Advertisement

Combining Tube Design and Simple Kinematic Strategy for Follow-the-Leader Deployment of Concentric Tube Robots

  • Cédric Girerd
  • Kanty Rabenorosoa
  • Pierre Renaud
Chapter
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 4)

Abstract

Concentric tube robots show promising performances for many medical applications. A particularly useful but challenging deployment of these robots, called “follow-the-leader” deployment, consists in the robot following the path traced out by its tip. In this paper, we propose to combine a simple and analytical kinematic approach combined with now possible tube design to offer efficient follow-the-leader behavior. The approach is presented and then assessed with promising performances using a realistic scenario in the context of human nose exploration.

Keywords

Continuum robot concentric tube robot robot design follow-the-leader kinematics 

Notes

Acknowledgements

This work was supported by the French National Agency for Research within the Biomedical Innovation program (NEMRO ANR-14-CE17-0013), and the Investissements d’Avenir (Robotex ANR-10-EQPX-44, Labex CAMI ANR-11-LABX-0004 and Labex ACTION ANR-11-LABX-0001-01)

References

  1. 1.
    Azimian, H., Francis, P., Looi, T., Drake, J.: Structurally-redesigned concentric-tube manipulators with improved stability. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2030–2035 (2014)Google Scholar
  2. 2.
    Bergeles, C., Gosline, A., Vasilyev, N., Codd, P., del Nido, P., Dupont, P.: Concentric tube robot design and optimization based on task and anatomical constraints. IEEE Trans. Robot. 31(1), 67–84 (2015)Google Scholar
  3. 3.
    Burgner-Kahrs, J., Rucker, D.C., Choset, H.: Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31(6), 1261–1280 (2015)Google Scholar
  4. 4.
    Dupont, P., Lock, J., Butler, E.: Torsional kinematic model for concentric tube robots. In: IEEE International Conference on Robotics and Automation, pp. 3851–3858 (2009)Google Scholar
  5. 5.
    Dupont, P., Lock, J., Itkowitz, B., Butler, E.: Design and control of concentric-tube robots. IEEE Trans. Robot. 26(2), 209–225 (2010)Google Scholar
  6. 6.
    Gilbert, H., Neimat, J., Webster, R.: Concentric tube robots as steerable needles: achieving follow-the-leader deployment. IEEE Trans. Robot. 31(2), 246–258 (2015)Google Scholar
  7. 7.
    Lee, D., Kim, J., Kim, J., Baek, C., Noh, G., Kim, D., Kim, K., Kang, S., Cho, K.: Anisotropic patterning to reduce instability of concentric-tube robots. IEEE Trans. Robot. 31(6), 1311–1323 (2015)Google Scholar
  8. 8.
    Rucker, D.C.: The mechanics of continuum robots: model–based sensing and control. Ph.D. thesis, Vanderbilt University (2011)Google Scholar
  9. 9.
    Rucker, D.C., Webster I, R.J., Chirikjian, G.S., Cowan, N.J.: Equilibrium conformations of concentric-tube continuum robots. Int. J. Robot. Res. 29, 1263–1280 (2010)Google Scholar
  10. 10.
    Webster I, R.J., Romano, J.M., Cowan, N.J.: Mechanics of precurved-tube continuum robots. IEEE Trans. Robot. 25, 67–78 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Cédric Girerd
    • 1
  • Kanty Rabenorosoa
    • 2
  • Pierre Renaud
    • 1
  1. 1.ICube, UDS-CNRS-INSAIllkirchFrance
  2. 2.FEMTO-ST, AS2M, Univ. Bourgogne Franche-ComtéUFC/ENSMM/CNRSBesançonFrance

Personalised recommendations