Radiogenomics and Histomics in Glioblastoma: The Promise of Linking Image-Derived Phenotype with Genomic Information

  • Michael Lehrer
  • Reid T. Powell
  • Souptik Barua
  • Donnie Kim
  • Shivali Narang
  • Arvind Rao
Chapter
Part of the Current Cancer Research book series (CUCR)

Abstract

Intra-tumor heterogeneity is the fundamental challenge in finding a cure for late-stage cancers. Physical biopsies do not sufficiently cover the diversity of molecular phenotypes within the tumor. Treatments are only effective on a subset of vulnerable tumor cells due to the prevalence of tumor stem-like cells. GBM tumors exemplify these general properties of late-stage cancers, with heterogeneous molecular profiles, histology, and radiology. Radiomics aims to characterize disease phenotypes from radiology scans in order to provide an alternative view of tumor heterogeneity, enabling models built from retrospective analysis of radiology scan data, and their integration with clinical data and molecular profiles. Computational histology (histomics) follows a workflow analogous to that of radiomics, with pre-processing, segmentation, feature extraction and analytics. The goal of histomics is to compute cellular morphometry and heterogeneity features from histology datasets. Genomic traits can potentially be inferred from histologic features by analysis of large, linked pathology-genomic data sets. There is also an active investigation of computer vision and machine learning applications to classify gliomas using radiology and histology images. The potential of radiomics, radiogenomics and histomics studies is to advance personalized cancer treatment by enabling interpretation of biological mechanisms underlying imaging phenotypes. These efforts aim to make personalized therapies more accessible. Results from preliminary imaging could direct administration of precision assays to guide treatment, measure treatment response and identify targetable genetic alterations from image-derived phenotype data, across biological scale. Radiomics and histomics promises to revolutionize the practice of personalized medicine, by providing an important complement to molecular strategies.

Keywords

Radiomics Radiogenomics Histomics Glioma Glioblastoma Magnetic Resonance Imaging Computed Tomography Positron Emission Tomography 

References

  1. Barajas, R.F., J.G. Hodgson, J.S. Chang, S.R. Vandenberg, R.F. Yeh, A.T. Parsa, M.W. McDermott, M.S. Berger, W.P. Dillon, and S. Cha. 2010. Glioblastoma multiforme regional genetic and cellular expression patterns: Influence on anatomic and physiologic MR imaging. Radiology 254: 564–576.Google Scholar
  2. Barker, J., A. Hoogi, A. Depeursinge, and D.L. Rubin. 2016. Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles. Medical image analysis 30: 60–71.CrossRefPubMedGoogle Scholar
  3. Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate – A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Methodological 57: 289–300.Google Scholar
  4. Best, T., D. Li, A.D. Skol, T. Kirchhoff, S.A. Jackson, Y. Yasui, S. Bhatia, L.C. Strong, S.M. Domchek, K.L. Nathanson, O.I. Olopade, R.S. Huang, T.M. Mack, D.V. Conti, K. Offit, W. Cozen, L.L. Robison, and K. Onel. 2011. Variants at 6q21 implicate PRDM1 in the etiology of therapy-induced second malignancies after Hodgkin’s lymphoma. Nature Medicine 17: 941–943.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brennan, C.W., R.G.W. Verhaak, A. McKenna, B. Campos, H. Noushmehr, S.R. Salama, S. Zheng, D. Chakravarty, J.Z. Sanborn, S.H. Berman, R. Beroukhim, B. Bernard, C.