Skip to main content

Fas/CD95, Lipid Rafts, and Cancer

  • Chapter
  • First Online:
TRAIL, Fas Ligand, TNF and TLR3 in Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 12))

Abstract

Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts, are critical for the compartmentalization of signalling processes. Initially, lipid rafts were found to host signalling pathways related to cell survival and the immune system, but with the advent of the new millennium, lipid rafts were also found to host Fas/CD95 death receptor and to be involved in cell death signalling. In the last 15 years it has become clear that lipid rafts are crucial for the triggering of apoptosis mediated by Fas/CD95. Accumulating evidence has led to the notion that lipid rafts serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptor and downstream signalling molecules, thus leading to the formation of the so-called clusters of apoptotic signalling molecule-enriched rafts (CASMERs) that could be pharmacologically modulated. Despite the molecular mechanisms that regulate the recruitment of Fas/CD95 in lipid rafts remain to be unraveled, a number of protein modifications, together with additional proteins and signalling pathways have been suggested to play a role in both Fas/CD95-mediated apoptosis as well as death receptor association with lipid rafts. In this chapter, we discuss the involvement of lipid rafts in the regulation of Fas/CD95-induced apoptosis and its implications as a promising avenue for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagata S, Golstein P (1995) The Fas death factor. Science 267(5203):1449–1456

    Article  CAS  PubMed  Google Scholar 

  2. Wajant H (2014) Principles and mechanisms of CD95 activation. Biol Chem 395(12):1401–1416. doi:10.1515/hsz-2014-0212. /j/bchm.just-accepted/hsz-2014-0212/hsz-2014-0212.xml [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Roths JB, Murphy ED, Eicher EM (1984) A new mutation, gld, that produces lymphoproliferation and autoimmunity in C3H/HeJ mice. J Exp Med 159(1):1–20

    Article  CAS  PubMed  Google Scholar 

  4. Matsuzawa A, Moriyama T, Kaneko T, Tanaka M, Kimura M, Ikeda H, Katagiri T (1990) A new allele of the lpr locus, lprcg, that complements the gld gene in induction of lymphadenopathy in the mouse. J Exp Med 171(2):519–531

    Article  CAS  PubMed  Google Scholar 

  5. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356(6367):314–317. doi:10.1038/356314a0

    Article  CAS  PubMed  Google Scholar 

  6. Sneller MC, Straus SE, Jaffe ES, Jaffe JS, Fleisher TA, Stetler-Stevenson M, Strober W (1992) A novel lymphoproliferative/autoimmune syndrome resembling murine lpr/gld disease. J Clin Invest 90(2):334–341. doi:10.1172/JCI115867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IA, Debatin KM, Fischer A, de Villartay JP (1995) Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268(5215):1347–1349

    Article  CAS  PubMed  Google Scholar 

  8. Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, Strober W, Lenardo MJ, Puck JM (1995) Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81(6):935–946

    Article  CAS  PubMed  Google Scholar 

  9. Drappa J, Vaishnaw AK, Sullivan KE, Chu JL, Elkon KB (1996) Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N Engl J Med 335(22):1643–1649

    Article  CAS  PubMed  Google Scholar 

  10. Sneller MC, Wang J, Dale JK, Strober W, Middelton LA, Choi Y, Fleisher TA, Lim MS, Jaffe ES, Puck JM, Lenardo MJ, Straus SE (1997) Clinical, immunologic, and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood 89(4):1341–1348

    CAS  PubMed  Google Scholar 

  11. Shah S, Wu E, Rao VK, Tarrant TK (2014) Autoimmune lymphoproliferative syndrome: an update and review of the literature. Curr Allergy Asthma Rep 14(9):462. doi:10.1007/s11882-014-0462-4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gajate C, Mollinedo F (2015) Lipid raft-mediated Fas/CD95 apoptotic signaling in leukemic cells and normal leukocytes and therapeutic implications. J Leukoc Biol 98(5):739–759. doi:10.1189/jlb.2MR0215-055R. jlb.2MR0215-055R [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Li-Weber M, Krammer PH (2003) Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system. Semin Immunol 15(3):145–157

    Article  CAS  PubMed  Google Scholar 

  14. Lambert C, Landau AM, Desbarats J (2003) Fas-beyond death: a regenerative role for Fas in the nervous system. Apoptosis 8(6):551–562. doi:10.1023/A:1026113222478. 5150569 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Strasser A, Jost PJ, Nagata S (2009) The many roles of FAS receptor signaling in the immune system. Immunity 30(2):180–192. doi:10.1016/j.immuni.2009.01.001. S1074-7613(09)00069-7 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kleber S, Sancho-Martinez I, Wiestler B, Beisel A, Gieffers C, Hill O, Thiemann M, Mueller W, Sykora J, Kuhn A, Schreglmann N, Letellier E, Zuliani C, Klussmann S, Teodorczyk M, Grone HJ, Ganten TM, Sultmann H, Tuttenberg J, von Deimling A, Regnier-Vigouroux A, Herold-Mende C, Martin-Villalba A (2008) Yes and PI3K bind CD95 to signal invasion of glioblastoma. Cancer Cell 13(3):235–248. doi:10.1016/j.ccr.2008.02.003. S1535-6108(08)00043-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Chen L, Park SM, Tumanov AV, Hau A, Sawada K, Feig C, Turner JR, YX F, Romero IL, Lengyel E, Peter ME (2010) CD95 promotes tumour growth. Nature 465(7297):492–496. doi:10.1038/nature09075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Steller EJ, Borel Rinkes IH, Kranenburg O (2011) How CD95 stimulates invasion. Cell Cycle 10(22):3857–3862. doi:10.4161/cc.10.22.18290

    Article  CAS  PubMed  Google Scholar 

  19. Peter ME, Hadji A, Murmann AE, Brockway S, Putzbach W, Pattanayak A, Ceppi P (2015) The role of CD95 and CD95 ligand in cancer. Cell Death Differ 22(4):549–559. doi:10.1038/cdd.2015.3. cdd20153 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brint E, O’Callaghan G, Houston A (2013) Life in the Fas lane: differential outcomes of Fas signaling. Cell Mol Life Sci 70(21):4085–4099. doi:10.1007/s00018-013-1327-z

    Article  CAS  PubMed  Google Scholar 

  21. Gajate C, Mollinedo F (2001) The antitumor ether lipid ET-18-OCH3 induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood 98(13):3860–3863

    Google Scholar 

  22. Mollinedo F, Gajate C (2010) Lipid rafts and clusters of apoptotic signaling molecule-enriched rafts in cancer therapy. Future Oncol 6(5):811–821

    Article  CAS  PubMed  Google Scholar 

  23. Mollinedo F, Gajate C (2015) Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul 57:130–146. doi:10.1016/j.jbior.2014.10.003. S2212-4926(14)00058-X [pii]

    Article  CAS  PubMed  Google Scholar 

  24. Gajate C, Mollinedo F (2014) Lipid rafts, endoplasmic reticulum and mitochondria in the antitumor action of the alkylphospholipid analog edelfosine. Anticancer Agents Med Chem 14(4):509–527. ACAMC-EPUB-59567 [pii]

    Article  CAS  PubMed  Google Scholar 

  25. Gajate C, Mollinedo F (2015) Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling. Apoptosis 20(5):584–606. doi:10.1007/s10495-015-1104-6

    Article  CAS  PubMed  Google Scholar 

  26. Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47(7):1597–1598

    Article  CAS  PubMed  Google Scholar 

  27. Mollinedo F, Gajate C (2010) Lipid rafts, death receptors and CASMERs: new insights for cancer therapy. Future Oncol 6(4):491–494

    Article  CAS  PubMed  Google Scholar 

  28. Gajate C, Mollinedo F (2005) Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J Biol Chem 280(12):11641–11647. doi:10.1074/jbc.M411781200. M411781200 [pii]

    Article  CAS  PubMed  Google Scholar 

  29. Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, Hase A, Seto Y, Nagata S (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66(2):233–243. doi:10.1016/0092-8674(91)90614-5. [pii]

    Article  CAS  PubMed  Google Scholar 

  30. Itoh N, Nagata S (1993) A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268(15):10932–10937

    CAS  PubMed  Google Scholar 

  31. Nagata S (1997) Apoptosis by death factor. Cell 88(3):355–365

    Article  CAS  PubMed  Google Scholar 

  32. Mollinedo F, Gajate C (2006) FasL-independent activation of Fas. In: Wajant H (ed) Fas signaling (Chapter 2). Landes Bioscience and Springer Science, Georgetown, pp 13–27

    Chapter  Google Scholar 

  33. Mollinedo F, Gajate C (2006) Fas/CD95 death receptor and lipid rafts: new targets for apoptosis-directed cancer therapy. Drug Resist Updat 9(1–2):51–73. doi:10.1016/j.drup.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  34. Mollinedo F (2008) Death receptors in multiple myeloma and therapeutic opportunities. In: Lonial S (ed) Myeloma therapy. Pursuing the plasma cell (Chapter 25). Humana Press, Totowa, pp 393–419

    Google Scholar 

  35. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81(4):505–512. 0092-8674(95)90071-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  36. Dickens LS, Powley IR, Hughes MA, MacFarlane M (2012) The ‘complexities’ of life and death: death receptor signalling platforms. Exp Cell Res 318(11):1269–1277. doi:10.1016/j.yexcr.2012.04.005. S0014-4827(12)00188-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  37. Siegel RM, Chan FK, Chun HJ, Lenardo MJ (2000) The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol 1(6):469–474

    Article  CAS  PubMed  Google Scholar 

  38. Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ (2000) A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288(5475):2351–2354

    Article  CAS  PubMed  Google Scholar 

  39. Scott FL, Stec B, Pop C, Dobaczewska MK, Lee JJ, Monosov E, Robinson H, Salvesen GS, Schwarzenbacher R, Riedl SJ (2009) The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature 457(7232):1019–1022. doi:10.1038/nature07606. nature07606 [pii]

    Article  CAS  PubMed  Google Scholar 

  40. Boldin MP, Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85(6):803–815

    Article  CAS  PubMed  Google Scholar 

  41. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308

    Article  CAS  PubMed  Google Scholar 

  42. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14(22):5579–5588

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1(6):489–495

    Article  CAS  PubMed  Google Scholar 

  44. Pietkiewicz S, Eils R, Krammer PH, Giese N, Lavrik IN (2015) Combinatorial treatment of CD95L and gemcitabine in pancreatic cancer cells induces apoptotic and RIP1-mediated necroptotic cell death network. Exp Cell Res 339(1):1–9. doi:10.1016/j.yexcr.2015.10.005. S0014-4827(15)30110-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  45. Towns R, Pietropaolo M, Wiley JW (2008) Stimulation of autophagy by autoantibody-mediated activation of death receptor cascades. Autophagy 4(5):715–716. 6336 [pii]

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Wu Y, Cheng Y, Zhao Z, Tashiro S, Onodera S, Ikejima T (2008) Fas-mediated autophagy requires JNK activation in HeLa cells. Biochem Biophys Res Commun 377(4):1205–1210. doi:10.1016/j.bbrc.2008.10.151. S0006-291X(08)02123-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  47. Park MA, Reinehr R, Haussinger D, Voelkel-Johnson C, Ogretmen B, Yacoub A, Grant S, Dent P (2010) Sorafenib activates CD95 and promotes autophagy and cell death via Src family kinases in gastrointestinal tumor cells. Mol Cancer Ther 9(8):2220–2231. doi:10.1158/1535-7163.MCT-10-0274. 1535-7163.MCT-10-0274 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Landowski TH, Qu N, Buyuksal I, Painter JS, Dalton WS (1997) Mutations in the Fas antigen in patients with multiple myeloma. Blood 90(11):4266–4270

