Skip to main content

Bamboo as Fuel

  • Chapter
  • First Online:
Bamboo

Abstract

The rising cost of, and pressure on reserves of, fossil fuels such as petroleum, coupled with sustainability and environmental issues, has led to research in alternative biofuels that are greener and more sustainable. One such biofuel is bamboo. Its fast growth rate is one of the main driving factors for its consideration as a sustainable option. In this study, a review is conducted of the production of charcoal, pellets, ethanol, and methane gas from bamboo. Bamboo has been found to be capable of generating commercial quantities of ethanol and methane gas. However, pre-treatment process optimisation is still required. Experimentation on bamboo pellets to determine their average calorific value and the fluent-as emission levels associated with their combustion is reported. The average calorific value (CV) observed for bamboo pellets is of 17,650 J/kg, which satisfies the minimum requirement for commercial use. Emissions from the combustion of pellets were within acceptable limits. Bamboo is therefore considered a viable alternative to fossil fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adapa PK, Singh AK, Schoenau GJ, Tabil LG (2006) Pelleting characteristics of fractionated alfalfa grinds: hardness models. Power Handling and Process 18:1–6

    Google Scholar 

  • Afrin T, Tsuzuki T, Wang X (2009) Bamboo fibres and their unique properties, Natural fibres in Australasia. In: proceedings of the combined (NZ and AUS) Conference of The Textile Institute, Dunedin, New Zealand, 15–17 Apr 2009, pp 77–82

    Google Scholar 

  • Alizadeh H, Teymouri F, Gilbert TI, Dale BE (2005) Pretreatment of switchgrass by ammonia fiber explosion. Appl Biochem Biotechnol 1133–1141

    Google Scholar 

  • Anyang Gemco Energy Machinery (2016) 7 steps of fuel pellets production process. http://www.pelletmillsolution.com/blogs/7-Steps-of-Fuel-Pellets-Production-Process.html. Accessed 23 Sept 2016

  • Arisutha S, Baredar P, Deshpande DM, Suresh S (2016) Effects of thermo-chemical pre-treatment on bamboo for biogas production. Indian Institute of Chem Eng 58(1):79–88

    Article  Google Scholar 

  • Asada C, Nakamura Y, Kobayashi F (2005) Waste reduction system for production of useful materials from un-utilized bamboo using steam explosion followed by various conversion methods. Biochem Eng J 23:131–137

    Article  Google Scholar 

  • Azuma J, Koshijima T (1983) Hydrolysis of wood polysaccharides by enzyme system. Mokuzai Kenkyu Shiryo 17:1–20

    Google Scholar 

  • Beall FC, Eickner HW (1970) Thermal degradation of wood components: a review of the Literature. U.S.D.A. Forest service, research paper FPL 130

    Google Scholar 

  • Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. PNAS 107:4516–4521

    Article  Google Scholar 

  • Brownell HH, Yu EKC, Saddler JN (1986) Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnol Bioeng 28:792–801

    Article  Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting enzymatic reactivity. Appl Biochem Biotechnol 5–37

    Google Scholar 

  • Chang VS, Kaar WE, Burr B, Holtzapple MT (2001) Simultaneous saccharification and fermentation of lime-treated biomass. Biotechnol Lett 23(16):1327–1333

    Article  Google Scholar 

  • Chang VS, Nagwani M, Holtzapple MT (1998) Lime pretreatment of crop residues bagasse and wheat straw. Appl Biochem Biotechnol 74:135–159

    Article  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review Bioresour Technol 99: 4044–4064

    Google Scholar 

  • Cirne DG, Lehtomäki A, Björnsson L, Blackall LL, (2007) Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops. J Appl Microbiol 103(3):516–527

    Google Scholar 

  • Clausen EC, Gaddy JL (1993) Concentrated sulfuric acid process for converting lignocellulosic materials to sugars. US patent, No. 5, 188, 673

    Google Scholar 

  • Cowling EB, Kirk TK (1976) Properties of cellulose and lignocellulosic materials as substrates for enzymatic conversion process. Biotechnol Bioeng Symp 6:95–123

    Google Scholar 

  • Crespo CF, Badshah M, Alvarez MT, Mattiasson B (2012) Ethanol production by continuous fermentation of d-(+)-cellobiose, d-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe caloramator boliviensis. Bioresour Technol 103:186

    Article  Google Scholar 

  • Delgenés JP, Penaud V, Moletta R (2002) Pretreatments for the enhancement of anaerobic digestion of solid wastes Chapter 8. In: Biomethanization of the organic fraction of municipal solid wastes. IWA Publishing, pp 201–228