-J. Wu, G. Genovese, I. Shmulevich, J. Barnholtz-Sloan, L. Zou, R. Vegesna, S.A. Shukla, G. Ciriello, W.K. Yung, W. Zhang, C. Sougnez, T. Mikkelsen, K. Aldape, D.D. Bigner, E.G. Van Meir, M. Prados, A. Sloan, K.L. Black, J. Eschbacher, G. Finocchiaro, W. Friedman, D.W. Andrews, A. Guha, M. Iacocca, B.P. O'Neill, G. Foltz, J. Myers, D.J. Weisenberger, R. Penny, R. Kucherlapati, C.M. Perou, D.N. Hayes, R. Gibbs, M. Marra, G.B. Mills, E. Lander, P. Spellman, R. Wilson, C. Sander, J. Weinstein, M. Meyerson, S. Gabriel, P.W. Laird, D. Haussler, G. Getz, L. Chin, and TCGA Research Network. 2013. The somatic genomic landscape of glioblastoma. Cell 155: 462–477.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cancer Genome Atlas Research Network, D.J. Brat, R.G. Verhaak, K.D. Aldape, W.K. Yung, S.R. Salama, L.A. Cooper, E. Rheinbay, C.R. Miller, M. Vitucci, O. Morozova, A.G. Robertson, H. Noushmehr, P.W. Laird, A.D. Cherniack, R. Akbani, J.T. Huse, G. Ciriello, L.M. Poisson, J.S. Barnholtz-Sloan, M.S. Berger, C. Brennan, R.R. Colen, H. Colman, A.E. Flanders, C. Giannini, M. Grifford, A. Iavarone, R. Jain, I. Joseph, J. Kim, K. Kasaian, T. Mikkelsen, B.A. Murray, B.P. O’Neill, L. Pachter, D.W. Parsons, C. Sougnez, E.P. Sulman, S.R. Vandenberg, E.G. Van Meir, A. von Deimling, H. Zhang, D. Crain, K. Lau, D. Mallery, S. Morris, J. Paulauskis, R. Penny, T. Shelton, M. Sherman, P. Yena, A. Black, J. Bowen, K. Dicostanzo, J. Gastier-Foster, K.M. Leraas, T.M. Lichtenberg, C.R. Pierson, N.C. Ramirez, C. Taylor, S. Weaver, L. Wise, E. Zmuda, T. Davidsen, J.A. Demchok, G. Eley, M.L. Ferguson, C.M. Hutter, K.R. Mills Shaw, B.A. Ozenberger, M. Sheth, H.J. Sofia, R. Tarnuzzer, Z. Wang, L. Yang, J.C. Zenklusen, B. Ayala, J. Baboud, S. Chudamani, M.A. Jensen, J. Liu, T. Pihl, R. Raman, Y. Wan, Y. Wu, A. Ally, J.T. Auman, M. Balasundaram, S. Balu, S.B. Baylin, R. Beroukhim, M.S. Bootwalla, R. Bowlby, C.A. Bristow, D. Brooks, Y. Butterfield, R. Carlsen, S. Carter, L. Chin, A. Chu, E. Chuah, K. Cibulskis, A. Clarke, S.G. Coetzee, N. Dhalla, T. Fennell, S. Fisher, S. Gabriel, G. Getz, R. Gibbs, R. Guin, A. Hadjipanayis, D.N. Hayes, T. Hinoue, K. Hoadley, R.A. Holt, A.P. Hoyle, S.R. Jefferys, S. Jones, C.D. Jones, R. Kucherlapati, P.H. Lai, E. Lander, S. Lee, L. Lichtenstein, Y. Ma, D.T. Maglinte, H.S. Mahadeshwar, M.A. Marra, M. Mayo, S. Meng, M.L. Meyerson, P.A. Mieczkowski, R.A. Moore, L.E. Mose, A.J. Mungall, A. Pantazi, M. Parfenov, P.J. Park, J.S. Parker, C.M. Perou, A. Protopopov, X. Ren, J. Roach, T.S. Sabedot, J. Schein, S.E. Schumacher, J.G. Seidman, S. Seth, H. Shen, J.V. Simons, P. Sipahimalani, M.G. Soloway, X. Song, H. Sun, B. Tabak, A. Tam, D. Tan, J. Tang, N. Thiessen, T. Triche Jr., D.J. Van Den Berg, U. Veluvolu, S. Waring, D.J. Weisenberger, M.D. Wilkerson, T. Wong, J. Wu, L. Xi, A.W. Xu, L. Yang, T.I. Zack, J. Zhang, B.A. Aksoy, H. Arachchi, C. Benz, B. Bernard, D. Carlin, J. Cho, D. DiCara, S. Frazer, G.N. Fuller, J. Gao, N. Gehlenborg, D. Haussler, D.I. Heiman, L. Iype, A. Jacobsen, Z. Ju, S. Katzman, H. Kim, T. Knijnenburg, R.B. Kreisberg, M.S. Lawrence, W. Lee, K. Leinonen, P. Lin, S. Ling, W. Liu, Y. Liu, Y. Liu, Y. Lu, G. Mills, S. Ng, M.S. Noble, E. Paull, A. Rao, S. Reynolds, G. Saksena, Z. Sanborn, C. Sander, N. Schultz, Y. Senbabaoglu, R. Shen, I. Shmulevich, R. Sinha, J. Stuart, S.O. Sumer, Y. Sun, N. Tasman, B.S. Taylor, D. Voet, N. Weinhold, J.N. Weinstein, D. Yang, K. Yoshihara, S. Zheng, W. Zhang, L. Zou, T. Abel, S. Sadeghi, M.L. Cohen, J. Eschbacher, E.M. Hattab, A. Raghunathan, M.J. Schniederjan, D. Aziz, G. Barnett, W. Barrett, D.D. Bigner, L. Boice, C. Brewer, C. Calatozzolo, B. Campos, C.G. Carlotti