    CAS  PubMed  Google Scholar 

  49. Boldrini L, Loggini B, Gisfredi S, Zucconi Y, Baldinotti F, Fogli A, Simi P, Cervadoro G, Barachini P, Basolo F, Pingitore R, Fontanini G (2003) Mutations of Fas (APO-1/CD95) and p53 genes in nonmelanoma skin cancer. J Cutan Med Surg 7(2):112–118. doi:10.1007/s10227-002-0105-6

    Article  PubMed  Google Scholar 

  50. Peter ME, Legembre P, Barnhart BC (2005) Does CD95 have tumor promoting activities? Biochim Biophys Acta 1755(1):25–36. doi:10.1016/j.bbcan.2005.01.001

    CAS  PubMed  Google Scholar 

  51. Tauzin S, Debure L, Moreau JF, Legembre P (2012) CD95-mediated cell signaling in cancer: mutations and post-translational modulations. Cell Mol Life Sci 69(8):1261–1277. doi:10.1007/s00018-011-0866-4

    Article  CAS  PubMed  Google Scholar 

  52. Moller P, Koretz K, Leithauser F, Bruderlein S, Henne C, Quentmeier A, Krammer PH (1994) Expression of APO-1 (CD95), a member of the NGF/TNF receptor superfamily, in normal and neoplastic colon epithelium. Int J Cancer 57(3):371–377

    Article  CAS  PubMed  Google Scholar 

  53. Lebel M, Bertrand R, Mes-Masson AM (1996) Decreased Fas antigen receptor expression in testicular tumor cell lines derived from polyomavirus large T-antigen transgenic mice. Oncogene 12(5):1127–1135

    CAS  PubMed  Google Scholar 

  54. Shin EC, Shin JS, Park JH, Kim JJ, Kim H, Kim SJ (1998) Expression of Fas-related genes in human hepatocellular carcinomas. Cancer Lett 134(2):155–162. S0304-3835(98)00251-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  55. Ramenghi U, Bonissoni S, Migliaretti G, DeFranco S, Bottarel F, Gambaruto C, DiFranco D, Priori R, Conti F, Dianzani I, Valesini G, Merletti F, Dianzani U (2000) Deficiency of the Fas apoptosis pathway without Fas gene mutations is a familial trait predisposing to development of autoimmune diseases and cancer. Blood 95(10):3176–3182

    CAS  PubMed  Google Scholar 

  56. Maas S, Warskulat U, Steinhoff C, Mueller W, Grimm MO, Schulz WA, Seifert HH (2004) Decreased Fas expression in advanced-stage bladder cancer is not related to p53 status. Urology 63(2):392–397. doi:10.1016/j.urology.2003.08.023. S0090429503009129 [pii]

    Article  PubMed  Google Scholar 

  57. Rodriguez-Pinilla M, Rodriguez-Peralto JL, Hitt R, Sanchez JJ, Sanchez-Verde L, Alameda F, Ballestin C, Sanchez-Cespedes M (2005) beta-Catenin, Nf-kappaB and FAS protein expression are independent events in head and neck cancer: study of their association with clinical parameters. Cancer Lett 230(1):141–148. doi:10.1016/j.canlet.2004.12.045. S0304-3835(05)00008-X [pii]

    Article  CAS  PubMed  Google Scholar 

  58. Zhou Z, Lafleur EA, Koshkina NV, Worth LL, Lester MS, Kleinerman ES (2005) Interleukin-12 up-regulates Fas expression in human osteosarcoma and Ewing’s sarcoma cells by enhancing its promoter activity. Mol Cancer Res 3(12):685–691. doi:10.1158/1541-7786.MCR-05-0092. 3/12/685 [pii]

    Article  CAS  PubMed  Google Scholar 

  59. van Blitterswijk WJ, Klarenbeek JB, van der Luit AH, Alderliesten MC, van Lummel M, Verheij M (2009) Fas/CD95 down-regulation in lymphoma cells through acquired alkyllysophospholipid resistance: partial role of associated sphingomyelin deficiency. Biochem J 425(1):225–234

    Article  PubMed  CAS  Google Scholar 

  60. Hoogwater FJ, Steller EJ, Westendorp BF, Borel Rinkes IH, Kranenburg O (2012) CD95 signaling in colorectal cancer. Biochim Biophys Acta 1826(1):189–198. doi:10.1016/j.bbcan.2012.03.007

    CAS  PubMed  Google Scholar 

  61. Fouque A, Debure L, Legembre P (2014) The CD95/CD95L signaling pathway: a role in carcinogenesis. Biochim Biophys Acta 1846(1):130–141. doi:10.1016/j.bbcan.2014.04.007

    CAS  PubMed  Google Scholar 

  62. Legembre P, Schickel R, Barnhart BC, Peter ME (2004) Identification of SNF1/AMP kinase-related kinase as an NF-kappaB-regulated anti-apoptotic kinase involved in CD95-induced motility and invasiveness. J Biol Chem 279(45):46742–46747. doi:10.1074/jbc.M404334200. M404334200 [pii]

    Article  CAS  PubMed  Google Scholar 

  63. Legembre P, Barnhart BC, Peter ME (2004) The relevance of NF-kappaB for CD95 signaling in tumor cells. Cell Cycle 3(10):1235–1239

    Article  CAS  PubMed  Google Scholar 

  64. Peter ME, Budd RC, Desbarats J, Hedrick SM, Hueber AO, Newell MK, Owen LB, Pope RM, Tschopp J, Wajant H, Wallach D, Wiltrout RH, Zornig M, Lynch DH (2007) The CD95 receptor: apoptosis revisited. Cell 129(3):447–450

    Article  CAS  PubMed  Google Scholar 

  65. Guicciardi ME, Gores GJ (2009) Life and death by death receptors. FASEB J 23(6):1625–1637. doi:10.1096/fj.08-111005. fj.08-111005 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang Y, Liu Q, Zhang M, Yu Y, Liu X, Cao X (2009) Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2. J Immunol 182(6):3801–3808. doi:10.4049/jimmunol.0801548. 182/6/3801 [pii]

    Article  CAS  PubMed  Google Scholar 

  67. Ametller E, Garcia-Recio S, Costamagna D, Mayordomo C, Fernandez-Nogueira P, Carbo N, Pastor-Arroyo EM, Gascon P, Almendro V (2010) Tumor promoting effects of CD95 signaling in chemoresistant cells. Mol Cancer 9:161. doi:10.1186/1476-4598-9-161. 1476-4598-9-161 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lai YJ, Lin VT, Zheng Y, Benveniste EN, Lin FT (2010) The adaptor protein TRIP6 antagonizes Fas-induced apoptosis but promotes its effect on cell migration. Mol Cell Biol 30(23):5582–5596. doi:10.1128/MCB.00134-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nijkamp MW, Hoogwater FJ, Steller EJ, Westendorp BF, van der Meulen TA, Leenders MW, Borel Rinkes IH, Kranenburg O (2010) CD95 is a key mediator of invasion and accelerated outgrowth of mouse colorectal liver metastases following radiofrequency ablation. J Hepatol 53(6):1069–1077. doi:10.1016/j.jhep.2010.04.040. S0168-8278(10)00689-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  70. Yuan K, Jing G, Chen J, Liu H, Zhang K, Li Y, Wu H, McDonald JM, Chen Y (2011) Calmodulin mediates Fas-induced FADD-independent survival signaling in pancreatic cancer cells via activation of Src-extracellular signal-regulated kinase (ERK). J Biol Chem 286(28):24776–24784. doi:10.1074/jbc.M110.202804. M110.202804 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME (2004) CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J 23(15):3175–3185. doi:10.1038/sj.emboj.7600325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li H, Fan X, Stoicov C, Liu JH, Zubair S, Tsai E, Ste Marie R, Wang TC, Lyle S, Kurt-Jones E, Houghton J (2009) Human and mouse colon cancer utilizes CD95 signaling for local growth and metastatic spread to liver. Gastroenterology 137(3):934–944, 944 e931–934. doi:10.1053/j.gastro.2009.06.004. S0016-5085(09)00912-3 [pii]

  73. Steller EJ, Ritsma L, Raats DA, Hoogwater FJ, Emmink BL, Govaert KM, Laoukili J, Rinkes IH, van Rheenen J, Kranenburg O (2011) The death receptor CD95 activates the cofilin pathway to stimulate tumour cell invasion. EMBO Rep 12(9):931–937. doi:10.1038/embor.2011.129. embor2011129 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. O’Brien D, O’Connor T, Shanahan F, O’Connell J (2002) Activation of the p38 MAPK and ERK1/2 pathways is required for Fas-induced IL-8 production in colonic epithelial cells. Ann N Y Acad Sci 973:161–165

    Article  PubMed  Google Scholar 

  75. Seko Y, Kayagaki N, Seino K, Yagita H, Okumura K, Nagai R (2002) Role of Fas/FasL pathway in the activation of infiltrating cells in murine acute myocarditis caused by Coxsackievirus B3. J Am Coll Cardiol 39(8):1399–1403. S073510970201776X [pii]

    Article  CAS  PubMed  Google Scholar 

  76. Park DR, Thomsen AR, Frevert CW, Pham U, Skerrett SJ, Kiener PA, Liles WC (2003) Fas (CD95) induces proinflammatory cytokine responses by human monocytes and monocyte-derived macrophages. J Immunol 170(12):6209–6216

    Article  CAS  PubMed  Google Scholar 

  77. Ma Y, Liu H, Tu-Rapp H, Thiesen HJ, Ibrahim SM, Cole SM, Pope RM (2004) Fas ligation on macrophages enhances IL-1R1-Toll-like receptor 4 signaling and promotes chronic inflammation. Nat Immunol 5(4):380–387. doi:10.1038/ni1054. ni1054 [pii]

    Article  CAS  PubMed  Google Scholar 

  78. Palao G, Santiago B, Galindo MA, Rullas JN, Alcami J, Ramirez JC, Pablos JL (2006) Fas activation of a proinflammatory program in rheumatoid synoviocytes and its regulation by FLIP and caspase 8 signaling. Arthritis Rheum 54(5):1473–1481. doi:10.1002/art.21768

    Article  CAS  PubMed  Google Scholar 

  79. Perl M, Chung CS, Perl U, Lomas-Neira J, de Paepe M, Cioffi WG, Ayala A (2007) Fas-induced pulmonary apoptosis and inflammation during indirect acute lung injury. Am J Respir Crit Care Med 176(6):591–601. doi:10.1164/rccm.200611-1743OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee SM, Kim EJ, Suk K, Lee WH (2011) Stimulation of Fas (CD95) induces production of pro-inflammatory mediators through ERK/JNK-dependent activation of NF-kappaB in THP-1 cells. Cell Immunol 271(1):157–162. doi:10.1016/j.cellimm.2011.06.019. S0008-8749(11)00157-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  81. Becker KA, Henry B, Ziobro R, Tummler B, Gulbins E, Grassme H (2012) Role of CD95 in pulmonary inflammation and infection in cystic fibrosis. J Mol Med (Berl) 90(9):1011–1023. doi:10.1007/s00109-012-0867-2

    Article  CAS  Google Scholar 

  82. Poissonnier A, Sanseau D, Le Gallo M, Malleter M, Levoin N, Viel R, Morere L, Penna A, Blanco P, Dupuy A, Poizeau F, Fautrel A, Seneschal J, Jouan F, Ritz J, Forcade E, Rioux N, Contin-Bordes C, Ducret T, Vacher AM, Barrow PA, Flynn RJ, Vacher P, Legembre P (2016) CD95-mediated calcium signaling promotes T helper 17 trafficking to inflamed organs in lupus-prone mice. Immunity 45(1):209–223. doi:10.1016/j.immuni.2016.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Desbarats J, Birge RB, Mimouni-Rongy M, Weinstein DE, Palerme JS, Newell MK (2003) Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat Cell Biol 5(2):118–125