    Google Scholar 

  • Demenezes TJB, Dossantos CLM, Azzini A (1983) Saccharification of bamboo carbohydrates for the production of ethanol. Biotechnol Bioeng 25:1071–1082

    Article  Google Scholar 

  • Deublein D, Steinhauser A (2011) Biogas from Waste and Renewable Resources. 2nd edn. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Domansky R, Rendos F (1962) On the pyrolysis of wood and its components. Holz Roh Werkst 29:473–476

    Article  Google Scholar 

  • FAO (2009) State of the World’s forests. Food and Agriculture Organisation of the UN, Rome, Italy

    Google Scholar 

  • FAO (2013) Statistical yearbook 2013. http://www.fao.org/docrep/018/i3107e/i3107e.PDF. World Food and Agriculture. Accessed Oct 2016

  • Food and Agriculture Organization of the United Nations (FAO) (2010). Criteria and indicators for sustainable wood fuels. Rome

    Google Scholar 

  • Faizal HM, Latiff ZA, Wahid MA, Darus AN (2010) Physical and combustion characteristics of biomass residues from palm oil mills. In: New aspects of fluid mechanics, heat transfer and environment, pp 34–38.

    Google Scholar 

  • Fan LT, Gharpuray MM, Lee YH (1987) Cellulose hydrolysis. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  Google Scholar 

  • Fengel D, Wegener G (1983) Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Fernandes TV, Klaasse Bos GJ, Zeeman G, Sanders JPM, Van Lier JB (2009) Effect of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lingo-cellulosic biomass. Bioresour Technol 100:2575–2579

    Article  Google Scholar 

  • Frigon J-C, Guiot SR (2010) Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuels, Bioproducts and Biorefining, 4(4):447–458

    Google Scholar 

  • Frigon JC, Mehta P, Guiot SR (2012) Impact of mechanical, chemical and enzymatic pretreatments on the methane yield from the anaerobic digestion of switchgrass. Biomass Bioenergy 36:1–11

    Article  Google Scholar 

  • Fu DB, Mazza G (2011) Aqueous ionic liquid pretreatment of straw. Bioresour Technol 102:7008–7011

    Article  Google Scholar 

  • Fujii Y, Azuma J, Marchessault RH, Morin FG, Aibara S, Okamura K (1993) Chemical composition change of bamboo accompanying its growth. Holzforschung 47:109–115

    Article  Google Scholar 

  • Fukuma M, Takesada K, Yasunishi A (1993) Methane production through two-phase anaerobic treatment of wastewater containing cellulose with high solid content and some easily digestible organic matters. Kagaku Kogaku Ronbunsyu 19:885–892

    Article  Google Scholar 

  • Fu JH, Chen W (2009) Profile of bamboo charcoal museum in Suichang County, Zhejiang 2009. World Bamb Rattan 7(5):1–45

    Google Scholar 

  • Gandi J, Holtzapple MT, Ferrer A, Byers FM, Turner ND, Nagwani M, Chang S (1997) Lime treatment of agricultural residues to improve rumen digestibility. Anim Feed Sci Technol 68:195–211

    Article  Google Scholar 

  • Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holzforschung 57:191–202

    Google Scholar 

  • Goldstein IS, Bayat-Makooi F, Sabharwal HS, Singh TM (1989) Acid recovery by electrodialysis and its economic implications for concentrated acid hydrolysis of wood. Appl Biochem Biotechnol 20(21):95–106

    Article  Google Scholar 

  • Goldstein IS, Easter JM (1992) An improved process for converting cellulose to ethanol. Tappi J 8:135–140

    Google Scholar 

  • Gossett JM, Stuckey DC, Owen WF, McCarty PL (1982) Heat treatment and anaerobic digestion of refuse. J Environ Eng Div 108:437–454

    Google Scholar 

  • Gray KA, Zhao LS, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    Article  Google Scholar 

  • Gregg D, Saddler JN (1996) A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process. Appl Biochem Biotechnol 711–727

    Google Scholar 

  • Grethlein HE (1985) The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulose substrates. Bio/Technol 3:155–160

    Article  Google Scholar 

  • Grous WR, Converse AO, Grethlein HE (1986) Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme Microbiol Technol 8:274–280

    Article  Google Scholar 

  • Hartmann H, Angelidaki I, Ahring BK (1999) Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. In: Mata-Alvarez J, Tilche A, Cecchi F (eds) Proceedings of the second international symposium on anaerobic digestion of solid wastes, Barcelona, vol 1, pp 129–136

    Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  Google Scholar 

  • Hon DNS, Shiraishi N (2001) Wood and cellulosic chemistry, 2nd edn. Deker, New York

    Google Scholar 

  • Iranmahboob J, Nadim F, Monemi S (2002) Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass Bioenergy 22:401–404

    Article  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26:361–375

    Article  Google Scholar 

  • Kirk-Othmer (2001) Encyclopedia of chemical technology. Concise. 4th edn. Wiley Interscience

    Google Scholar 

  • Kobayashi F, Sawada T, Nakamura Y, Ohnaga M, Godliving M, Ushiyama T (1998) Saccharification and alcohol fermentation in starch solution of steam-exploded potato. Appl Biochem Biotechnol 69:177–189

    Article  Google Scholar 

  • Kobayashi F, Take H, Asada C, Nakamura Y (2004) Methane production from steam-exploded bamboo. J Biosci Bioeng 97:426–428

    Article  Google Scholar 

  • Kohlmann KL, Westgate PJ, Sarikaya A, Velayudhan A, Weil J, Hendrickson R et al (1995) Enhanced enzyme activities on hydrated lignocellulosic substrates. BTEC paper 127. In: 207th American Chemical Society National meeting, ACS Symposium series No. 618. Enzymatic degradation of insoluble carbohydrates, pp 237–255

    Google Scholar 

  • Kokta BV, Ahmed A (1998) Chapter 6, steam explosion pulping, environmentally friendly technologies for the Pulp and Paper Industry. Wiley, Hoboken.

    Google Scholar 

  • Koullas DP, Christakopoulos P, Kekos D, Macris BJ, Koukios EG (1992) Correlating the effect of pretreatment on the enzymatic hydrolysis of straw. Biotechnol Bioeng 39:113–116

    Article  Google Scholar 

  • Kumar R, Chandrashekar N (2014) Fuel properties and combustion characteristics of some promising bamboo species in India. Northeast Forestry University and Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Kurakake M, Kisaka W, Ouchi K, Komaki T (2001) Pretreatment with ammonia water for enzymatic hydrolysis of corn husk, bagasse, and switchgrass. Appl Biochem Biotechnol 90:251–259

    Article  Google Scholar 

  • Kuttiraja M, Sindhu R, Varghese PE, Sandhya SV, Binod P, Vani S et al (2013) Bioethanol production from bamboo (Dendrocalamus sp.) process waste, biomass and bioenergy, vol 59. Elsevier, Amsterdam, pp 142–150.

    Google Scholar 

  • Kuwahara M, Kagimura T, Takagi K (1984) Anaerobic Fermentation of Bark I. Effect of Treatment of Bark with White-rot Fungi and Chemicals on the Production of methane. Mokuzai Gakkaishi 30:769–776

    Google Scholar 

  • Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ Jr, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81:33–44

    Article  Google Scholar 

  • Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE (2005) Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotechnol 1081–1099

    Google Scholar 

  • Li CL, Cheng G, Balan V, Kent MS, Ong M, Chundawat SPS, Sousa L, Melnichenko YB, Dale BE, Simmons BA, Singh S (2011) Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresour Technol 102:6928–6936

    Article  Google Scholar 

  • Liu Z, Jiang Z, Cai Z, Fei B, Yu Y, Liu X (2012) The Manufacturing Process of Bamboo Pellets. In: Proceedings of the 55th International Convention of Society of Wood Science and Technology, Beijing, 27–31 August 2012

    Google Scholar 

  • Liu C, Wyman CE (2003) The effect of flow rate of compressed hot water on xylan, lignin and total mass removal from corn stover. Ind Eng Chem Res 42:5409–5416

    Article  Google Scholar 

  • Magellia F, Boucherb K, Bib HT, Melinc S, Bonolia A (2009) An environmental impact assessment of exported wood pellets from Canada to Europe, biomass and bioenergy, vol 33, pp 434–441

    Google Scholar 

  • Malisius U, Jauschnegg H, Schmidt H, Nilsson B, Rapp S, Strehler H (2000) Wood pellets in Europe. Industrial network on wood pellets. UMBERA GmbH, A-3100 St. Poelten, Schiessstattring

    Google Scholar 

  • Mason WH (1926) Process and apparatus for disintegration of wood and the like. US Patent: 1578609

    Google Scholar 

  • Michalska K, Ledakowicz S (2013) Alkali pre-treatment of Sorghum Moench for biogas production. Chem Pap 67:1130–1137