Jr., T.A. Chan, L. Cuppini, E. Curley, S. Cuzzubbo, K. Devine, F. DiMeco, R. Duell, J.B. Elder, A. Fehrenbach, G. Finocchiaro, W. Friedman, J. Fulop, J. Gardner, B. Hermes, C. Herold-Mende, C. Jungk, A. Kendler, N.L. Lehman, E. Lipp, O. Liu, R. Mandt, M. McGraw, R. McLendon, C. McPherson, L. Neder, P. Nguyen, A. Noss, R. Nunziata, Q.T. Ostrom, C. Palmer, A. Perin, B. Pollo, A. Potapov, O. Potapova, W.K. Rathmell, D. Rotin, L. Scarpace, C. Schilero, K. Senecal, K. Shimmel, V. Shurkhay, S. Sifri, R. Singh, A.E. Sloan, K. Smolenski, S.M. Staugaitis, R. Steele, L. Thorne, D.P. Tirapelli, A. Unterberg, M. Vallurupalli, Y. Wang, R. Warnick, F. Williams, Y. Wolinsky, S. Bell, M. Rosenberg, C. Stewart, F. Huang, J.L. Grimsby, A.J. Radenbaugh, and J. Zhang. 2015. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372: 2481–2498.Google Scholar
  7. Carrillo, J.A., A. Lai, P.L. Nghiemphu, H.J. Kim, H.S. Phillips, S. Kharbanda, P. Moftakhar, S. Lalaezari, W. Yong, B.M. Ellingson, T.F. Cloughesy, and W.B. Pope. 2012. Relationship between tumor enhancement, edema, IDH1 mutational status, MGMT promoter methylation, and survival in glioblastoma. AJNR Am J Neuroradiol 33: 1349–1355.CrossRefPubMedGoogle Scholar
  8. Chaddad, A., C. Desrosiers, and M. Toews. 2016. Phenotypic characterization of glioblastoma identified through shape descriptors, Proc. SPIE 9785, Medical Imaging 2016: Computer-Aided Diagnosis, 97852M, 2016.Google Scholar
  9. Chin, L., M. Meyerson, K. Aldape, D. Bigner, T. Mikkelsen, S. VandenBerg, A. Kahn, R. Penny, M.L. Ferguson, D.S. Gerhard, G. Getz, C. Brennan, B.S. Taylor, W. Winckler, P. Park, M. Ladanyi, K.A. Hoadley, R.G.W. Verhaak, D.N. Hayes, P.T. Spellman, D. Absher, B.A. Weir, L. Ding, D. Wheeler, M.S. Lawrence, K. Cibulskis, E. Mardis, J. Zhang, R.K. Wilson, L. Donehower, D.A. Wheeler, E. Purdom, J. Wallis, P.W. Laird, J.G. Herman, K.E. Schuebel, D.J. Weisenberger, S.B. Baylin, N. Schultz, J. Yao, R. Wiedemeyer, J. Weinstein, C. Sander, R.A. Gibbs, J. Gray, R. Kucherlapati, E.S. Lander, R.M. Myers, C.M. Perou, R. McLendon, A. Friedman, E.G. Van Meir, D.J. Brat, G.M. Mastrogianakis, J.J. Olson, N. Lehman, W.K.A. Yung, O. Bogler, M. Berger, M. Prados, D. Muzny, M. Morgan, S. Scherer, A. Sabo, L. Nazareth, L. Lewis, O. Hall, Y. Zhu, Y. Ren, O. Alvi, J. Yao, A. Hawes, S. Jhangiani, G. Fowler, A. San Lucas, C. Kovar, A. Cree, H. Dinh, J. Santibanez, V. Joshi, M.L. Gonzalez-Garay, C.A. Miller, A. Milosavljevic, C. Sougnez, T. Fennell, S. Mahan, J. Wilkinson, L. Ziaugra, R. Onofrio, T. Bloom, R. Nicol, K. Ardlie, J. Baldwin, S. Gabriel, R.S. Fulton, M.D. McLellan, D.E. Larson, X. Shi, R. Abbott, L. Fulton, K. Chen, D.C. Koboldt, M.C. Wendl, R. Meyer, Y. Tang, L. Lin, J.R. Osborne, B.H. Dunford-Shore, T.L. Miner, K. Delehaunty, C. Markovic, G. Swift, W. Courtney, C. Pohl, S. Abbott, A. Hawkins, S. Leong, C. Haipek, H. Schmidt, M. Wiechert, T. Vickery, S. Scott, D.J. Dooling, A. Chinwalla, G.M. Weinstock, M. O'Kelly, J. Robinson, G. Alexe, R. Beroukhim, S. Carter, D. Chiang, J. Gould, S. Gupta, J. Korn, C. Mermel, J. Mesirov, S. Monti, H. Nguyen, M. Parkin, M. Reich, N. Stransky, L. Garraway, T. Golub, A. Protopopov, I. Perna, S. Aronson, N. Sathiamoorthy, G. Ren, H. Kim, S.W. Kong, Y. Xiao, I.S. Kohane, J. Seidman, L. Cope, F. Pan, D. Van Den Berg, L. Van Neste, J.M. Yi, J.Z. Li, A. Southwick, S. Brady, A. Aggarwal, T. Chung, G. Sherlock, J.D. Brooks, L.R. Jakkula, A.V. Lapuk, H. Marr, S. Dorton, Y.G. Choi, J. Han, A. Ray, V. Wang, S. Durinck, M. Robinson, N.J. Wang, K. Vranizan, V. Peng, E. Van Name, G.V. Fontenay, J. Ngai, J.G. Conboy, B. Parvin, H.S. Feiler, T.P. Speed, N.D. Socci, A. Olshen, A. Lash, B. Reva, Y. Antipin, A. Stukalov, B. Gross, E. Cerami, W.Q. Wang, L.