    Article  CAS  PubMed  Google Scholar 

  84. Zuliani C, Kleber S, Klussmann S, Wenger T, Kenzelmann M, Schreglmann N, Martinez A, del Rio JA, Soriano E, Vodrazka P, Kuner R, Groene HJ, Herr I, Krammer PH, Martin-Villalba A (2006) Control of neuronal branching by the death receptor CD95 (Fas/Apo-1). Cell Death Differ 13(1):31–40. doi:10.1038/sj.cdd.4401720. 4401720 [pii]

    Article  CAS  PubMed  Google Scholar 

  85. Beier CP, Kolbl M, Beier D, Woertgen C, Bogdahn U, Brawanski A (2007) CD95/Fas mediates cognitive improvement after traumatic brain injury. Cell Res 17(8):732–734. doi:10.1038/cr.2007.60. cr200760 [pii]

    Article  CAS  PubMed  Google Scholar 

  86. Alderson MR, Armitage RJ, Maraskovsky E, Tough TW, Roux E, Schooley K, Ramsdell F, Lynch DH (1993) Fas transduces activation signals in normal human T lymphocytes. J Exp Med 178(6):2231–2235

    Article  CAS  PubMed  Google Scholar 

  87. Desbarats J, Newell MK (2000) Fas engagement accelerates liver regeneration after partial hepatectomy. Nat Med 6(8):920–923. doi:10.1038/78688

    Article  CAS  PubMed  Google Scholar 

  88. Shinohara H, Yagita H, Ikawa Y, Oyaizu N (2000) Fas drives cell cycle progression in glioma cells via extracellular signal-regulated kinase activation. Cancer Res 60(6):1766–1772

    CAS  PubMed  Google Scholar 

  89. Toyoshima F, Moriguchi T, Nishida E (1997) Fas induces cytoplasmic apoptotic responses and activation of the MKK7-JNK/SAPK and MKK6-p38 pathways independent of CPP32-like proteases. J Cell Biol 139(4):1005–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kober AM, Legewie S, Pforr C, Fricker N, Eils R, Krammer PH, Lavrik IN (2011) Caspase-8 activity has an essential role in CD95/Fas-mediated MAPK activation. Cell Death Dis 2:e212. doi:10.1038/cddis.2011.93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sancho-Martinez I, Martin-Villalba A (2009) Tyrosine phosphorylation and CD95: a FAScinating switch. Cell Cycle 8(6):838–842

    Article  CAS  PubMed  Google Scholar 

  92. Letellier E, Kumar S, Sancho-Martinez I, Krauth S, Funke-Kaiser A, Laudenklos S, Konecki K, Klussmann S, Corsini NS, Kleber S, Drost N, Neumann A, Levi-Strauss M, Brors B, Gretz N, Edler L, Fischer C, Hill O, Thiemann M, Biglari B, Karray S, Martin-Villalba A (2010) CD95-ligand on peripheral myeloid cells activates Syk kinase to trigger their recruitment to the inflammatory site. Immunity 32(2):240–252. doi:10.1016/j.immuni.2010.01.011. S1074-7613(10)00041-5 [pii]

  93. Kreuz S, Siegmund D, Rumpf JJ, Samel D, Leverkus M, Janssen O, Hacker G, Dittrich-Breiholz O, Kracht M, Scheurich P, Wajant H (2004) NFkappaB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP. J Cell Biol 166(3):369–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wajant H, Pfizenmaier K, Scheurich P (2003) Non-apoptotic Fas signaling. Cytokine Growth Factor Rev 14(1):53–66. S1359610102000722 [pii]

    Article  CAS  PubMed  Google Scholar 

  95. Eischen CM, Dick CJ, Leibson PJ (1994) Tyrosine kinase activation provides an early and requisite signal for Fas-induced apoptosis. J Immunol 153(5):1947–1954

    CAS  PubMed  Google Scholar 

  96. Schlottmann KE, Gulbins E, Lau SM, Coggeshall KM (1996) Activation of Src-family tyrosine kinases during Fas-induced apoptosis. J Leukoc Biol 60(4):546–554

    CAS  PubMed  Google Scholar 

  97. Atkinson EA, Ostergaard H, Kane K, Pinkoski MJ, Caputo A, Olszowy MW, Bleackley RC (1996) A physical interaction between the cell death protein Fas and the tyrosine kinase p59fynT. J Biol Chem 271(11):5968–5971

    Article  CAS  PubMed  Google Scholar 

  98. Daigle I, Yousefi S, Colonna M, Green DR, Simon HU (2002) Death receptors bind SHP-1 and block cytokine-induced anti-apoptotic signaling in neutrophils. Nat Med 8(1):61–67. doi:10.1038/nm0102-61. nm0102-61 [pii]

    Article  CAS  PubMed  Google Scholar 

  99. Reinehr R, Schliess F, Haussinger D (2003) Hyperosmolarity and CD95L trigger CD95/EGF receptor association and tyrosine phosphorylation of CD95 as prerequisites for CD95 membrane trafficking and DISC formation. FASEB J 17(6):731–733. doi:10.1096/fj.02-0915fje

    CAS  PubMed  Google Scholar 

  100. Chakrabandhu K, Huault S, Durivault J, Lang K, Ta Ngoc L, Bole A, Doma E, Derijard B, Gerard JP, Pierres M, Hueber AO (2014) An evolution-guided analysis reveals a multi-signaling regulation of Fas by tyrosine phosphorylation and its implication in human cancers. PLoS Biol 14(3):e1002401. doi:10.1371/journal.pbio.1002401. PBIOLOGY-D-15-02701 [pii]

    Article  CAS  Google Scholar 

  101. Lavrik IN (2010) Systems biology of apoptosis signaling networks. Curr Opin Biotechnol 21(4):551–555. doi:10.1016/j.copbio.2010.07.001. S0958-1669(10)00120-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  102. Toivonen HT, Meinander A, Asaoka T, Westerlund M, Pettersson F, Mikhailov A, Eriksson JE, Saxen H (2011) Modeling reveals that dynamic regulation of c-FLIP levels determines cell-to-cell distribution of CD95-mediated apoptosis. J Biol Chem 286(21):18375–18382. doi:10.1074/jbc.M110.177097. M110.177097 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Safa AR (2012) c-FLIP, a master anti-apoptotic regulator. Exp Oncol 34(3):176–184

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lavrik IN (2014) Systems biology of death receptor networks: live and let die. Cell Death Dis 5:e1259. cddis2014160 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dutton A, Young LS, Murray PG (2006) The role of cellular FLICE inhibitory protein (c-FLIP) in the pathogenesis and treatment of cancer. Expert Opin Ther Targets 10(1):27–35. doi:10.1517/14728222.10.1.27

    Article  CAS  PubMed  Google Scholar 

  106. Bai M, Papoudou-Bai A, Kitsoulis P, Horianopoulos N, Kamina S, Agnantis NJ, Kanavaros P (2005) Cell cycle and apoptosis deregulation in classical Hodgkin lymphomas. In Vivo 19(2):439–453

    CAS  PubMed  Google Scholar 

  107. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833(12):3448–3459. doi:10.1016/j.bbamcr.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  108. Shirley S, Micheau O (2013) Targeting c-FLIP in cancer. Cancer Lett 332(2):141–150. doi:10.1016/j.canlet.2010.10.009

    Article  CAS  PubMed  Google Scholar 

  109. Kummer JA, Micheau O, Schneider P, Bovenschen N, Broekhuizen R, Quadir R, Strik MC, Hack CE, Tschopp J (2007) Ectopic expression of the serine protease inhibitor PI9 modulates death receptor-mediated apoptosis. Cell Death Differ 14(8):1486–1496. doi:10.1038/sj.cdd.4402152. 4402152 [pii]

    Article  CAS  PubMed  Google Scholar 

  110. Sato T, Irie S, Kitada S, Reed JC (1995) FAP-1: a protein tyrosine phosphatase that associates with Fas. Science 268(5209):411–415

    Article  CAS  PubMed  Google Scholar 

  111. Li Y, Kanki H, Hachiya T, Ohyama T, Irie S, Tang G, Mukai J, Sato T (2000) Negative regulation of Fas-mediated apoptosis by FAP-1 in human cancer cells. Int J Cancer 87(4):473–479

    Article  CAS  PubMed  Google Scholar 

  112. Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117(6):699–711. doi:10.1016/j.cell.2004.05.018. S0092867404005343 [pii]

    Article  CAS  PubMed  Google Scholar 

  113. Wang Z, Shen D, Parsons DW, Bardelli A, Sager J, Szabo S, Ptak J, Silliman N, Peters BA, van der Heijden MS, Parmigiani G, Yan H, Wang TL, Riggins G, Powell SM, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE (2004) Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 304(5674):1164–1166. doi:10.1126/science.1096096. 304/5674/1164 [pii]

    Article  CAS  PubMed  Google Scholar 

  114. Villa F, Deak M, Bloomberg GB, Alessi DR, van Aalten DM (2005) Crystal structure of the PTPL1/FAP-1 human tyrosine phosphatase mutated in colorectal cancer: evidence for a second phosphotyrosine substrate recognition pocket. J Biol Chem 280(9):8180–8187. doi:10.1074/jbc.M412211200. M412211200 [pii]

    Article  CAS  PubMed  Google Scholar 

  115. Yanagisawa J, Takahashi M, Kanki H, Yano-Yanagisawa H, Tazunoki T, Sawa E, Nishitoba T, Kamishohara M, Kobayashi E, Kataoka S, Sato T (1997) The molecular interaction of Fas and FAP-1. A tripeptide blocker of human Fas interaction with FAP-1 promotes Fas-induced apoptosis. J Biol Chem 272(13):8539–8545

    Article  CAS  PubMed  Google Scholar 

  116. Ungefroren H, Kruse ML, Trauzold A, Roeschmann S, Roeder C, Arlt A, Henne-Bruns D, Kalthoff H (2001) FAP-1 in pancreatic cancer cells: functional and mechanistic studies on its inhibitory role in CD95-mediated apoptosis. J Cell Sci 114(Pt 15):2735–2746

    CAS  PubMed  Google Scholar 

  117. Ungefroren H, Voss M, Jansen M, Roeder C, Henne-Bruns D, Kremer B, Kalthoff H (1998) Human pancreatic adenocarcinomas express Fas and Fas ligand yet are resistant to Fas-mediated apoptosis. Cancer Res 58(8):1741–1749

    CAS  PubMed  Google Scholar 

  118. Ivanov VN, Lopez Bergami P, Maulit G, Sato TA, Sassoon D, Ronai Z (2003) FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface. Mol Cell Biol 23(10):3623–3635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. He RJ, Yu ZH, Zhang RY, Zhang ZY (2014) Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 35(10):1227–1246. doi:10.1038/aps.2014.80. aps201480 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Meinhold-Heerlein I, Stenner-Liewen F, Liewen H, Kitada S, Krajewska M, Krajewski S, Zapata JM, Monks A, Scudiero DA, Bauknecht T, Reed JC (2001) Expression and potential role of Fas-associated phosphatase-1 in ovarian cancer. Am J Pathol 158(4):1335–1344. doi:10.1016/S0002-9440(10)64084-9. S0002-9440(10)64084-9 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yao H, Song E, Chen J, Hamar P (2004) Expression of FAP-1 by human colon adenocarcinoma: implication for resistance against Fas-mediated apoptosis in cancer. Br J Cancer 91(9):1718–1725

