Maximal Safe Resection in Glioblastoma: Use of Adjuncts

  • Daria Krivosheya
  • Marcos Vinicius Calfatt Maldaun
  • Sujit S. Prabhu
Part of the Current Cancer Research book series (CUCR)


Glioblastoma is a malignant primary brain neoplasm for which no cure exists due to the infiltrative nature of this tumor. Maximal safe resection is the cornerstone of treatment that was shown to prolong patient survival. To maximize the extent of resection while preserving neurological status of the patient, good understanding of tumor anatomy as well as location of eloquent cortex and subcortical pathways is required. A number of imaging and functional adjuncts can be used before and during surgery to achieve both of these goals. This chapter first describes the use of preoperative adjuncts such as functional MRI, diffusion tensor imaging, navigated transcranial magnetic stimulation, and others, to help with preoperative planning. Furthermore, it describes the principles of intraoperative techniques such as fluorescence, direct electrical stimulation, and awake craniotomy, that allow intraoperative visualization of tumor tissue as well as mapping of functional cortical and subcortical areas to safely accomplish maximal tumor resection.


Glioma Glioblastoma Cortical mapping Awake craniotomy Functional MRI Diffusion tensor imaging Navigated transcranial magnetic stimulation 


  1. Axelson, H.W., G. Hesselager, and R. Flink. 2009. Successful localization of the Broca area with short-train pulses instead of “Penfield” stimulation. Seizure 18: 374–375.CrossRefPubMedGoogle Scholar
  2. Cedzich, C., M. Taniguchi, S. Schäfer, and J. Schramm. 1996. Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery 38: 962–970.CrossRefPubMedGoogle Scholar
  3. Chang, E.F., K.P. Raygor, and M.S. Berger. 2015. Contemporary model of language organization: An overview for neurosurgeons. Journal of Neurosurgery 122: 250–261.Google Scholar
  4. Coburger, J., A. Merkel, M. Scherer, F. Schwartz, F. Gessler, C. Roder, et al. 2016. Low-grade glioma surgery in intraoperative magnetic resonance imaging: Results of a multicenter retrospective assessment of the German study group for intraoperative magnetic resonance imaging. Neurosurgery 78: 775–786.CrossRefPubMedGoogle Scholar
  5. Fouke, S.J., T. Benzinger, D. Gibson, T.C. Ryken, S.N. Kalkanis, and J.J. Olson. 2015. The role of imaging in the management of adults with diffuse low grade glioma. Journal of Neuro-Oncology 125: 457–479.CrossRefPubMedGoogle Scholar
  6. Frey, D., S. Schilt, V. Strack, A. Zdunczyk, J. Rösler, B. Niraula, et al. 2014. Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neuro-Oncology 16: 1365–1372.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gerganov, V.M., A. Samii, M. Giordano, M. Samii, and R. Fahlbusch. 2011. Two-dimensional high-end ultrasound imaging compared to intraoperative MRI during resection of low-grade gliomas. Journal of Clinical Neuroscience 18: 669–673.CrossRefPubMedGoogle Scholar
  8. Hervey-Jumper, S.L., J. Li, D. Lau, A.M. Molinaro, D.W. Perry, L. Meng, et al. 2015. Awake craniotomy to maximize glioma resection: Methods and technical nuances over a 27-year period. Journal of Neurosurgery 123: 325–339.Google Scholar
  9. Jakola, A.S., K.S. Myrmel, R. Kloster, S.H. Torp, S. Lindal, G. Unsgård, et al. 2012. Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA 308: 1881–1888.CrossRefPubMedGoogle Scholar