-X. Qin, V.E. Seshan, L. Villafania, M. Cavatore, L. Borsu, A. Viale, W. Gerald, M.D. Topal, Y. Qi, S. Balu, Y. Shi, G. Wu, M. Bittner, T. Shelton, E. Lenkiewicz, S. Morris, D. Beasley, S. Sanders, R. Sfeir, J. Chen, D. Nassau, L. Feng, E. Hickey, C. Schaefer, S. Madhavan, K. Buetow, A. Barker, J. Vockley, C. Compton, J. Vaught, P. Fielding, F. Collins, P. Good, M. Guyer, B. Ozenberger, J. Peterson, E. Thomson, Cancer Genome Atlas Research Network, Tissue Source Sites, Genome Sequencing Centers, Cancer Genome Characterization Centers, and Project Teams. 2008. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061–1068.CrossRefGoogle Scholar
  10. Coroller, T., P. Grossmann, Y. Hou, S. Lee, R. Mak, and H. Aerts. 2015. CT-Based Volumetric Features Are Associated with Somatic Mutations in Lung Cancer. Medical Physics 42: 3322.CrossRefGoogle Scholar
  11. Diehn, M., C. Nardini, D.S. Wang, S. McGovern, M. Jayaraman, Y. Liang, K. Alclape, S. Cha, and M.D. Kuo. 2008. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proceedings of the National Academy of Sciences of the United States of America 105: 5213–5218.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Drabycz, S., G. Roldán, P. de Robles, D. Adler, J.B. McIntyre, A.M. Magliocco, J.G. Cairncross, and J.R. Mitchell. 2010. An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage 49: 1398–1405.CrossRefPubMedGoogle Scholar
  13. Eckel-Passow, J.E., D.H. Lachance, A.M. Molinaro, K.M. Walsh, P.A. Decker, H. Sicotte, M. Pekmezci, T. Rice, M.L. Kosel, I.V. Smirnov, G. Sarkar, A.A. Caron, T.M. Kollmeyer, C.E. Praska, A.R. Chada, C. Halder, H.M. Hansen, L.S. McCoy, P.M. Bracci, R. Marshall, S. Zheng, G.F. Reis, A.R. Pico, B.P. O'Neill, J.C. Buckner, C. Giannini, J.T. Huse, A. Perry, T. Tihan, M.S. Berger, S.M. Chang, M.D. Prados, J. Wiemels, J.K. Wiencke, M.R. Wrensch, and R.B. Jenkins. 2015. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372: 2499–2508.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Efron, B. 1979. 1977 Rietz Lecture – Bootstrap methods – Another look at the jackknife. Annals of Statistics 7: 1–26.CrossRefGoogle Scholar
  15. Ellingson, B.M. 2015. Radiogenomics and imaging phenotypes in glioblastoma: Novel observations and correlation with molecular characteristics. Curr Neurol Neurosci Rep 15: 506.CrossRefPubMedGoogle Scholar
  16. Ertosun, M.G., D.L. Rubin. 2015. Automated grading of gliomas using deep learning in digital pathology images: A modular approach with ensemble of convolutional neural networks, AMIA Annual Symposium Proceedings, American Medical Informatics Association, 1899.Google Scholar
  17. Galloway, M. 1975. Texture analysis using gray level run lengths. Computer Graphics and Image Processing 4: 172–179.CrossRefGoogle Scholar
  18. Gevaert, O., L.A. Mitchell, A.S. Achrol, J. Xu, S. Echegaray, G.K. Steinberg, S.H. Cheshier, S. Napel, G. Zaharchuk, and S.K. Plevritis. 2014. Glioblastoma multiforme: Exploratory radiogenomic analysis by using quantitative image features. Radiology 273: 168–174.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Guo, E., Z. Wang, and S. Wang. 2016. MiR-200c and miR-141 inhibit ZEB1 synergistically and suppress glioma cell growth and migration. Eur Rev Med Pharmacol Sci 20: 3385–3391.PubMedGoogle Scholar