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wieckowski E, Atarashi Y, Stanson J, Sato TA, Whiteside TL (2007) FAP-1-mediated activation of NF-kappaB induces resistance of head and neck cancer to Fas-induced apoptosis. J Cell Biochem 100(1):16–28. doi:10.1002/jcb.20922

    Article  CAS  PubMed  Google Scholar 

  123. Lee SH, Shin MS, Lee HS, Bae JH, Lee HK, Kim HS, Kim SY, Jang JJ, Joo M, Kang YK, Park WS, Park JY, Oh RR, Han SY, Lee JH, Kim SH, Lee JY, Yoo NJ (2001) Expression of Fas and Fas-related molecules in human hepatocellular carcinoma. Hum Pathol 32(3):250–256. doi:10.1053/hupa.2001.22769. S0046-8177(01)06822-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  124. Baer C, Nees M, Breit S, Selle B, Kulozik AE, Schaefer KL, Braun Y, Wai D, Poremba C (2004) Profiling and functional annotation of mRNA gene expression in pediatric rhabdomyosarcoma and Ewing’s sarcoma. Int J Cancer 110(5):687–694. doi:10.1002/ijc.20171

    Article  CAS  PubMed  Google Scholar 

  125. Abaan OD, Levenson A, Khan O, Furth PA, Uren A, Toretsky JA (2005) PTPL1 is a direct transcriptional target of EWS-FLI1 and modulates Ewing’s Sarcoma tumorigenesis. Oncogene 24(16):2715–2722. doi:10.1038/sj.onc.1208247. 1208247 [pii]

    Article  CAS  PubMed  Google Scholar 

  126. Xiao ZY, Wu W, Eagleton N, Chen HQ, Shao J, Teng H, Liu TH, Jiang ZM, Yao HR (2010) Silencing Fas-associated phosphatase 1 expression enhances efficiency of chemotherapy for colon carcinoma with oxaliplatin. World J Gastroenterol 16(1):112–118

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Schickel R, Park SM, Murmann AE, Peter ME (2010) miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell 38(6):908–915. doi:10.1016/j.molcel.2010.05.018. S1097-2765(10)00380-1 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ivanov VN, Ronai Z, Hei TK (2006) Opposite roles of FAP-1 and dynamin in the regulation of Fas (CD95) translocation to the cell surface and susceptibility to Fas ligand-mediated apoptosis. J Biol Chem 281(3):1840–1852

    Article  CAS  PubMed  Google Scholar 

  129. Foehr ED, Lorente G, Vincent V, Nikolich K, Urfer R (2005) FAS associated phosphatase (FAP-1) blocks apoptosis of astrocytomas through dephosphorylation of FAS. J Neurooncol 74(3):241–248

    Article  CAS  PubMed  Google Scholar 

  130. Gump JM, Staskiewicz L, Morgan MJ, Bamberg A, Riches DW, Thorburn A (2014) Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat Cell Biol 16(1):47–54. doi:10.1038/ncb2886. ncb2886 [pii]

    Article  CAS  PubMed  Google Scholar 

  131. Gonzalez-Garcia A, R-Borlado L, Leonardo E, Merida I, Martinez AC, Carrera AC (1997) Lck is necessary and sufficient for Fas-ligand expression and apoptotic cell death in mature cycling T cells. J Immunol 158(9):4104–4112

    CAS  PubMed  Google Scholar 

  132. Simon HU, Yousefi S, Dibbert B, Hebestreit H, Weber M, Branch DR, Blaser K, Levi-Schaffer F, Anderson GP (1998) Role for tyrosine phosphorylation and Lyn tyrosine kinase in fas receptor-mediated apoptosis in eosinophils. Blood 92(2):547–557

    CAS  PubMed  Google Scholar 

  133. Yu XZ, Levin SD, Madrenas J, Anasetti C (2004) Lck is required for activation-induced T cell death after TCR ligation with partial agonists. J Immunol 172(3):1437–1443

    Article  CAS  PubMed  Google Scholar 

  134. Schneider TJ, Fischer GM, Donohoe TJ, Colarusso TP, Rothstein TL (1999) A novel gene coding for a Fas apoptosis inhibitory molecule (FAIM) isolated from inducibly Fas-resistant B lymphocytes. J Exp Med 189(6):949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rothstein TL, Zhong X, Schram BR, Negm RS, Donohoe TJ, Cabral DS, Foote LC, Schneider TJ (2000) Receptor-specific regulation of B-cell susceptibility to Fas-mediated apoptosis and a novel Fas apoptosis inhibitory molecule. Immunol Rev 176:116–133

    Article  CAS  PubMed  Google Scholar 

  136. Rothstein TL (2000) Inducible resistance to Fas-mediated apoptosis in B cells. Cell Res 10(4):245–266. doi:10.1038/sj.cr.7290053

    Article  CAS  PubMed  Google Scholar 

  137. Zhong X, Schneider TJ, Cabral DS, Donohoe TJ, Rothstein TL (2001) An alternatively spliced long form of Fas apoptosis inhibitory molecule (FAIM) with tissue-specific expression in the brain. Mol Immunol 38(1):65–72

    Article  CAS  PubMed  Google Scholar 

  138. Huo J, Xu S, Lam KP (2010) Fas apoptosis inhibitory molecule regulates T cell receptor-mediated apoptosis of thymocytes by modulating Akt activation and Nur77 expression. J Biol Chem 285(16):11827–11835. doi:10.1074/jbc.M109.072744. M109.072744 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Huo J, Xu S, Guo K, Zeng Q, Lam KP (2009) Genetic deletion of faim reveals its role in modulating c-FLIP expression during CD95-mediated apoptosis of lymphocytes and hepatocytes. Cell Death Differ 16(7):1062–1070. doi:10.1038/cdd.2009.26. cdd200926 [pii]

    Article  CAS  PubMed  Google Scholar 

  140. Safa AR (2013) Roles of c-FLIP in apoptosis, necroptosis, and autophagy. J Carcinog Mutagen Suppl 6. doi:10.4172/2157-2518.S6-003

  141. Ueffing N, Keil E, Freund C, Kuhne R, Schulze-Osthoff K, Schmitz I (2008) Mutational analyses of c-FLIPR, the only murine short FLIP isoform, reveal requirements for DISC recruitment. Cell Death Differ 15(4):773–782. doi:10.1038/sj.cdd.4402314. 4402314 [pii]

    Article  CAS  PubMed  Google Scholar 

  142. Planells-Ferrer L, Urresti J, Coccia E, Galenkamp KM, Calleja-Yague I, Lopez-Soriano J, Carriba P, Barneda-Zahonero B, Segura MF, Comella JX (2016) Fas apoptosis inhibitory molecules: more than death-receptor antagonists in the nervous system. J Neurochem 139(1):11–21. doi:10.1111/jnc.13729

    Article  CAS  PubMed  Google Scholar 

  143. Gentles AJ, Bratman SV, Lee LJ, Harris JP, Feng W, Nair RV, Shultz DB, Nair VS, Hoang CD, West RB, Plevritis SK, Alizadeh AA, Diehn M (2015) Integrating tumor and stromal gene expression signatures with clinical indices for survival stratification of early-stage non-small cell lung cancer. J Natl Cancer Inst 107(10). doi:10.1093/jnci/djv211. djv211 [pii]

  144. Huo J, Xu S, Lin B, Chng WJ, Lam KP (2013) Fas apoptosis inhibitory molecule is upregulated by IGF-1 signaling and modulates Akt activation and IRF4 expression in multiple myeloma. Leukemia 27(5):1165–1171. doi:10.1038/leu.2012.326. leu2012326 [pii]

    Article  CAS  PubMed  Google Scholar 

  145. Patron JP, Fendler A, Bild M, Jung U, Muller H, Arntzen MO, Piso C, Stephan C, Thiede B, Mollenkopf HJ, Jung K, Kaufmann SH, Schreiber J (2012) MiR-133b targets antiapoptotic genes and enhances death receptor-induced apoptosis. PLoS One 7(4):e35345. doi:10.1371/journal.pone.0035345. PONE-D-11-20757 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wise JF, Berkova Z, Mathur R, Zhu H, Braun FK, Tao RH, Sabichi AL, Ao X, Maeng H, Samaniego F (2013) Nucleolin inhibits Fas ligand binding and suppresses Fas-mediated apoptosis in vivo via a surface nucleolin-Fas complex. Blood 121(23):4729–4739. doi:10.1182/blood-2012-12-471094. blood-2012-12-471094 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Srivastava M, Pollard HB (1999) Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. FASEB J 13(14):1911–1922

    CAS  PubMed  Google Scholar 

  148. Hovanessian AG, Puvion-Dutilleul F, Nisole S, Svab J, Perret E, Deng JS, Krust B (2000) The cell-surface-expressed nucleolin is associated with the actin cytoskeleton. Exp Cell Res 261(2):312–328. doi:10.1006/excr.2000.5071. S0014-4827(00)95071-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  149. Chen CY, Gherzi R, Andersen JS, Gaietta G, Jurchott K, Royer HD, Mann M, Karin M (2000) Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev 14(10):1236–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Christian S, Pilch J, Akerman ME, Porkka K, Laakkonen P, Ruoslahti E (2003) Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 163(4):871–878. doi:10.1083/jcb.200304132. jcb.200304132 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Otake Y, Soundararajan S, Sengupta TK, Kio EA, Smith JC, Pineda-Roman M, Stuart RK, Spicer EK, Fernandes DJ (2007) Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 109(7):3069–3075. doi:10.1182/blood-2006-08-043257. blood-2006-08-043257 [pii]

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Said EA, Courty J, Svab J, Delbe J, Krust B, Hovanessian AG (2005) Pleiotrophin inhibits HIV infection by binding the cell surface-expressed nucleolin. FEBS J 272(18):4646–4659. doi:10.1111/j.1742-4658.2005.04870.x. EJB4870 [pii]

    Article  CAS  PubMed  Google Scholar 

  153. Reyes-Reyes EM, Akiyama SK (2008) Cell-surface nucleolin is a signal transducing P-selectin binding protein for human colon carcinoma cells. Exp Cell Res 314(11–12):2212–2223. doi:10.1016/j.yexcr.2008.03.016. S0014-4827(08)00140-7 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tate A, Isotani S, Bradley MJ, Sikes RA, Davis R, Chung LW, Edlund M (2006) Met-independent hepatocyte growth factor-mediated regulation of cell adhesion in human prostate cancer cells. BMC Cancer 6:197. doi:10.1186/1471-2407-6-197. 1471-2407-6-197 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Pasternack MS, Bleier KJ, McInerney TN (1991) Granzyme A binding to target cell proteins. Granzyme A binds to and cleaves nucleolin in vitro. J Biol Chem 266(22):14703–14708

    CAS  PubMed  Google Scholar 

  156. Mi Y, Thomas SD, Xu X, Casson LK, Miller DM, Bates PJ (2003) Apoptosis in leukemia cells is accompanied by alterations in the levels and localization of nucleolin. J Biol Chem 278(10):8572–8579. doi:10.1074/jbc.M207637200. M207637200 [pii]

