Skip to main content

Current Trend in Bamboo Analysis

  • Chapter
  • First Online:
Bamboo

Abstract

The focus of most design and manufacturing firms is to improve product quality with high efficiency and at lower cost. Material properties and cost are critical for achieving production efficiency. Finite Element Analysis (FEA) has proven to be a valuable tool for limiting inefficiencies and improving reliability in most engineering designs. A brief review of the FEA process and its use in wood and bamboo characterisation is presented in this chapter. Additionally, the use of FEA for simulation of bamboo behaviour under tensile, compression, and bending is discussed. The second part of this chapter discusses some significant studies conducted on bamboo as a Functionally Graded Material (FGM). Understanding the FGM property of bamboo will legitimise it for many more industrial and engineering use. Other artificial materials can be developed to exhibit similar optimised functionalisation. Experimental work is also carried out to show the microstructure of the vascular bundle. An optimised design that is a function of adaptability to environmental loading is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amada S (1995) Mater Res Soc Bull 20:35

    Article  Google Scholar 

  • Amada S, Munekata T, Nagase Y, Ichikawa Y, Kirigai A, Zhifei Y (1996) The mechanical structures of bamboos in viewpoint of functionally gradient and composite materials. J Compos Mater 30:800–819

    Google Scholar 

  • Amada S, Lakes RS (1997) J Mater Sci 32:2693

    Article  Google Scholar 

  • Amada S, Ichikawa Y, Munekata T, Nagase Y, Shimizu H (1997) Fiber texture and mechanical graded structure of bamboo. Composites Part B: Engineering 28 (1–2):13–20

    Google Scholar 

  • Amada S, Untao S (2001) Fracture properties of bamboo. Compos B 32:451–459

    Article  Google Scholar 

  • Aronsson S, Lindgren CM (2000) Produktutveckling av möbler med hjälp av FEM (Product development of furniture with aid of FEM). Chalmers University of Technology, Göteborg, Sweden (in Swedish)

    Google Scholar 

  • Arun KB, Ranga RTK and Shankar KS (2002) Matchsticks from Bamboo. J Bamboo and Rattan 2(4):46–53

    Google Scholar 

  • Bathe KJ (1996) Finite element procedures. Prentice Hall, New Jersey, USA

    MATH  Google Scholar 

  • Blanchet P, Cloutier A, Gendron G, Beauregard R (2006) Engineered wood flooring design using the finite element method. Forest Prod J. 56(5):65

    Google Scholar 

  • Cai L, Chang J (1995) Using FEM to analyze heat transfer processes in wood. Holz als Roh-und Werkstoff. ISSN 0018-3768 53(3):183–186. http://dx.doi.org/10.1007/BF02716421

  • Cai L, Wang F (1993) Influence of the stiffness of corner joints on case furniture deflection. Holz Roh-Werkstoff 51:406–408. doi:10.1007/BF02628238

    Article  Google Scholar 

  • Cai L, Wang F, Tan H (1995) Study on the strength of moltinject corner joints of furniture. Holz als Roh-und Werkstoff 53(6):385–388. doi:10.1007/s001070050113

    Article  Google Scholar 

  • Chan SL, Wong KW, So YS, Pon SW (1998) Empirical design and structural performance of bamboo scaffolding. In: Proceedings of the symposium on bamboo and metal Scaffoldings, The Hong Kong Institution of Engineers

    Google Scholar 

  • Cook RD (1981) Concepts and applications of finite element analysis. Wiley, New York, USA

    MATH  Google Scholar 

  • Eckelman CA (1967) Chair frame analysis and design. For Prod J 17:100–106

    Google Scholar 

  • Eckelman CA, Suddarth S (1969) Analysis and design of furniture frames. Wood Sci Technol 3:239–255. doi:10.1007/BF00367215

    Article  Google Scholar 

  • Efe H, Erdil YZ, Kasal A (2003) Optimization of furniture systems with Finite Element Method (FEM) in engineering design of furniture. Technical Education Faculty. Gazi University, Ankara, Turkey

    Google Scholar 

  • Ekström R (1997) Konstruktionsdesign av möbler med FEM (Design of furniture with FEM). Lund Institute of Technology, Lund, Sweden

    Google Scholar 

  • Erdil YZ (1995) Integrated product engineering and performance testing of furniture. Ph. D. Thesis, Purdue University, West Lafayette, IN

    Google Scholar 

  • Garcia JJ, Rangel C, Ghavami K (2012) Experiments with rings to determine the anisotropic elastic constant of bamboo. Constr Build Mater 31:52–57

    Article  Google Scholar 

  • Ghavami K (1995) Cement & Concrete Compos. 17:281

    Article  Google Scholar 

  • Gordon JE (1978) Structures or Why Things Don’t Fall Down. Penguin Books, London p 17

    Google Scholar 

  • Gordon JE (1988) The science of structures and materials. Scient. Am. Library, p 176

    Google Scholar 

  • Gustafsson SI (1995) Furniture design by use of the finite element method. Holz als Roh- und Werkstoff 53(4):257–260. doi:10.1007/s001070050084

    Article  Google Scholar 

  • Gustafsson SI (1996a) Finite element modelling versus reality for birch chairs. Holz als Roh-und Werkstoff 54(5):355–359. doi:10.1007/s001070050200

    Article  Google Scholar 

  • Gustafsson SI (1996b) Stability problems in optimised chairs. Wood Sci Technol 39:339–345. doi:10.1007/BF00223553

  • Gustafsson SI (1997) Optimising ash wood chairs. Wood Sci Technol 3:291–301. doi:10.1007/BF00702616