  20. Gutman, D.A., L.A.D. Cooper, S.N. Hwang, C.A. Holder, J. Gao, T.D. Aurora, W.D. Dunn Jr., L. Scarpace, T. Mikkelsen, R. Jain, M. Wintermark, M. Jilwan, P. Raghavan, E. Huang, R.J. Clifford, P. Mongkolwat, V. Kleper, J. Freymann, J. Kirby, P.O. Zinn, C.S. Moreno, C. Jaffe, R. Colen, D.L. Rubin, J. Saltz, A. Flanders, and D.J. Brat. 2013. MR imaging predictors of molecular profile and survival: Multi-institutional study of the TCGA glioblastoma data set. Radiology 267: 560–569.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gutman, D.A., W.D. Dunn, P. Grossmann, L.A. Cooper, C.A. Holder, K.L. Ligon, B.M. Alexander, and H.J. Aerts. 2015. Somatic mutations associated with MRI-derived volumetric features in glioblastoma. Neuroradiology 57: 1227–1237.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Haralick, R.M., K. Shanmuga, and I. Dinstein. 1973. Textural features for Image Classification. IEEE Transactions on Systems Man and Cybernetics SMC3: 610–621.CrossRefGoogle Scholar
  23. Harris, R.J., T.F. Cloughesy, W.B. Pope, P.L. Nghiemphu, A. Lai, T. Zaw, J. Czernin, M.E. Phelps, W. Chen, and B.M. Ellingson. 2012. 18F-FDOPA and 18F-FLT positron emission tomography parametric response maps predict response in recurrent malignant gliomas treated with bevacizumab. Neuro Oncol 14: 1079–1089.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hsu, W., M.K. Markey, and M.D. Wang. 2013. Biomedical imaging informatics in the era of precision medicine: Progress, challenges, and opportunities. Journal of the American Medical Informatics Association 20: 1010–1013.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jamshidi, N., M. Diehn, M. Bredel, and M.D. Kuo. 2014. Illuminating radiogenomic characteristics of glioblastoma multiforme through integration of MR imaging, messenger RNA expression, and DNA copy number variation. Radiology 270: 1–2.CrossRefPubMedGoogle Scholar
  26. Jiao, Y., H. Berman, T.-R. Kiehl, and S. Torquato. 2011. Spatial organization and correlations of cell nuclei in brain tumors. PLoS ONE 6: e27323.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Karunanithi, S., P. Sharma, A. Kumar, B.C. Khangembam, G.P. Bandopadhyaya, R. Kumar, D.K. Gupta, A. Malhotra, and C. Bal. 2013. 18F-FDOPA PET/CT for detection of recurrence in patients with glioma: Prospective comparison with 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 40: 1025–1035.CrossRefPubMedGoogle Scholar
  28. Kassner, A., and R.E. Thornhill. 2010. Texture analysis: A review of neurologic MR imaging applications. AJNR Am J Neuroradiol 31: 809–816.CrossRefPubMedGoogle Scholar
  29. Kerns, S.L., H. Ostrer, and B.S. Rosenstein. 2014. Radiogenomics : Using genetics to identify cancer patients at risk for development of adverse effects following radiotherapy. Cancer Discovery 4: 155–165.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kickingereder, P., S. Burth, A. Wick, M. Götz, O. Eidel, H.P. Schlemmer, K.H. Maier-Hein, W. Wick, M. Bendszus, A. Radbruch, and D. Bonekamp. 2016. Radiomic profiling of glioblastoma: Identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280: 880–889.CrossRefPubMedGoogle Scholar
  31. Kim, S., E. Dougherty, J. Barrera, Y. Chen, M. Bittner, and J. Trent. 2002. Strong feature sets from small samples. Journal of Computational Biology 9: 127–146.CrossRefPubMedGoogle Scholar
  32. Kong, J., L.A. Cooper, F. Wang, J. Gao, G. Teodoro, L. Scarpace, T. Mikkelsen, M.J. Schniederjan, C.S. Moreno, and J.H. Saltz. 2013. Machine-based morphologic analysis of glioblastoma using whole-slide pathology images uncovers clinically relevant molecular correlates. PloS one 8: e81049.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kramer, M.A. 1991. Nonlinear principal component analysis using autoassociative neural networks. Aiche Journal 37: 233–243.CrossRefGoogle Scholar
  34. Kumar, V., Y. Gu, S. Basu, A. Berglund, S.A. Eschrich, M.B. Schabath, K. Forster, H.J.W.L. Aerts, A. Dekker, D. Fenstermacher, D.B. Goldgof, L.O. Hall, P. Lambin, Y. Balagurunathan, R.A. Gatenby, and R.J. Gillies. 2012. Radiomics: The process and the challenges. Magnetic Resonance Imaging 30: 1234–1248.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kumar, D., A. Wong, and D. Clausi. 2015. Lung nodule classification using deep features in CT Images, IEEE, Computer and Robot Vision (CRV), 2015 12th Conference on, 2015.Google Scholar
