Gabriel, W. Winckler, S. Gupta, L. Jakkula, H.S. Feiler, J.G. Hodgson, C.D. James, J.N. Sarkaria, C. Brennan, A. Kahn, P.T. Spellman, R.K. Wilson, T.P. Speed, J.W. Gray, M. Meyerson, G. Getz, C.M. Perou, D.N. Hayes, and Network Cancer Genome Atlas Research. 2010. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17: 98–110.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Vigneswaran, K., S. Neill, and C.G. Hadjipanayis. 2015. Beyond the World Health Organization grading of infiltrating gliomas: advances in the molecular genetics of glioma classification. Annals of Translational Medicine 3: 95.PubMedPubMedCentralGoogle Scholar
  98. Wang, H., T. Xu, Y. Jiang, H. Xu, Y. Yan, D. Fu, and J. Chen. 2015. The challenges and the promise of molecular targeted therapy in malignant gliomas. Neoplasia 17: 239–255.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Wang, J.L., Z.J. Zhang, M. Hartman, A. Smits, B. Westermark, C. Muhr, and M. Nister. 1995. Detection of TP53 gene mutation in human meningiomas: A study using immunohistochemistry, polymerase chain reaction/single-strand conformation polymorphism and DNA sequencing techniques on paraffin-embedded samples. International Journal of Cancer Journal International du Cancer 64: 223–228.CrossRefPubMedGoogle Scholar
  100. Warr, A., C. Robert, D. Hume, A. Archibald, N. Deeb, and M. Watson. 2015. Exome sequencing: Current and future perspectives. G3 5: 1543–1550.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Wen, P.Y., and S. Kesari. 2008. Malignant gliomas in adults. The New England Journal of Medicine 359: 492–507.CrossRefPubMedGoogle Scholar
  102. Ye, K., M.H. Schulz, Q. Long, R. Apweiler, and Z. Ning. 2009. Pindel: A pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25: 2865–2871.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Zhang, W., and H.T. Liu. 2002. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Research 12: 9–18.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jagriti Pal
    • 1
  • Vikas Patil
    • 1
  • Kumaravel Somasundaram
    • 1
  1. 1.Department of Microbiology and Cell BiologyIndian Institute of ScienceBangaloreIndia

Personalised recommendations