    Article  Google Scholar 

  • Janssen JJA (1995) Building with bamboo. Intermediate Technology Publications, London

    Book  Google Scholar 

  • Khatry R, Mishra DP (2012) Finite element analysis of bamboo column along with steel socket joint under loading condition. Int J Appl Eng Res 7(11)

    Google Scholar 

  • Kingsley U, Ehi IP, Adgidzi D (2015) Finite element analysis of bamboo bicycle frame. Br J Mathematics & Comput Sci 5(5):583–594

    Article  Google Scholar 

  • Lam F, Lee G, Yan H, Gu J, Saravi AA (2004) Structural performance of wood-based stair stringers. Forest Prod J. 54(4):39–44

    Google Scholar 

  • Lo TY, Cui HZ, Leung HC (2004) Mater Lett 58:2595

    Article  Google Scholar 

  • Mattheck C (1990) Engineering Components grow like trees. Materialwissenschaft und Werkstofftechnik 21(4):143–168

    Google Scholar 

  • Mattheck C, Burkhardt S (1990) A new method of structural shape optimization based on biological growth. Int J Fatigue 12(3):185–190

    Google Scholar 

  • Miyamoto Y, Kaysser W, Rabin B, Kawasaki A, Ford R (1999) Functionally graded materials: design, processing and applications. Kluwer Academic Publishers

    Google Scholar 

  • Nicholls T, Crisan R (2002) Study of the stress-strain state in corner joints and box-type furniture using FEA. Holz als Roh- und Werkstoff 60:66–71. doi:10.1007/s00107-001-0262-0

    Article  Google Scholar 

  • Nogata F, Takahashi H (1995) Intelligent functionally graded material: Bamboo. Compos Eng 5 (7):743–751

    Google Scholar 

  • Nugroho N, Ando NJ (2001) Wood Scler 47:237

    Article  Google Scholar 

  • Olsson P, Eriksson P, Olsson K (2004) Computer-supported furniture design at an early conceptual stage. Int J Des Comput 7

    Google Scholar 

  • Pousette A (2003) Full-scale test and finite element analysis of a wooden spiral staircase. Holz als Roh-und Werkstoff 61(1):1–7. doi:10.1007/s00107-002-0345-6

    Article  Google Scholar 

  • Pousette A (2007) Finite element analysis and test of join at the center pole of a wooden spiral stair. Forest Prod J 57(5):25–29

    Google Scholar 

  • Ray AK, Das SK, Mandal S, Ramachandrarao P (2004) ibid. 39:1055

    Google Scholar 

  • Salokangas L (2003) Wooden observation tower. Helsinki, Finland. Struct Eng Int 3:160–162

    Article  Google Scholar 

  • Seiichiro U, Minoru M (2002) Wood and wood based materials. Fracture analysis of wood in moment-resisting joints with four drift-pins using Digital Image Correlation method (DIC). J Soc Mat Sci 51(4):367–372. doi:10.1007/s00226-005-0026-9

  • Silva ECN, Walters MC, Paulino GH (2006) modeling bamboo as a functionally graded material. In: Paulino GH, Pmdera MJ, Dodds RH, Rochinha Jr FA, Dave EV, Chen OL (ed) American Institute of Physics

    Google Scholar 

  • Smardzewski J (1990) Numerical analysis of furniture construction using finite elements method. Przem Drzewn 41(7):1–5. [In Polish]. doi:10.1007/BF00702895

  • Smardzewski J (1992) Numeryczna optymalizacja konstrukcji krzesel. Przem Drzewn, No 1

    Google Scholar 

  • Smardzewski J, GawroÅ„ski T (2001) FEM algorithm of chair optimisation. Electron J Pol Agric Univ 4(2)

    Google Scholar 

  • Smardzewski J., DziÄ™gielewski S (1997) Computer assisted optimization of selected cross-sections of furniture elements. X Sesja Naukowa Badania dla Meblarstwa. PoznaÅ„, pp 9–21

    Google Scholar 

  • Tankut N, Tankut AN, Zor M (2014) Finite element analysis of wood materials. Drvna Industrija 65(2):159–171

    Article  Google Scholar 

  • Tanvir WS, Utku M (1987) Sonlu eleman yönteminde varyasyonlu yaklaşım. Orta DoÄŸu Teknik Ãœniversitesi, Anadolu Ãœniversitesi, EskiÅŸehir

    Google Scholar 

  • Verma CS, Chariar VM, Purohit R (2012) Tensile strength analysis of bamboo and layered laminate bamboo composites. Int J Eng Res Appl (IJERA) 2(2):1253–1264

    Google Scholar 

  • Yang P, Michiyo T, Hayato M, Yasuo O (2002) Structural design improvement of wooden school desks and chairs based on the Hoffman failure criterion. J Jpn Soc Technol Educ 44(3):133–138

    Google Scholar 

  • Yu WK, Chung KF, Chan SL (2005) Axial Buckling of bamboo columns in a bamboo scaffolds. Eng Struct 27:61–73

    Article  Google Scholar 

  • Zienkiewicz OC, Taylor RL (1988) The finite element method: vol. 1-basic formulation and linear problems. McGraw Hill, London

    Google Scholar 

  • Zienkiewicz, OC, Taylor RL (1989) The finite element method: vol. 2-solid and fluid mechanics, dynamics and non-linearity. McGraw Hill, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Titilayo Akinlabi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Akinlabi, E.T., Anane-Fenin, K., Akwada, D.R. (2017). Current Trend in Bamboo Analysis. In: Bamboo. Springer, Cham. https://doi.org/10.1007/978-3-319-56808-9_6

Download citation

Publish with us

Policies and ethics