  36. Kuo, M.D., J. Gollub, C.B. Sirlin, C. Ooi, and X. Chen. 2007. Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. Journal of Vascular and Interventional Radiology 18: 821–831.CrossRefPubMedGoogle Scholar
  37. la Fougère, C., B. Suchorska, P. Bartenstein, F.-W. Kreth, and J.-C. Tonn. 2011. Molecular imaging of gliomas with PET: Opportunities and limitations. Neuro Oncology 13 (8): 806–819. nor054.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lambin, P., E. Rios-Velazquez, R. Leijenaar, S. Carvalho, R.G.P.M. van Stiphout, P. Granton, C.M.L. Zegers, R. Gillies, R. Boellard, A. Dekker, H.J.W.L. Aerts, and I.C.C.C. Qu. 2012. Radiomics: Extracting more information from medical images using advanced feature analysis. European Journal of Cancer 48: 441–446.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lambin, P., E. Roelofs, B. Reymen, E.R. Velazquez, J. Buijsen, C.M.L. Zegers, S. Carvalho, R.T.H. Leijenaar, G. Nalbantov, C. Oberije, M.S. Marshall, F. Hoebers, E.G.C. Troost, R.G.P.M. van Stiphout, W. van Elmpt, T. van der Weijden, L. Boersma, V. Valentini, and A. Dekker. 2013. Rapid Learning health care in oncology’ – An approach towards decision support systems enabling customised radiotherapy. Radiotherapy and Oncology 109: 159–164.CrossRefPubMedGoogle Scholar
  40. Lee, J., S. Narang, J.J. Martinez, G. Rao, and A. Rao. 2015. Associating spatial diversity features of radiologically defined tumor habitats with epidermal growth factor receptor driver status and 12-month survival in glioblastoma: Methods and preliminary investigation. J Med Imaging (Bellingham) 2: 041006.Google Scholar
  41. Liang, H., R. Wang, Y. Jin, J. Li, and S. Zhang. 2016. MiR-422a acts as a tumor suppressor in glioblastoma by targeting PIK3CA. Am J Cancer Res 6: 1695–1707.PubMedPubMedCentralGoogle Scholar
  42. Liu, G., X. Yuan, Z. Zeng, P. Tunici, H. Ng, I.R. Abdulkadir, L. Lu, D. Irvin, K.L. Black, and J.S. Yu. 2006. Analysis of gene expression and chemoresistance of CDI33(+) cancer stem cells in glioblastoma. Molecular Cancer 5: 67.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Louis, D.N., H. Ohgaki, O.D. Wiestler, W.K. Cavenee, P.C. Burger, A. Jouvet, B.W. Scheithauer, and P. Kleihues. 2007. The 2007 WHO classification of tumours of the central nervous system. Acta neuropathologica 114: 97–109.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Louis, D.N., A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W.K. Cavenee, H. Ohgaki, O.D. Wiestler, P. Kleihues, and D.W. Ellison. 2016. The 2016 World Health Organization classification of tumors of the Central Nervous System: A summary. Acta Neuropathologica 131: 803–820.CrossRefPubMedGoogle Scholar
  45. Mallat, S. 1989. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11: 674–693.CrossRefGoogle Scholar
  46. Mishra, D., R. Dash, A.K. Rath, and M. Acharya. 2011. Feature selection in gene expression data using principal component analysis and rough set theory. Software Tools and Algorithms for Biological Systems 696: 91–100.CrossRefGoogle Scholar