    Article  CAS  PubMed  Google Scholar 

  157. Bose S, Tholanikunnel TE, Reuben A, Tholanikunnel BG, Spicer EK (2016) Regulation of nucleolin expression by miR-194, miR-206, and HuR. Mol Cell Biochem 417(1–2):141–153. doi:10.1007/s11010-016-2721-2. 10.1007/s11010-016-2721-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  158. Tominaga K, Srikantan S, Lee EK, Subaran SS, Martindale JL, Abdelmohsen K, Gorospe M (2011) Competitive regulation of nucleolin expression by HuR and miR-494. Mol Cell Biol 31(20):4219–4231. doi:10.1128/MCB.05955-11. MCB.05955-11 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Berkova Z, Wang S, Ao X, Wise JF, Braun FK, Rezaeian AH, Sehgal L, Goldenberg DM, Samaniego F (2014) CD74 interferes with the expression of fas receptor on the surface of lymphoma cells. J Exp Clin Cancer Res 33(1):80. doi:10.1186/PREACCEPT-1190264577137976. s13046-014-0080-y [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Becker-Herman S, Arie G, Medvedovsky H, Kerem A, Shachar I (2005) CD74 is a member of the regulated intramembrane proteolysis-processed protein family. Mol Biol Cell 16(11):5061–5069. doi:10.1091/mbc.E05-04-0327. E05-04-0327 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Stein R, Mattes MJ, Cardillo TM, Hansen HJ, Chang CH, Burton J, Govindan S, Goldenberg DM (2007) CD74: a new candidate target for the immunotherapy of B-cell neoplasms. Clin Cancer Res 13(18 Pt 2):5556s–5563s. doi:10.1158/1078-0432.CCR-07-1167. 13/18/5556s [pii]

    Article  CAS  PubMed  Google Scholar 

  162. Shachar I, Haran M (2011) The secret second life of an innocent chaperone: the story of CD74 and B cell/chronic lymphocytic leukemia cell survival. Leuk Lymphoma 52(8):1446–1454. doi:10.3109/10428194.2011.565437

    Article  CAS  PubMed  Google Scholar 

  163. Berkova Z, Tao RH, Samaniego F (2010) Milatuzumab - a promising new immunotherapeutic agent. Expert Opin Investig Drugs 19(1):141–149. doi:10.1517/13543780903463854

    Article  CAS  PubMed  Google Scholar 

  164. Alinari L, Christian B, Baiocchi RA (2012) Novel targeted therapies for mantle cell lymphoma. Oncotarget 3(2):203–211. 426 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  165. Kaufman JL, Niesvizky R, Stadtmauer EA, Chanan-Khan A, Siegel D, Horne H, Wegener WA, Goldenberg DM (2013) Phase I, multicentre, dose-escalation trial of monotherapy with milatuzumab (humanized anti-CD74 monoclonal antibody) in relapsed or refractory multiple myeloma. Br J Haematol 163(4):478–486. doi:10.1111/bjh.12565

    Article  CAS  PubMed  Google Scholar 

  166. Burton JD, Ely S, Reddy PK, Stein R, Gold DV, Cardillo TM, Goldenberg DM (2004) CD74 is expressed by multiple myeloma and is a promising target for therapy. Clin Cancer Res 10(19):6606–6611. doi:10.1158/1078-0432.CCR-04-0182. 10/19/6606 [pii]

    Article  CAS  PubMed  Google Scholar 

  167. Starlets D, Gore Y, Binsky I, Haran M, Harpaz N, Shvidel L, Becker-Herman S, Berrebi A, Shachar I (2006) Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival. Blood 107(12):4807–4816. doi:10.1182/blood-2005-11-4334. 2005-11-4334 [pii]

    Article  CAS  PubMed  Google Scholar 

  168. Binsky I, Haran M, Starlets D, Gore Y, Lantner F, Harpaz N, Leng L, Goldenberg DM, Shvidel L, Berrebi A, Bucala R, Shachar I (2007) IL-8 secreted in a macrophage migration-inhibitory factor- and CD74-dependent manner regulates B cell chronic lymphocytic leukemia survival. Proc Natl Acad Sci U S A 104(33):13408–13413. doi:10.1073/pnas.0701553104. 0701553104 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ohta S, Misawa A, Fukaya R, Inoue S, Kanemura Y, Okano H, Kawakami Y, Toda M (2012) Macrophage migration inhibitory factor (MIF) promotes cell survival and proliferation of neural stem/progenitor cells. J Cell Sci 125(Pt 13):3210–3220. doi:10.1242/jcs.102210. jcs.102210 [pii]

    Article  CAS  PubMed  Google Scholar 

  170. Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, Delohery T, Chen Y, Mitchell RA, Bucala R (2003) MIF signal transduction initiated by binding to CD74. J Exp Med 197(11):1467–1476. doi:10.1084/jem.20030286. jem.20030286 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Shi X, Leng L, Wang T, Wang W, Du X, Li J, McDonald C, Chen Z, Murphy JW, Lolis E, Noble P, Knudson W, Bucala R (2006) CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity 25(4):595–606. doi:10.1016/j.immuni.2006.08.020. S1074-7613(06)00432-8 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wang ZQ, Milne K, Webb JR, Watson PH (2016) CD74 and intratumoral immune response in breast cancer. Oncotarget. doi:10.18632/oncotarget.8610. 8610 [pii]

  173. Ekmekcioglu S, Davies MA, Tanese K, Roszik J, Shin-Sim M, Bassett RL Jr, Milton DR, Woodman SE, Prieto VG, Gershenwald JE, Morton DL, Hoon DS, Grimm EA (2016) Inflammatory marker testing identifies CD74 expression in melanoma tumor cells, and its expression associates with favorable survival for stage III melanoma. Clin Cancer Res 22(12):3016–3024. doi:10.1158/1078-0432.CCR-15-2226. 1078-0432.CCR-15-2226 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Otterstrom C, Soltermann A, Opitz I, Felley-Bosco E, Weder W, Stahel RA, Triponez F, Robert JH, Serre-Beinier V (2014) CD74: a new prognostic factor for patients with malignant pleural mesothelioma. Br J Cancer 110(8):2040–2046. doi:10.1038/bjc.2014.117. bjc2014117 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Matza D, Lantner F, Bogoch Y, Flaishon L, Hershkoviz R, Shachar I (2002) Invariant chain induces B cell maturation in a process that is independent of its chaperonic activity. Proc Natl Acad Sci U S A 99(5):3018–3023. doi:10.1073/pnas.052703299. 052703299 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lantner F, Starlets D, Gore Y, Flaishon L, Yamit-Hezi A, Dikstein R, Leng L, Bucala R, Machluf Y, Oren M, Shachar I (2007) CD74 induces TAp63 expression leading to B-cell survival. Blood 110(13):4303–4311. doi:10.1182/blood-2007-04-087486. blood-2007-04-087486 [pii]

    Article  CAS  PubMed  Google Scholar 

  177. Mark T, Martin P, Leonard JP, Niesvizky R (2009) Milatuzumab: a promising new agent for the treatment of lymphoid malignancies. Expert Opin Investig Drugs 18(1):99–104. doi:10.1517/13543780802636162

    Article  CAS  PubMed  Google Scholar 

  178. Stein R, Smith MR, Chen S, Zalath M, Goldenberg DM (2009) Combining milatuzumab with bortezomib, doxorubicin, or dexamethasone improves responses in multiple myeloma cell lines. Clin Cancer Res 15(8):2808–2817. doi:10.1158/1078-0432.CCR-08-1953. 1078-0432.CCR-08-1953 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hertlein E, Triantafillou G, Sass EJ, Hessler JD, Zhang X, Jarjoura D, Lucas DM, Muthusamy N, Goldenberg DM, Lee RJ, Byrd JC (2010) Milatuzumab immunoliposomes induce cell death in CLL by promoting accumulation of CD74 on the surface of B cells. Blood 116(14):2554–2558. doi:10.1182/blood-2009-11-253203. blood-2009-11-253203 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Alinari L, Yu B, Christian BA, Yan F, Shin J, Lapalombella R, Hertlein E, Lustberg ME, Quinion C, Zhang X, Lozanski G, Muthusamy N, Praetorius-Ibba M, O’Connor OA, Goldenberg DM, Byrd JC, Blum KA, Baiocchi RA (2011) Combination anti-CD74 (milatuzumab) and anti-CD20 (rituximab) monoclonal antibody therapy has in vitro and in vivo activity in mantle cell lymphoma. Blood 117(17):4530–4541. doi:10.1182/blood-2010-08-303354. blood-2010-08-303354 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Alinari L, Mahoney E, Patton J, Zhang X, Huynh L, Earl CT, Mani R, Mao Y, Yu B, Quinion C, Towns WH, Chen CS, Goldenberg DM, Blum KA, Byrd JC, Muthusamy N, Praetorius-Ibba M, Baiocchi RA (2011) FTY720 increases CD74 expression and sensitizes mantle cell lymphoma cells to milatuzumab-mediated cell death. Blood 118(26):6893–6903. doi:10.1182/blood-2011-06-363879. blood-2011-06-363879 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Alinari L, Baiocchi RA, Praetorius-Ibba M (2012) FTY720-induced blockage of autophagy enhances anticancer efficacy of milatuzumab in mantle cell lymphoma: is FTY720 the next autophagy-blocking agent in lymphoma treatment? Autophagy 8(3):416–417. doi:10.4161/auto.19050. 19050 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gupta P, Goldenberg DM, Rossi EA, Cardillo TM, Byrd JC, Muthusamy N, Furman RR, Chang CH (2012) Dual-targeting immunotherapy of lymphoma: potent cytotoxicity of anti-CD20/CD74 bispecific antibodies in mantle cell and other lymphomas. Blood 119(16):3767–3778. doi:10.1182/blood-2011-09-381988. blood-2011-09-381988 [pii]

    Article  CAS  PubMed  Google Scholar 

  184. Mao Y, Triantafillou G, Hertlein E, Towns W, Stefanovski M, Mo X, Jarjoura D, Phelps M, Marcucci G, Lee LJ, Goldenberg DM, Lee RJ, Byrd JC, Muthusamy N (2013) Milatuzumab-conjugated liposomes as targeted dexamethasone carriers for therapeutic delivery in CD74+ B-cell malignancies. Clin Cancer Res 19(2):347–356. doi:10.1158/1078-0432.CCR-12-2046. 1078-0432.CCR-12-2046 [pii]

    Article  CAS  PubMed  Google Scholar 

  185. Gajate C, Mollinedo F (2007) Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109(2):711–719. doi:10.1182/blood-2006-04-016824. blood-2006-04-016824 [pii]

    Article  CAS  PubMed  Google Scholar 

  186. Mollinedo F, de la Iglesia-Vicente J, Gajate C, Estella-Hermoso de Mendoza A, Villa-Pulgarin JA, Campanero MA, Blanco-Prieto MJ (2010) Lipid raft-targeted therapy in multiple myeloma. Oncogene 29(26):3748–3757

    Article  CAS  PubMed  Google Scholar 

  187. Mollinedo F, de la Iglesia-Vicente J, Gajate C, Estella-Hermoso de Mendoza A, Villa-Pulgarin JA, de Frias M, Roue G, Gil J, Colomer D, Campanero MA, Blanco-Prieto MJ (2010) In vitro and In vivo selective antitumor activity of Edelfosine against mantle cell lymphoma and chronic lymphocytic leukemia involving lipid rafts. Clin Cancer Res 16(7):2046–2054

    Article  CAS  PubMed  Google Scholar 

  188. Gajate C, Del Canto-Janez E, Acuna AU, Amat-Guerri F, Geijo E, Santos-Beneit AM, Veldman RJ, Mollinedo F (2004) Intracellular triggering of Fas aggregation and recruitment of apoptotic molecules into Fas-enriched rafts in selective tumor cell apoptosis. J Exp Med 200(3):353–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gajate C, Fonteriz RI, Cabaner C, Alvarez-Noves G, Alvarez-Rodriguez Y, Modolell M, Mollinedo F (2000) Intracellular triggering of Fas, independently of FasL, as a new mechanism of antitumor ether lipid-induced apoptosis. Int J Cancer 85(5):674–682