  10. Knauth, M., C.R. Wirtz, V.M. Tronnier, N. Aras, S. Kunze, and K. Sartor. 1999. Intraoperative MR imaging increases the extent of tumor resection in patients with high-grade gliomas. AJNR. American Journal of Neuroradiology 20: 1642–1646.PubMedGoogle Scholar
  11. Kombos, T., O. Suess, O. Ciklatekerlio, and M. Brock. 2001. Monitoring of intraoperative motor evoked potentials to increase the safety of surgery in and around the motor cortex. Journal of Neurosurgery 95: 608–614.CrossRefPubMedGoogle Scholar
  12. Korvenoja, A., E. Kirveskari, H.J. Aronen, S. Avikainen, A. Brander, J. Huttunen, et al. 2006. Sensorimotor cortex localization: comparison of magnetoencephalography, functional MR imaging, and intraoperative cortical mapping. Radiology 241: 213–222.CrossRefPubMedGoogle Scholar
  13. Krieg, S.M., J. Sabih, L. Bulubasova, T. Obermueller, C. Negwer, I. Janssen, et al. 2014. Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions. Neuro-Oncology 16: 1274–1282.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Krieg, S.M., E. Shiban, N. Buchmann, J. Gempt, A. Foerschler, B. Meyer, et al. 2012a. Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. Journal of Neurosurgery 116: 994–1001.CrossRefPubMedGoogle Scholar
  15. Krieg, S.M., E. Shiban, D. Droese, J. Gempt, N. Buchmann, H. Pape, et al. 2012b. Predictive value and safety of intraoperative neurophysiological monitoring with motor evoked potentials in Glioma surgery. Neurosurgery 70: 1060–1071.CrossRefPubMedGoogle Scholar
  16. Krings, T., M. Schreckenberger, V. Rohde, U. Spetzger, O. Sabri, M.H.T. Reinges, et al. 2002. Functional MRI and 18F FDG-positron emission tomography for presurgical planning: Comparison with electrical cortical stimulation. Acta Neurochir (Wien) 144:889–99– discussion 899.Google Scholar
  17. Kuchcinski, G., C. Mellerio, J. Pallud, E. Dezamis, G. Turc, O. Rigaux-Viodé, et al. 2015. Three-tesla functional MR language mapping: Comparison with direct cortical stimulation in gliomas. Neurology 84: 560–568.CrossRefPubMedGoogle Scholar
  18. Kumar, V.A., J. Hamilton, L.A. Hayman, A.J. Kumar, G. Rao, J.S. Weinberg, et al. 2013. Deformable anatomic templates improve analysis of gliomas with minimal mass effect in eloquent areas. Neurosurgery 73: 534–542.CrossRefPubMedGoogle Scholar
  19. Lacroix, M., D. Abi-Said, D.R. Fourney, Z.L. Gokaslan, W. Shi, F. DeMonte, et al. 2001. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. Journal of Neurosurgery 95: 190–198.CrossRefPubMedGoogle Scholar
  20. Le Roux, P.D., M.S. Berger, K. Wang, L.A. Mack, and G.A. Ojemann. 1992. Low grade gliomas: comparison of intraoperative ultrasound characteristics with preoperative imaging studies. Journal of Neuro-Oncology 13: 189–198.Google Scholar
  21. Lefaucheur, J.-P., and T. Picht. 2016. The value of preoperative functional cortical mapping using navigated TMS. Neurophysiologie clinique = Clinical neurophysiology 46: 125–133.CrossRefPubMedGoogle Scholar
  22. Li, Y.M., D. Suki, K. Hess, and R. Sawaya. 2016. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection? Journal of Neurosurgery 124: 977–988.CrossRefPubMedGoogle Scholar
  23. McGirt, M.J., D. Mukherjee, K.L. Chaichana, K.D. Than, J.D. Weingart, A. Quinones-Hinojosa. 2009. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery 65:463–9– discussion 469–70.Google Scholar
  24. Nabavi, A., H. Thurm, B. Zountsas, T. Pietsch, H. Lanfermann, U. Pichlmeier, et al. 2009. Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: A phase ii study. Neurosurgery 65:1070–6– discussion 1076–7.Google Scholar
  25. Nimsky, C., O. Ganslandt, P. Hastreiter, R. Wang, T. Benner, A.G. Sorensen, et al. 2007. Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 61:178–85– discussion 186Google Scholar
  26. Nossek, E., A. Korn, T. Shahar, A.A. Kanner, H. Yaffe, D. Marcovici, et al. 2011. Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. Clinical article. Journal of Neurosurgery 114: 738–746.CrossRefPubMedGoogle Scholar
  27. Nossek, E., I. Matot, T. Shahar, O. Barzilai, Y. Rapoport, T. Gonen, et al. 2013. Failed awake craniotomy: a retrospective analysis in 424 patients undergoing craniotomy for brain tumor. Journal of Neurosurgery 118: 243–249.CrossRefPubMedGoogle Scholar
  28. Ohue, S., S. Kohno, A. Inoue, D. Yamashita, H. Harada, Y. Kumon, et al. 2012. Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: A significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurgery 70:283–93– discussion 294.Google Scholar
  29. Penfield, W., E. Boldrey. 1937. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60: 389–443.Google Scholar
  30. Picht, T., D. Frey, S. Thieme, S. Kliesch, and P. Vajkoczy. 2016. Presurgical navigated TMS motor cortex mapping improves outcome in glioblastoma surgery: a controlled observational study. Journal of Neuro-Oncology 126: 535–543.CrossRefPubMedGoogle Scholar
  31. Prabhu, S.S., J. Gasco, S. Tummala, J.S. Weinberg, and G. Rao. 2011. Intraoperative magnetic resonance imaging-guided tractography with integrated monopolar subcortical functional mapping for resection of brain tumors. Clinical article. Journal of Neurosurgery 114: 719–726.CrossRefPubMedGoogle Scholar
  32. Prada, F., l. Mattei, M. Del Bene, L. Aiani, M. Saini, C. Casali, A. Filippini, F.G. Legnani, A. Perin, A. Saladino, I.G. Vetrano, L. Solbiati, A. Martegani, and F. DiMeco, 2014. Clinical StudyIntraoperative Cerebral Glioma Characterization with Contrast Enhanced Ultrasound. BioMed Research International 2014, 1–9. doi: 10.1155/2014/484261.
  33. Pujol, S., W. Wells, C. Pierpaoli, C. Brun, J. Gee, G. Cheng, et al. 2015. The DTI challenge: Toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery. Journal of Neuroimaging 25: 875–882.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Raabe, A., J. Beck, P. Schucht, and K. Seidel. 2014. Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. Journal of Neurosurgery 120: 1015–1024.CrossRefPubMedGoogle Scholar
  35. Rivaz, H., S.J.-S. Chen, and D.L. Collins. 2015. Automatic deformable MR-ultrasound registration for image-guided neurosurgery. IEEE Transactions on Medical Imaging 34: 366–380.CrossRefPubMedGoogle Scholar
  36. Sanai, N., M.-Y. Polley, M.W. McDermott, A.T. Parsa, and M.S. berger. 2011. An extent of resection threshold for newly diagnosed glioblastomas. Journal of Neurosurgery 115: 3–8.CrossRefPubMedGoogle Scholar
  37. Schreiber, A., U. Hubbe, S. Ziyeh, and J. Hennig. 2000. The influence of gliomas and nonglial space-occupying lesions on blood-oxygen-level-dependent contrast enhancement. AJNR. American Journal of Neuroradiology 21: 1055–1063.PubMedGoogle Scholar
  38. Seidel, K., J. Beck, L. Stieglitz, P. Schucht, and A. Raabe. 2013. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. Journal of Neurosurgery 118: 287–296.CrossRefPubMedGoogle Scholar
  39. Senft, C., A. Bink, K. Franz, H. Vatter, T. Gasser, and V. Seifert. 2011. Intraoperative MRI guidance and extent of resection in glioma surgery: A randomised, controlled trial. The Lancet Oncology 12: 997–1003.CrossRefPubMedGoogle Scholar
  40. Serra, C., A. Stauffer, B. Actor, J.-K. Burkhardt, N.H.-B. Ulrich, R.-L. Bernays, et al. 2012. Intraoperative high frequency ultrasound in intracerebral high-grade tumors. Ultraschall in der Medizin 33: E306–E312.CrossRefPubMedGoogle Scholar
  41. Stummer, W., U. Pichlmeier, T. Meinel, O.D. Wiestler, F. Zanella, H.-J. Reulen, et al. 2006. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncology 7: 392–401.CrossRefPubMedGoogle Scholar
  42. Taniguchi, M., C. Cedzich, and J. Schramm. 1993. Modification of cortical stimulation for motor evoked potentials under general anesthesia: Technical description. Neurosurgery 32: 219–226.CrossRefPubMedGoogle Scholar
  43. Tarapore, P.E., M.C. Tate, A.M. Findlay, S.M. Honma, D. Mizuiri, M.S. berger, et al. 2012. Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. Journal of Neurosurgery 117: 354–362.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Trinh, V.T., D.K. Fahim, M.V.C. Maldaun, K. Shah, I.E. McCutcheon, G. Rao, et al. 2014. Impact of preoperative functional magnetic resonance imaging during awake craniotomy procedures for intraoperative guidance and complication avoidance. Stereotactic and Functional Neurosurgery 92: 315–322.CrossRefPubMedGoogle Scholar
  45. Tuch, D.S., T.G. Reese, M.R. Wiegell, N. Makris, J.W. Belliveau, and V.J. Wedeen. 2002. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine 48: 577–582.CrossRefPubMedGoogle Scholar
  46. Ulmer, J.L., L. Hacein-Bey, V.P. Mathews, W.M. Mueller, E.A. DeYoe, R.W. Prost, et al. 2004. Lesion-induced pseudo-dominance at functional magnetic resonance imaging: Implications for preoperative assessments. Neurosurgery 55:569–79– discussion 580–1.Google Scholar
  47. Vabulas, M., V.A. Kumar, J.D. Hamilton, J.J. Martinez, G. Rao, R. Sawaya, et al. 2014. Real-time atlas-based stereotactic neuronavigation. Neurosurgery 74:128–34– discussion 134.Google Scholar
  48. Wedeen, V.J., P. Hagmann, W.-Y.I. Tseng, T.G. Reese, and R.M. Weisskoff. 2005. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic Resonance in Medicine 54: 1377–1386.CrossRefPubMedGoogle Scholar
  49. Willems, P.W.A., M.J.B. Taphoorn, H. Burger, Berkelbach van der Sprenkel JW, and C.A.F. Tulleken. 2006. Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: A randomized controlled trial. Journal of Neurosurgery 104: 360–368.CrossRefPubMedGoogle Scholar
  50. Wu, J-S., L.-F. Zhou, W.-J. Tang, Y. Mao, J. Hu, Y.-Y. Song, et al. 2007. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: A prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 61:935–48– discussion 948–9.Google Scholar
  51. Zhu, F.-P., J.-S. Wu, Y.-Y. Song, C.-J. Yao, D.-X. Zhuang, G. Xu, et al. 2012. Clinical application of motor pathway mapping using diffusion tensor imaging tractography and intraoperative direct subcortical stimulation in cerebral glioma surgery: A prospective cohort study. Neurosurgery 71: 1170–1183.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Daria Krivosheya
    • 1
  • Marcos Vinicius Calfatt Maldaun
    • 2
  • Sujit S. Prabhu
    • 1
  1. 1.Department of NeurosurgeryUniversity of Texas M. D. Anderson Cancer CenterHoustonUSA
  2. 2.Division of Neurosurgery of Sírio Libanês HospitalSão PauloBrazil

Personalised recommendations