  47. Mousavi, H.S., V. Monga, G. Rao, and A.U. Rao. 2015. Automated discrimination of lower and higher grade gliomas based on histopathological image analysis. Journal of pathology informatics 6: 15.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Naeini, K.M., W.B. Pope, T.F. Cloughesy, R.J. Harris, A. Lai, A. Eskin, R. Chowdhury, H.S. Phillips, P.L. Nghiemphu, Y. Behbahanian, and B.M. Ellingson. 2013. Identifying the mesenchymal molecular subtype of glioblastoma using quantitative volumetric analysis of anatomic magnetic resonance images. Neuro Oncol 15: 626–634.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nafe, R., and W. Schlote. 2004. Histomorphometry of brain tumours. Neuropathology and applied neurobiology 30: 315–328.CrossRefPubMedGoogle Scholar
  50. Nayak, N., H. Chang, A. Borowsky, and P. Spellman, B. Parvin. 2013. Classification of tumor histopathology via sparse feature learning, 2013 IEEE 10th International Symposium on Biomedical Imaging, IEEE, 410–413.Google Scholar
  51. Nihashi, T., I.J. Dahabreh, and T. Terasawa. 2013. Diagnostic accuracy of PET for recurrent glioma diagnosis: A meta-analysis. AJNR Am J Neuroradiol 34: 944–950. S941-911.CrossRefPubMedGoogle Scholar
  52. Noor, A.M., L. Holmberg, C. Gillett, and A. Grigoriadis. 2015. Big data: The challenge for small research groups in the era of cancer genomics. British Journal of Cancer 113: 1405–1412.CrossRefPubMedPubMedCentralGoogle Scholar
  53. O’Driscoll, A., J. Daugelaite, and R.D. Sleator. 2013. ‘Big data’, Hadoop and cloud computing in genomics. Journal of Biomedical Informatics 46: 774–781.CrossRefPubMedGoogle Scholar
  54. Parmar, C., E. Rios Velazquez, R. Leijenaar, M. Jermoumi, S. Carvalho, R.H. Mak, S. Mitra, B.U. Shankar, R. Kikinis, B. Haibe-Kains, P. Lambin, and H.J. Aerts. 2014. Robust Radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 9: e102107.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pope, W.B., J. Sayre, A. Perlina, J.P. Villablanca, P.S. Mischel, and T.F. Cloughesy. 2005. MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol 26: 2466–2474.PubMedGoogle Scholar
  56. Porz, N., S. Bauer, A. Pica, P. Schucht, J. Beck, R.K. Verma, J. Slotboom, M. Reyes, and R. Wiest. 2014. Multi-modal glioblastoma segmentation: Man versus machine. Plos One 9: e96873.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pötzi, C., A. Becherer, C. Marosi, G. Karanikas, M. Szabo, R. Dudczak, K. Kletter, and S. Asenbaum. 2007. [11C] methionine and [18F] fluorodeoxyglucose PET in the follow-up of glioblastoma multiforme. J Neurooncol 84: 305–314.Google Scholar
  58. Rios Velazquez, E., R. Meier, W.D. Dunn, B. Alexander, R. Wiest, S. Bauer, D.A. Gutman, M. Reyes, and H.J. Aerts. 2015. Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features. Sci Rep 5: 16822.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rosenstein, B.S., C.M. West, S.M. Bentzen, J. Alsner, C.N. Andreassen, D. Azria, G.C. Barnett, M. Baumann, N. Burnet, J. Chang-Claude, E.Y. Chuang, C.E. Coles, A. Dekker, K. De Ruyck, D. De Ruysscher, K. Drumea, A.M. Dunning, D. Easton, R. Eeles, L. Fachal, S. Gutiérrez-Enríquez, K. Haustermans, L.A. Henríquez-Hernández, T. Imai, G.D. Jones, S.L. Kerns, Z. Liao, K. Onel, H. Ostrer, M. Parliament, P.D. Pharoah, T.R. Rebbeck, C.J. Talbot, H. Thierens, A. Vega, J.S. Witte, P. Wong, F. Zenhausern, and R. Consortium. 2014. Radiogenomics: Radiobiology enters the era of big data and team science. Int J Radiat Oncol Biol Phys 89: 709–713.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Song, S., A. Fajol, X. Tu, B. Ren, and S. Shi. 2016. miR-204 suppresses the development and progression of human glioblastoma by targeting ATF2. Oncotarget 7 (43): 70058–70065.PubMedPubMedCentralGoogle Scholar
  61. Surowka, A.D., D. Adamek, E. Radwanska, M. Lankosz, and M. Szczerbowska-Boruchowska. 2014. A methodological approach to the characterization of brain gliomas, by means of semi-automatic morphometric analysis. Image Analysis and Stereolog 33 (2014): 18.Google Scholar