    Article  CAS  PubMed  Google Scholar 

  190. Parlato S, Giammarioli AM, Logozzi M, Lozupone F, Matarrese P, Luciani F, Falchi M, Malorni W, Fais S (2000) CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: a novel regulatory mechanism of the CD95 apoptotic pathway. EMBO J 19(19):5123–5134. doi:10.1093/emboj/19.19.5123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Grassme H, Cremesti A, Kolesnick R, Gulbins E (2003) Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22(35):5457–5470

    Article  CAS  PubMed  Google Scholar 

  192. Grassme H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, Kolesnick R, Gulbins E (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276(23):20589–20596

    Article  CAS  PubMed  Google Scholar 

  193. Gajate C, Mollinedo F (2002) Biological activities, mechanisms of action and biomedical prospect of the antitumor ether phospholipid ET-18-OCH3 (Edelfosine), a proapoptotic agent in tumor cells. Curr Drug Metab 3(5):491–525

    Google Scholar 

  194. Mollinedo F (2014) Editorial: antitumor alkylphospholipid analogs: a promising and growing family of synthetic cell membrane-targeting molecules for cancer treatment. Anticancer Agents Med Chem 14(4):495–498. doi:ACAMC-EPUB-59632 [pii]

    Article  CAS  PubMed  Google Scholar 

  195. Jaffres PA, Gajate C, Bouchet AM, Couthon-Gourves H, Chantome A, Potier-Cartereau M, Besson P, Bougnoux P, Mollinedo F, Vandier C (2016) Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy. Pharmacol Ther 165:114–131. doi:10.1016/j.pharmthera.2016.06.003. S0163-7258(16)30093-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  196. Hueber AO, Bernard AM, Herincs Z, Couzinet A, He HT (2002) An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep 3(2):190–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Nieto-Miguel T, Gajate C, Gonzalez-Camacho F, Mollinedo F (2008) Proapoptotic role of Hsp90 by its interaction with c-Jun N-terminal kinase in lipid rafts in edelfosine-mediated antileukemic therapy. Oncogene 27(12):1779–1787

    Article  CAS  PubMed  Google Scholar 

  198. Gajate C, Gonzalez-Camacho F, Mollinedo F (2009) Involvement of raft aggregates enriched in Fas/CD95 death-inducing signaling complex in the antileukemic action of edelfosine in Jurkat cells. PLoS One 4(4):e5044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Gajate C, Gonzalez-Camacho F, Mollinedo F (2009) Lipid raft connection between extrinsic and intrinsic apoptotic pathways. Biochem Biophys Res Commun 380(4):780–784

    Article  CAS  PubMed  Google Scholar 

  200. Reis-Sobreiro M, Gajate C, Mollinedo F (2009) Involvement of mitochondria and recruitment of Fas/CD95 signaling in lipid rafts in resveratrol-mediated antimyeloma and antileukemia actions. Oncogene 28(36):3221–3234

    Article  CAS  PubMed  Google Scholar 

  201. Lotocki G, Alonso OF, Dietrich WD, Keane RW (2004) Tumor necrosis factor receptor 1 and its signaling intermediates are recruited to lipid rafts in the traumatized brain. J Neurosci 24(49):11010–11016. doi:10.1523/JNEUROSCI.3823-04.2004. 24/49/11010 [pii]

    Article  CAS  PubMed  Google Scholar 

  202. Song JH, Tse MC, Bellail A, Phuphanich S, Khuri F, Kneteman NM, Hao C (2007) Lipid rafts and nonrafts mediate tumor necrosis factor related apoptosis-inducing ligand induced apoptotic and nonapoptotic signals in non small cell lung carcinoma cells. Cancer Res 67(14):6946–6955. doi:10.1158/0008-5472.CAN-06-3896. 67/14/6946 [pii]

    Article  CAS  PubMed  Google Scholar 

  203. Ouyang W, Yang C, Liu Y, Xiong J, Zhang J, Zhong Y, Zhang G, Zhou F, Zhou Y, Xie C (2011) Redistribution of DR4 and DR5 in lipid rafts accounts for the sensitivity to TRAIL in NSCLC cells. Int J Oncol 39(6):1577–1586. doi:10.3892/ijo.2011.1129

    CAS  PubMed  Google Scholar 

  204. Ouyang W, Yang C, Zhang S, Liu Y, Yang B, Zhang J, Zhou F, Zhou Y, Xie C (2013) Absence of death receptor translocation into lipid rafts in acquired TRAIL-resistant NSCLC cells. Int J Oncol 42(2):699–711. doi:10.3892/ijo.2012.1748

    CAS  PubMed  Google Scholar 

  205. Grassme H, Schwarz H, Gulbins E (2001) Molecular mechanisms of ceramide-mediated CD95 clustering. Biochem Biophys Res Commun 284(4):1016–1030

    Article  CAS  PubMed  Google Scholar 

  206. Paris F, Grassme H, Cremesti A, Zager J, Fong Y, Haimovitz-Friedman A, Fuks Z, Gulbins E, Kolesnick R (2001) Natural ceramide reverses Fas resistance of acid sphingomyelinase(-/-) hepatocytes. J Biol Chem 276(11):8297–8305

    Article  CAS  PubMed  Google Scholar 

  207. Cremesti A, Paris F, Grassme H, Holler N, Tschopp J, Fuks Z, Gulbins E, Kolesnick R (2001) Ceramide enables fas to cap and kill. J Biol Chem 276(26):23954–23961

    Article  CAS  PubMed  Google Scholar 

  208. Kolesnick R (2002) The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest 110(1):3–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Johnston I, Johnston LJ (2006) Ceramide promotes restructuring of model raft membranes. Langmuir 22(26):11284–11289

    Article  CAS  PubMed  Google Scholar 

  210. Ira JLJ (2008) Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes. Biochim Biophys Acta 1778(1):185–197. doi:10.1016/j.bbamem.2007.09.021. S0005-2736(07)00379-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  211. Prinetti A, Chigorno V, Prioni S, Loberto N, Marano N, Tettamanti G, Sonnino S (2001) Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J Biol Chem 276(24):21136–21145

    Article  CAS  PubMed  Google Scholar 

  212. Cremesti AE, Goni FM, Kolesnick R (2002) Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 531(1):47–53

    Article  CAS  PubMed  Google Scholar 

  213. Chiantia S, Ries J, Chwastek G, Carrer D, Li Z, Bittman R, Schwille P (2008) Role of ceramide in membrane protein organization investigated by combined AFM and FCS. Biochim Biophys Acta 1778(5):1356–1364. doi:10.1016/j.bbamem.2008.02.008. S0005-2736(08)00078-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  214. Castro BM, de Almeida RF, Goormaghtigh E, Fedorov A, Prieto M (2011) Organization and dynamics of Fas transmembrane domain in raft membranes and modulation by ceramide. Biophys J 101(7):1632–1641. doi:10.1016/j.bpj.2011.08.022. S0006-3495(11)00968-4 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Silva LC, de Almeida RF, Castro BM, Fedorov A, Prieto M (2007) Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid. Biophys J 92(2):502–516. doi:10.1529/biophysj.106.091876. S0006-3495(07)70850-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  216. Megha, London E (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem 279(11):9997–10004

    Google Scholar 

  217. Yu C, Alterman M, Dobrowsky RT (2005) Ceramide displaces cholesterol from lipid rafts and decreases the association of the cholesterol binding protein caveolin-1. J Lipid Res 46(8):1678–1691

    Article  CAS  PubMed  Google Scholar 

  218. Staneva G, Chachaty C, Wolf C, Koumanov K, Quinn PJ (2008) The role of sphingomyelin in regulating phase coexistence in complex lipid model membranes: competition between ceramide and cholesterol. Biochim Biophys Acta 1778(12):2727–2739. doi:10.1016/j.bbamem.2008.07.025. S0005-2736(08)00232-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  219. Chakrabandhu K, Herincs Z, Huault S, Dost B, Peng L, Conchonaud F, Marguet D, He HT, Hueber AO (2007) Palmitoylation is required for efficient Fas cell death signaling. EMBO J 26(1):209–220. doi:10.1038/sj.emboj.7601456. 7601456 [pii]

    Article  CAS  PubMed  Google Scholar 

  220. Feig C, Tchikov V, Schutze S, Peter ME (2007) Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J 26(1):221–231. doi:10.1038/sj.emboj.7601460

    Article  CAS  PubMed  Google Scholar 

  221. Kamitani T, Nguyen HP, Yeh ET (1997) Activation-induced aggregation and processing of the human Fas antigen. Detection with cytoplasmic domain-specific antibodies. J Biol Chem 272(35):22307–22314

    Article  CAS  PubMed  Google Scholar 

  222. Hawash IY, Hu XE, Adal A, Cassady JM, Geahlen RL, Harrison ML (2002) The oxygen-substituted palmitic acid analogue, 13-oxypalmitic acid, inhibits Lck localization to lipid rafts and T cell signaling. Biochim Biophys Acta 1589(2):140–150. S0167488902001659 [pii]

    Article  CAS  PubMed  Google Scholar 

  223. Greaves J, Chamberlain LH (2007) Palmitoylation-dependent protein sorting. J Cell Biol 176(3):249–254. doi:10.1083/jcb.200610151. jcb.200610151 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Levental I, Lingwood D, Grzybek M, Coskun U, Simons K (2010) Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc Natl Acad Sci U S A 107(51):22050–22054. doi:10.1073/pnas.1016184107. 1016184107 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Aicart-Ramos C, Valero RA, Rodriguez-Crespo I (2011) Protein palmitoylation and subcellular trafficking. Biochim Biophys Acta 1808(12):2981–2994. doi:10.1016/j.bbamem.2011.07.009. S0005-2736(11)00214-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  226. Rossin A, Durivault J, Chakhtoura-Feghali T, Lounnas N, Gagnoux-Palacios L, Hueber AO (2015) Fas palmitoylation by the palmitoyl acyltransferase DHHC7 regulates Fas stability. Cell Death Differ 22(4):643–653. doi:10.1038/cdd.2014.153

    Article  CAS  PubMed  Google Scholar 

  227. Leon-Bollotte L, Subramaniam S, Cauvard O, Plenchette-Colas S, Paul C, Godard C, Martinez-Ruiz A, Legembre P, Jeannin JF, Bettaieb A (2011) S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells. Gastroenterology 140(7):2009–2018, 2018 e2001–2004. doi:10.1053/j.gastro.2011.02.053

  228. Rossin A, Kral R, Lounnas N, Chakrabandhu K, Mailfert S, Marguet D, Hueber AO (2010) Identification of a lysine-rich region of Fas as a raft nanodomain targeting signal necessary for Fas-mediated cell death. Exp Cell Res 316(9):1513–1522. doi:10.1016/j.yexcr.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  229. Peter ME, Hellbardt S, Schwartz-Albiez R, Westendorp MO, Walczak H, Moldenhauer G, Grell M, Krammer PH (1995) Cell surface sialylation plays a role in modulating sensitivity towards APO-1-mediated apoptotic cell death. Cell Death Differ 2(3):163–171

    CAS  PubMed  Google Scholar 

  230. Keppler OT, Peter ME, Hinderlich S, Moldenhauer G, Stehling P, Schmitz I, Schwartz-Albiez R, Reutter W, Pawlita M (1999) Differential sialylation of cell surface glycoconjugates in a human B lymphoma cell line regulates susceptibility for CD95 (APO-1/Fas)-mediated apoptosis and for infection by a lymphotropic virus. Glycobiology 9(6):557–569. cwc054 [pii]

    Article  CAS  PubMed  Google Scholar 

  231. Swindall AF, Bellis SL (2011) Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J Biol Chem 286(26):22982–22990. doi:10.1074/jbc.M110.211375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Schultz MJ, Swindall AF, Bellis SL (2012) Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev 31(3–4):501–518. doi:10.1007/s10555-012-9359-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Lee KH, Feig C, Tchikov V, Schickel R, Hallas C, Schutze S, Peter ME, Chan AC (2006) The role of receptor internalization in CD95 signaling. EMBO J 25(5):1009–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Schutze S, Tchikov V, Schneider-Brachert W (2008) Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat Rev Mol Cell Biol 9(8):655–662. doi:10.1038/nrm2430. nrm2430 [pii]

    Article  PubMed  CAS  Google Scholar 

  235. Schutze S, Schneider-Brachert W (2009) Impact of TNF-R1 and CD95 internalization on apoptotic and antiapoptotic signaling. Results Probl Cell Differ 49:63–85. doi:10.1007/400_2008_23

    Article  PubMed  CAS  Google Scholar 

  236. Tchikov V, Bertsch U, Fritsch J, Edelmann B, Schutze S (2011) Subcellular compartmentalization of TNF receptor-1 and CD95 signaling pathways. Eur J Cell Biol 90(6–7):467–475. doi:10.1016/j.ejcb.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  237. Hanada M, Feng J, Hemmings BA (2004) Structure, regulation and function of PKB/AKT—a major therapeutic target. Biochim Biophys Acta 1697(1–2):3–16

    Article  CAS  PubMed  Google Scholar 

  238. Scheid MP, Marignani PA, Woodgett JR (2002) Multiple phosphoinositide 3-kinase-dependent steps in activation of protein kinase B. Mol Cell Biol 22(17):6247–6260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Scheid MP, Woodgett JR (2001) PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol 2(10):760–768

    Article  CAS  PubMed  Google Scholar 

  240. Scheid MP, Woodgett JR (2003) Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett 546(1):108–112

    Article  CAS  PubMed  Google Scholar 

  241. Franke TF (2008) PI3K/Akt: getting it right matters. Oncogene 27(50):6473–6488

    Article  CAS  PubMed  Google Scholar 

  242. Duronio V (2008) The life of a cell: apoptosis regulation by the PI3K/PKB pathway. Biochem J 415(3):333–344

    Article  CAS  PubMed  Google Scholar 

  243. Zhuang L, Lin J, Lu ML, Solomon KR, Freeman MR (2002) Cholesterol-rich lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Res 62(8):2227–2231

    CAS  PubMed  Google Scholar 

  244. Hill MM, Feng J, Hemmings BA (2002) Identification of a plasma membrane Raft-associated PKB Ser473 kinase activity that is distinct from ILK and PDK1. Curr Biol 12(14):1251–1255

    Article  CAS  PubMed  Google Scholar 

  245. Adam RM, Mukhopadhyay NK, Kim J, Di Vizio D, Cinar B, Boucher K, Solomon KR, Freeman MR (2007) Cholesterol sensitivity of endogenous and myristoylated Akt. Cancer Res 67(13):6238–6246

    Article  CAS  PubMed  Google Scholar 

  246. Lasserre R, Guo XJ, Conchonaud F, Hamon Y, Hawchar O, Bernard AM, Soudja SM, Lenne PF, Rigneault H, Olive D, Bismuth G, Nunes JA, Payrastre B, Marguet D, He HT (2008) Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat Chem Biol 4(9):538–547

    Article  CAS  PubMed  Google Scholar 

  247. Remijsen Q, Vanden Berghe T, Parthoens E, Asselbergh B, Vandenabeele P, Willems J (2009) Inhibition of spontaneous neutrophil apoptosis by parabutoporin acts independently of NADPH oxidase inhibition but by lipid raft-dependent stimulation of Akt. J Leukoc Biol 85(3):497–507

    Article  CAS  PubMed  Google Scholar 

  248. Calay D, Vind-Kezunovic D, Frankart A, Lambert S, Poumay Y, Gniadecki R (2010) Inhibition of Akt signaling by exclusion from lipid rafts in normal and transformed epidermal keratinocytes. J Invest Dermatol 130(4):1136–1145

    Article  CAS  PubMed  Google Scholar 

  249. Beneteau M, Pizon M, Chaigne-Delalande B, Daburon S, Moreau P, De Giorgi F, Ichas F, Rebillard A, Dimanche-Boitrel MT, Taupin JL, Moreau JF, Legembre P (2008) Localization of Fas/CD95 into the lipid rafts on down-modulation of the phosphatidylinositol 3-kinase signaling pathway. Mol Cancer Res 6(4):604–613

    Article  CAS  PubMed  Google Scholar 

  250. Reis-Sobreiro M, Roue G, Moros A, Gajate C, de la Iglesia-Vicente J, Colomer D, Mollinedo F (2013) Lipid raft-mediated Akt signaling as a therapeutic target in mantle cell lymphoma. Blood Cancer J 3:e118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26(11):657–664

    Article  CAS  PubMed  Google Scholar 

  252. Varadhachary AS, Edidin M, Hanlon AM, Peter ME, Krammer PH, Salgame P (2001) Phosphatidylinositol 3′-kinase blocks CD95 aggregation and caspase-8 cleavage at the death-inducing signaling complex by modulating lateral diffusion of CD95. J Immunol 166(11):6564–6569

    Article  CAS  PubMed  Google Scholar 

  253. Varadhachary AS, Peter ME, Perdow SN, Krammer PH, Salgame P (1999) Selective up-regulation of phosphatidylinositol 3′-kinase activity in Th2 cells inhibits caspase-8 cleavage at the death-inducing complex: a mechanism for Th2 resistance from Fas-mediated apoptosis. J Immunol 163(9):4772–4779

    CAS  PubMed  Google Scholar 

  254. Chiarini F, Del Sole M, Mongiorgi S, Gaboardi GC, Cappellini A, Mantovani I, Follo MY, McCubrey JA, Martelli AM (2008) The novel Akt inhibitor, perifosine, induces caspase-dependent apoptosis and downregulates P-glycoprotein expression in multidrug-resistant human T-acute leukemia cells by a JNK-dependent mechanism. Leukemia 22(6):1106–1116

    Article  CAS  PubMed  Google Scholar 

  255. Moretti S, Procopio A, Lazzarini R, Rippo MR, Testa R, Marra M, Tamagnone L, Catalano A (2008) Semaphorin3A signaling controls Fas (CD95)-mediated apoptosis by promoting Fas translocation into lipid rafts. Blood 111(4):2290–2299

    Article  CAS  PubMed  Google Scholar 

  256. Dang P, Smythe E, Furley AJ (2012) TAG1 regulates the endocytic trafficking and signaling of the semaphorin3A receptor complex. J Neurosci 32(30):10370–10382. doi:10.1523/JNEUROSCI.5874-11.2012. 32/30/10370 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Cottin V, Doan JE, Riches DW (2002) Restricted localization of the TNF receptor CD120a to lipid rafts: a novel role for the death domain. J Immunol 168(8):4095–4102

    Article  CAS  PubMed  Google Scholar 

  258. Marconi M, Ascione B, Ciarlo L, Vona R, Garofalo T, Sorice M, Gianni AM, Locatelli SL, Carlo-Stella C, Malorni W, Matarrese P (2013) Constitutive localization of DR4 in lipid rafts is mandatory for TRAIL-induced apoptosis in B-cell hematologic malignancies. Cell Death Dis 4:e863. doi:10.1038/cddis.2013.389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Sorice M, Parolini I, Sansolini T, Garofalo T, Dolo V, Sargiacomo M, Tai T, Peschle C, Torrisi MR, Pavan A (1997) Evidence for the existence of ganglioside-enriched plasma membrane domains in human peripheral lymphocytes. J Lipid Res 38(5):969–980

    CAS  PubMed  Google Scholar 

  260. Rajendran L, Simons K (2005) Lipid rafts and membrane dynamics. J Cell Sci 118(Pt 6):1099–1102. doi:10.1242/jcs.01681. 118/6/1099 [pii]

    Article  CAS  PubMed  Google Scholar 

  261. Fujita A, Cheng J, Hirakawa M, Furukawa K, Kusunoki S, Fujimoto T (2007) Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol Biol Cell 18(6):2112–2122. doi:10.1091/mbc.E07-01-0071. E07-01-0071 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Janich P, Corbeil D (2007) GM1 and GM3 gangliosides highlight distinct lipid microdomains within the apical domain of epithelial cells. FEBS Lett 581(9):1783–1787. doi:10.1016/j.febslet.2007.03.065. S0014-5793(07)00341-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  263. Lacour S, Hammann A, Grazide S, Lagadic-Gossmann D, Athias A, Sergent O, Laurent G, Gambert P, Solary E, Dimanche-Boitrel MT (2004) Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res 64(10):3593–3598

    Article  CAS  PubMed  Google Scholar 

  264. Rebillard A, Tekpli X, Meurette O, Sergent O, LeMoigne-Muller G, Vernhet L, Gorria M, Chevanne M, Christmann M, Kaina B, Counillon L, Gulbins E, Lagadic-Gossmann D, Dimanche-Boitrel MT (2007) Cisplatin-induced apoptosis involves membrane fluidification via inhibition of NHE1 in human colon cancer cells. Cancer Res 67 (16):7865-7874. doi:10.1158/0008-5472.CAN-07-0353. 67/16/7865 [pii]

  265. Huang CR, Jin ZX, Dong L, Tong XP, Yue S, Kawanami T, Sawaki T, Sakai T, Miki M, Iwao H, Nakajima A, Masaki Y, Fukushima Y, Tanaka M, Fujita Y, Nakajima H, Okazaki T, Umehara H (2010) Cisplatin augments FAS-mediated apoptosis through lipid rafts. Anticancer Res 30(6):2065–2071. 30/6/2065 [pii]

    CAS  PubMed  Google Scholar 

  266. Rebillard A, Jouan-Lanhouet S, Jouan E, Legembre P, Pizon M, Sergent O, Gilot D, Tekpli X, Lagadic-Gossmann D, Dimanche-Boitrel MT (2010) Cisplatin-induced apoptosis involves a Fas-ROCK-ezrin-dependent actin remodelling in human colon cancer cells. Eur J Cancer 46(8):1445–1455. doi:10.1016/j.ejca.2010.01.034. S0959-8049(10)00082-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  267. Miyaji M, Jin ZX, Yamaoka S, Amakawa R, Fukuhara S, Sato SB, Kobayashi T, Domae N, Mimori T, Bloom ET, Okazaki T, Umehara H (2005) Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J Exp Med 202(2):249–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT (1999) Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J Biol Chem 274(12):7987–7992

    Article  CAS  PubMed  Google Scholar 

  269. Zhuang S, Kochevar IE (2003) Ultraviolet A radiation induces rapid apoptosis of human leukemia cells by Fas ligand-independent activation of the Fas death pathways. Photochem Photobiol 78(1):61–67

    CAS  PubMed  Google Scholar 

  270. Mollinedo F, Fernandez-Luna JL, Gajate C, Martin-Martin B, Benito A, Martinez-Dalmau R, Modolell M (1997) Selective induction of apoptosis in cancer cells by the ether lipid ET-18-OCH3 (Edelfosine): molecular structure requirements, cellular uptake, and protection by Bcl-2 and Bcl-XL. Cancer Res 57(7):1320–1328

    Google Scholar 

  271. Watanabe S, Mukaida N, Ikeda N, Akiyama M, Harada A, Nakanishi I, Nariuchi H, Watanabe Y, Matsushima K (1995) Prevention of endotoxin shock by an antibody against leukocyte integrin beta 2 through inhibiting production and action of TNF. Int Immunol 7(7):1037–1046

    Article  CAS  PubMed  Google Scholar 

  272. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364(6440):806–809

    Article  CAS  PubMed  Google Scholar 

  273. Costelli P, Aoki P, Zingaro B, Carbo N, Reffo P, Lopez-Soriano FJ, Bonelli G, Argiles JM, Baccino FM (2003) Mice lacking TNFalpha receptors 1 and 2 are resistant to death and fulminant liver injury induced by agonistic anti-Fas antibody. Cell Death Differ 10(9):997–1004. doi:10.1038/sj.cdd.4401281. 4401281 [pii]

    Article  CAS  PubMed  Google Scholar 

  274. Gerspach J, Pfizenmaier K, Wajant H (2011) Therapeutic targeting of CD95 and the TRAIL death receptors. Recent Pat Anticancer Drug Discov 6(3):294–310. BSP/PRA/EPUB/00043 [pii]

    Article  CAS  PubMed  Google Scholar 

  275. Wajant H, Gerspach J, Pfizenmaier K (2013) Engineering death receptor ligands for cancer therapy. Cancer Lett 332(2):163–174. doi:10.1016/j.canlet.2010.12.019

    Article  CAS  PubMed  Google Scholar 

  276. Micheau O, Shirley S, Dufour F (2013) Death receptors as targets in cancer. Br J Pharmacol 169(8):1723–1744. doi:10.1111/bph.12238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5(2):157–163

    Article  CAS  PubMed  Google Scholar 

  278. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104(2):155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Nesterov A, Nikrad M, Johnson T, Kraft AS (2004) Oncogenic Ras sensitizes normal human cells to tumor necrosis factor-alpha-related apoptosis-inducing ligand-induced apoptosis. Cancer Res 64(11):3922–3927

    Article  CAS  PubMed  Google Scholar 

  280. Merino D, Lalaoui N, Morizot A, Solary E, Micheau O (2007) TRAIL in cancer therapy: present and future challenges. Expert Opin Ther Targets 11(10):1299–1314. doi:10.1517/14728222.11.10.1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Ashkenazi A, Holland P, Eckhardt SG (2008) Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/Tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL). J Clin Oncol 26(21):3621–3630. doi:10.1200/JCO.2007.15.7198. 26/21/3621 [pii]

    Article  CAS  PubMed  Google Scholar 

  282. Jo M, Kim TH, Seol DW, Esplen JE, Dorko K, Billiar TR, Strom SC (2000) Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 6(5):564–567

    Article  CAS  PubMed  Google Scholar 

  283. Mollinedo F, Gajate C, Morales AI, del Canto-Janez E, Justies N, Collia F, Rivas JV, Modolell M, Iglesias A (2009) Novel anti-inflammatory action of edelfosine lacking toxicity with protective effect in experimental colitis. J Pharmacol Exp Ther 329(2):439–449

    Article  CAS  PubMed  Google Scholar 

  284. Lim SC, Parajuli KR, Han SI (2016) The alkyllysophospholipid edelfosine enhances TRAIL-mediated apoptosis in gastric cancer cells through death receptor 5 and the mitochondrial pathway. Tumour Biol 37(5):6205–6216. doi:10.1007/s13277-015-4485-9. 10.1007/s13277-015-4485-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  285. Rao-Bindal K, Zhou Z, Kleinerman ES (2012) MS-275 sensitizes osteosarcoma cells to Fas ligand-induced cell death by increasing the localization of Fas in membrane lipid rafts. Cell Death Dis 3:e369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Pizon M, Rampanarivo H, Tauzin S, Chaigne-Delalande B, Daburon S, Castroviejo M, Moreau P, Moreau JF, Legembre P (2011) Actin-independent exclusion of CD95 by PI3K/AKT signalling: implications for apoptosis. Eur J Immunol 41(8):2368–2378

    Article  CAS  PubMed  Google Scholar 

  287. DeMorrow S, Glaser S, Francis H, Venter J, Vaculin B, Vaculin S, Alpini G (2007) Opposing actions of endocannabinoids on cholangiocarcinoma growth: recruitment of Fas and Fas ligand to lipid rafts. J Biol Chem 282(17):13098–13113

    Article  CAS  PubMed  Google Scholar 

  288. Xu ZX, Ding T, Haridas V, Connolly F, Gutterman JU (2009) Avicin D, a plant triterpenoid, induces cell apoptosis by recruitment of Fas and downstream signaling molecules into lipid rafts. PLoS One 4(12):e8532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  289. Yan S, Qu X, Xu L, Che X, Ma Y, Zhang L, Teng Y, Zou H, Liu Y (2014) Bufalin enhances TRAIL-induced apoptosis by redistributing death receptors in lipid rafts in breast cancer cells. Anticancer Drugs 25(6):683–689. doi:10.1097/CAD.0000000000000095

    CAS  PubMed  Google Scholar 

  290. Barua S, Linton RS, Gamboa J, Banerjee I, Yarmush ML, Rege K (2010) Lytic peptide-mediated sensitization of TRAIL-resistant prostate cancer cells to death receptor agonists. Cancer Lett 293(2):240–253. doi:10.1016/j.canlet.2010.01.012

    Article  CAS  PubMed  Google Scholar 

  291. Vondalova Blanarova O, Jelinkova I, Szoor A, Skender B, Soucek K, Horvath V, Vaculova A, Andera L, Sova P, Szollosi J, Hofmanova J, Vereb G, Kozubik A (2011) Cisplatin and a potent platinum(IV) complex-mediated enhancement of TRAIL-induced cancer cells killing is associated with modulation of upstream events in the extrinsic apoptotic pathway. Carcinogenesis 32(1):42–51. doi:10.1093/carcin/bgq220. bgq220 [pii]

    Article  PubMed  CAS  Google Scholar 

  292. Chen YC, Kung FL, Tsai IL, Chou TH, Chen IS, Guh JH (2010) Cryptocaryone, a natural dihydrochalcone, induces apoptosis in human androgen independent prostate cancer cells by death receptor clustering in lipid raft and nonraft compartments. J Urol 183(6):2409–2418. doi:10.1016/j.juro.2010.01.065

    Article  CAS  PubMed  Google Scholar 

  293. Vanoosten RL, Moore JM, Ludwig AT, Griffith TS (2005) Depsipeptide (FR901228) enhances the cytotoxic activity of TRAIL by redistributing TRAIL receptor to membrane lipid rafts. Mol Ther 11(4):542–552. doi:10.1016/j.ymthe.2004.12.008. S1525-0016(04)01574-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  294. Aroui S, Brahim S, Hamelin J, De Waard M, Breard J, Kenani A (2009) Conjugation of doxorubicin to cell penetrating peptides sensitizes human breast MDA-MB 231 cancer cells to endogenous TRAIL-induced apoptosis. Apoptosis 14(11):1352–1365. doi:10.1007/s10495-009-0397-8

    Article  CAS  PubMed  Google Scholar 

  295. Xu L, Qu X, Luo Y, Zhang Y, Liu J, Qu J, Zhang L, Liu Y (2011) Epirubicin enhances TRAIL-induced apoptosis in gastric cancer cells by promoting death receptor clustering in lipid rafts. Mol Med Rep 4(3):407–411. doi:10.3892/mmr.2011.439

    CAS  PubMed  Google Scholar 

  296. Xu L, Qu X, Zhang Y, Hu X, Yang X, Hou K, Teng Y, Zhang J, Sada K, Liu Y (2009) Oxaliplatin enhances TRAIL-induced apoptosis in gastric cancer cells by CBL-regulated death receptor redistribution in lipid rafts. FEBS Lett 583(5):943–948. doi:10.1016/j.febslet.2009.02.014. S0014-5793(09)00113-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  297. Psahoulia FH, Drosopoulos KG, Doubravska L, Andera L, Pintzas A (2007) Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol Cancer Ther 6(9):2591–2599. doi:10.1158/1535-7163.MCT-07-0001. 6/9/2591 [pii]

    Article  CAS  PubMed  Google Scholar 

  298. Delmas D, Rebe C, Micheau O, Athias A, Gambert P, Grazide S, Laurent G, Latruffe N, Solary E (2004) Redistribution of CD95, DR4 and DR5 in rafts accounts for the synergistic toxicity of resveratrol and death receptor ligands in colon carcinoma cells. Oncogene 23(55):8979–8986

    Article  CAS  PubMed  Google Scholar 

  299. Delmas D, Rebe C, Lacour S, Filomenko R, Athias A, Gambert P, Cherkaoui-Malki M, Jannin B, Dubrez-Daloz L, Latruffe N, Solary E (2003) Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells. J Biol Chem 278(42):41482–41490

    Article  CAS  PubMed  Google Scholar 

  300. Stel AJ, Ten Cate B, Jacobs S, Kok JW, Spierings DC, Dondorff M, Helfrich W, Kluin-Nelemans HC, de Leij LF, Withoff S, Kroesen BJ (2007) Fas receptor clustering and involvement of the death receptor pathway in rituximab-mediated apoptosis with concomitant sensitization of lymphoma B cells to fas-induced apoptosis. J Immunol 178(4):2287–2295

    Article  CAS  PubMed  Google Scholar 

  301. Yun SH, Park ES, Shin SW, Ju MH, Han JY, Jeong JS, Kim SH, Stonik VA, Kwak JY, Park JI (2015) By activating Fas/ceramide synthase 6/p38 kinase in lipid rafts, stichoposide D inhibits growth of leukemia xenografts. Oncotarget 6(29):27596–27612. doi:10.18632/oncotarget.4820. 4820 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  302. Lin ML, Chen SS, Wu TS (2015) Synthetic bichalcone TSWU-BR23 induces apoptosis of human colon cancer HT-29 cells by p53-mediated mitochondrial oligomerization of BAX/BAK and lipid raft localization of CD95/FADD. Anticancer Res 35(10):5407–5416. 35/10/5407 [pii]

    CAS  PubMed  Google Scholar 

  303. Elyassaki W, Wu S (2006) Lipid rafts mediate ultraviolet light-induced Fas aggregation in M624 melanoma cells. Photochem Photobiol 82(3):787–792

    Article  CAS  PubMed  Google Scholar 

  304. Lim SC, Duong HQ, Choi JE, Lee TB, Kang JH, SH O, Han SI (2011) Lipid raft-dependent death receptor 5 (DR5) expression and activation are critical for ursodeoxycholic acid-induced apoptosis in gastric cancer cells. Carcinogenesis 32(5):723–731. doi:10.1093/carcin/bgr038

    Article  CAS  PubMed  Google Scholar 

  305. Lim SC, Han SI (2015) Ursodeoxycholic acid effectively kills drug-resistant gastric cancer cells through induction of autophagic death. Oncol Rep 34(3):1261–1268. doi:10.3892/or.2015.4076

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Spanish Ministerio de Economia y Competitividad (SAF2014-59716-R), European Community’s Seventh Framework Programme FP7-2007-2013 (grant HEALTH-F2-2011-256986, PANACREAS), and Red Temática de Investigación Cooperativa en Cáncer, Instituto de Salud Carlos III, cofunded by the Fondo Europeo de Desarrollo Regional of the European Union (RD12/0036/0065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faustino Mollinedo or Consuelo Gajate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mollinedo, F., Gajate, C. (2017). Fas/CD95, Lipid Rafts, and Cancer. In: Micheau, O. (eds) TRAIL, Fas Ligand, TNF and TLR3 in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-56805-8_9

Download citation

Publish with us

Policies and ethics