    Article  Google Scholar 

  • Mladenovska Z, Hartmann H, Kvist T, Sales-Cruz M, Gani R, Ahring BK (2006) Thermal pretreatment of the solid fraction of manure: Impact on the biogas reactor performance and microbial community. Water Sci Technol 53:59–67

    Article  Google Scholar 

  • Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005a) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993

    Article  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005b) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  • Nakamura Y, Mohammed M, Nagao M, Sawada T, Motoi M (1991) Modification of rice straw by steam explosion and enzymatic saccharification of steam-exploded products. Kagaku Kogaku Ronbunsyu 17:504–510

    Article  Google Scholar 

  • Nakamura Y, Sawada T, Kuwahara M, Motoi M (1989) Effect of explosion on saccharification and fermentation of biomass. Mokuzai Gakkaishi 35:663–668

    Google Scholar 

  • Nakamura Y, Sawada T, Sungusia MG, Kobayashi F, Kuwahara M, Ito H (1997) Lignin peroxidase production by Phanerochaete chrisosporium immobilized on polyurethane foam. J Chem Eng Jpn 30:1–6

    Article  Google Scholar 

  • Palmowski L, Muller J (1999) Influence of the size reduction of organic waste on their anaerobic digestion. In: II International symposium on anaerobic digestion of solid waste. Barcelona, 15–17 June, pp 137–144

    Google Scholar 

  • Palonen H, Thomsen AB, Tenkanen M, Schmidt AS, Viikari L (2004) Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Appl Biochem Biotechnol 117:1–17

    Article  Google Scholar 

  • Pilusa TJ, Huberts R, Muzenda E (2013) Emissions analysis from combustion of eco-fuel briquettes for domestic applications. J Energy in Southern Afr 24(4)

    Google Scholar 

  • Puri VP (1984) Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol Bioeng 26:1219–1222

    Article  Google Scholar 

  • Ram MS, Seenayya G (1991) Production of ethanol from straw and bamboo pulp by primary isolates of Clostridium thermocellum. World J Microb Biotechnol 7:372–378

    Article  Google Scholar 

  • Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26(6):863–871

    Article  Google Scholar 

  • Renewable Energy Policy Network for the 21st Century (2016) Renewables 2016 Global status report. http://Www.Ren21.Net/Wp-Content/Uploads/2016/06/Gsr_2016_Full_Report.Pdf. Accessed 17 Sept 2016

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    Article  Google Scholar 

  • Rutz D, Janssen R (2008) Biofuel Technology Handbook. WIP Renewable Energies, München

    Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  Google Scholar 

  • Sander KB, Hyseni, Haider W (2011) Wood-based biomass energy development for Sub-Saharan Africa: issues and approaches, ed. A. E. Unit. 2011. The World Bank, Washington, DC

    Google Scholar 

  • Sathitsuksanoh N, Zhu ZG, Ho TJ, Bai MD, Zhang YHP (2010) Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings. Bioresour Technol 101:4926–4929

    Article  Google Scholar 

  • Sawada T, Nakamura Y, Kobayashi F, Kuwahara M, Watanabe T (1995) Effects of fungal pretreatment and steam explosion pretreatment on enzymatic saccharification of plant biomass. Biotechnol Bioeng 48:719–724

    Article  Google Scholar 

  • Schütt F, Westereng B, Horn SJ, Puls J, Saake B (2012) Steam refining and alternative steam explosion. Biores Technol 111:476–481

    Article  Google Scholar 

  • Scurlock JMO, Dayton DC, Hames B (2000) Bamboo: an overlooked biomass resource. Biomass Bioenergy 19:229–244

    Article  Google Scholar 

  • Shen S, Nges IA, Yun J, Liu J (2014) Pre-treatments for enhanced biochemical methane potential of bamboo waste. Chem Eng J 240:253–259

    Article  Google Scholar 

  • Shimokawa T, Ishida M, Yoshida S, Nojiri M (2009) Effects of growth stage on enzymatic saccharification and simultaneous saccharification and fermentation of bamboo shoots for bioethanol production. Bioresour Technol 100:6651–6654

    Article  Google Scholar 

  • Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580

    Article  Google Scholar 

  • Song Z, Yang G, Guo Y, Zhang T (2012) Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. BioResource 7(3):3223–3236

    Google Scholar 

  • Steinfeld C (2001) A bamboo future, Environmental Design and Construction, 1–5

    Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83

    Google Scholar 

  • Sun Y, Lin L (2010) Hydrolysis behavior of bamboo fiber in formic acid reaction system. J Agric Food Chem 58:2253–2259

    Article  Google Scholar 

  • Sun ZY, Tang YQ, Iwanaga T, Sho T, Kida K (2011) Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. Bioresour Technol 102:10929–10935

    Article  Google Scholar 

  • Sun ZY, Tang YQ, Morimura S, Kida K (2013) Reduction in environmental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol. Bioresour Technol 128:87–93

    Article  Google Scholar 

  • Teixeira LC, Linden JC, Schroeder HA (1999) Alkaline and peracetic acid pretreatments of biomass for ethanol production. Appl Biochem Biotechnol 19–34

    Google Scholar 

  • Telmo C, Lousada J (2011) Heating values of wood pellets from different species. Biomass Bioenerg 35:2539–2634

    Google Scholar 

  • Thompson DN, Chen HC, Grethlein HE (1992) Comparison of pretreatment methods on the basis of available surface area. Bioresour Technol 39:155–163

    Article  Google Scholar 

  • UNDP, WHO (2009) The energy access situation in developing countries: a review focusing on the least developed countries and Sub-Saharan Africa. In: Legros G et al (eds). New York, USA

    Google Scholar 

  • Vinterback J (2004) Pellets 2002: the first world conference on pellets. Biomass Bioenerg 27:513–520

    Article  Google Scholar 

  • Wang X, Ren H (2008) Comparative Study of the Photo-discoloration of Moso Bamboo (Phyllostachys pubescens Mazel) and Two Wood Species. Appl Surf Sci 254:7029–7034

    Article  Google Scholar 

  • Wayman M, Obiaga TI (1974) The modular structure of lignin. Can J Chem 52:2102–2110

    Article  Google Scholar 

  • Weil JR, Brewer M, Hendrickson R, Sarikaya A, Ladisch MR (1997) Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water. Appl Biochem Biotechnol 68:21–40

    Article  Google Scholar 

  • Weil JR, Sarikaya A, Rau SL, Goebz J, Lasisch CM, Brewer M, Hendrickson R, Tadisch MR (1998) Pretreatment of corn fiber by pressure cooking in water. Appl Biochem Biotechnol 73:1–17

    Article  Google Scholar 

  • Wen JL, Xiao LP, Sun YC, Sun SN, Xu F, Sun RC, Zhang XL (2011) Comparative study of alkali-soluble hemicelluloses isolated from bamboo (Bambusarigida). Carbohydr Res 346:111–120

    Article  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour Technol 96:2026–2032

    Article  Google Scholar 

  • Xie S, Frost JP, Lawlor PG, Wu G, Zhan X (2011) Effects of thermo-chemical pretreatment of grass silage on methane production by anaerobic digestion. Bioresour Technol 102:8748–8755

    Article  Google Scholar 

  • Xu F (2010) Structure, ultrastructure, and chemical composition. In: Sun RC (ed) Cereal straw as a resource for sustainable biomaterials and biofuels. Elsevier, Amsterdam, pp 9–47

    Chapter  Google Scholar 

  • Yamashita Y, Shono M, Sasaki C, Nakamura Y (2010) Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohyd Polym 79:914–920

    Article  Google Scholar 

  • Yu WK, Chung KF, Chan SL (2003) Column buckling of structural bamboo, engineering structures, vol 25, no 6. Elsevier, Amsterdam, 755–768

    Google Scholar 

  • Yu Y, Lou X, Wu HW (2008) Some recent advances in hydrolysis of biomass in hot-compressed, water and its comparisons with other hydrolysis methods. Energy Fuels 22:46–60

    Article  Google Scholar 

  • Zhang XY, Yu HB, Huang HY, Liu YX (2007) Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeter Biodegr 60:159–164

    Article  Google Scholar 

  • Zhong W, Zhongzhi Z, Wei Q (2011) Comparison of Chemical and Biological Preteatment of Corn Straw for Biogas Production by Anaerobic Digestion. Renew Energ 36(6):1875–1879

    Google Scholar 

  • Zhang L, You T, Zhang L, Li M, Xu F (2014) Comprehensive utilization of waste hemicelluloses during ethanol production to increase lactic acid yield: from pretreatment to fermentation. Biotechnology for Biofuels, 7:494 doi: 10.1186/s13068-014-0189-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Titilayo Akinlabi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Akinlabi, E.T., Anane-Fenin, K., Akwada, D.R. (2017). Bamboo as Fuel. In: Bamboo. Springer, Cham. https://doi.org/10.1007/978-3-319-56808-9_4

Download citation

Publish with us

Policies and ethics