  62. Verhaak, R.G.W., K.A. Hoadley, E. Purdom, V. Wang, Y. Qi, M.D. Wilkerson, C.R. Miller, L. Ding, T. Golub, J.P. Mesirov, G. Alexe, M. Lawrence, M. O'Kelly, P. Tamayo, B.A. Weir, S. Gabriel, W. Winckler, S. Gupta, L. Jakkula, H.S. Feiler, J.G. Hodgson, C.D. James, J.N. Sarkaria, C. Brennan, A. Kahn, P.T. Spellman, R.K. Wilson, T.P. Speed, J.W. Gray, M. Meyerson, G. Getz, C.M. Perou, D.N. Hayes, and The Cancer Genome Atlas Research Network. 2010. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17: 98–110.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Vu, T.H., H.S. Mousavi, V. Monga, U.A. Rao, and G. Rao. 2015. DFDL: Discriminative feature-oriented dictionary learning for histopathological image classification, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), IEEE, 990–994.Google Scholar
  64. Wangaryattawanich, P., M. Hatami, J. Wang, G. Thomas, A. Flanders, J. Kirby, M. Wintermark, E.S. Huang, A.S. Bakhtiari, M.M. Luedi, S.S. Hashmi, D.L. Rubin, J.Y. Chen, S.N. Hwang, J. Freymann, C.A. Holder, P.O. Zinn, and R.R. Colen. 2015. Multicenter imaging outcomes study of The Cancer Genome Atlas glioblastoma patient cohort: Imaging predictors of overall and progression-free survival. Neuro Oncol 17: 1525–1537.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Williams, M.S., M.D. Ritchie, and P.R.O. Payne. 2015. Interdisciplinary training to build an informatics workforce for precision medicine. Applied and Translational Genomics 6: 28–30.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wold, S., A. Ruhe, H. Wold, and W.J. Dunn. 1984. The collinearity problem in linear-regression – The Partial least-squares (Pls) approach to generalized inverses. Siam Journal on Scientific and Statistical Computing 5: 735–743.CrossRefGoogle Scholar
  67. Xu, Y., Z. Jia, Y. Ai, F. Zhang, M. Lai, I. Eric, and C. Chang. 2015. Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE., 947–951.Google Scholar
  68. Yang, D., G. Rao, J. Martinez, A. Veeraraghavan, and A. Rao. 2015. Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Medical Physics 42: 6725–6735.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yuan, X.P., J. Curtin, Y.Z. Xiong, G.T. Liu, S. Waschsmann-Hogiu, D.L. Farkas, K.L. Black, and J.S. Yu. 2004. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23: 9392–9400.CrossRefPubMedGoogle Scholar
  70. Zhou, Y., H. Chang, K. Barner, P. Spellman, and B. Parvin. 2014. Classification of histology sections via multispectral convolutional sparse coding, 2014. IEEE Conference on Computer Vision and Pattern Recognition, IEEE 2014: 3081–3088.Google Scholar
  71. Zhu, H., B.G. Goodyear, M.L. Lauzon, R.A. Brown, G.S. Mayer, A.G. Law, L. Mansinha, and J.R. Mitchell. 2003. A new local multiscale Fourier analysis for medical imaging. Medical Physics 30: 1134–1141.CrossRefPubMedGoogle Scholar
  72. Zinn, P.O., B. Majadan, P. Sathyan, S.K. Singh, S. Majumder, F.A. Jolesz, and R.R. Colen. 2011. Radiogenomic Mapping of Edema/Cellular Invasion MRI-Phenotypes in Glioblastoma Multiforme. Plos One 6: e25451.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michael Lehrer
    • 1
  • Reid T. Powell
    • 2
  • Souptik Barua
    • 3
  • Donnie Kim
    • 1
  • Shivali Narang
    • 1
  • Arvind Rao
    • 4
  1. 1.Department of Bioinformatics and Computational BiologyUniversity of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Institute of Biosciences and TechnologyTexas A&M University Health Science CenterHoustonUSA
  3. 3.Department of Electrical and Computer EngineeringRice UniversityHoustonUSA
  4. 4.Department of Bioinformatics and Computational BiologyUnit 1410, The University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations