Combining Tube Design and Simple Kinematic Strategy for Follow-the-Leader Deployment of Concentric Tube Robots

Chapter
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 4)

Abstract

Concentric tube robots show promising performances for many medical applications. A particularly useful but challenging deployment of these robots, called “follow-the-leader” deployment, consists in the robot following the path traced out by its tip. In this paper, we propose to combine a simple and analytical kinematic approach combined with now possible tube design to offer efficient follow-the-leader behavior. The approach is presented and then assessed with promising performances using a realistic scenario in the context of human nose exploration.

Keywords

Continuum robot concentric tube robot robot design follow-the-leader kinematics 

Notes

Acknowledgements

This work was supported by the French National Agency for Research within the Biomedical Innovation program (NEMRO ANR-14-CE17-0013), and the Investissements d’Avenir (Robotex ANR-10-EQPX-44, Labex CAMI ANR-11-LABX-0004 and Labex ACTION ANR-11-LABX-0001-01)

References

  1. 1.
    Azimian, H., Francis, P., Looi, T., Drake, J.: Structurally-redesigned concentric-tube manipulators with improved stability. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2030–2035 (2014)Google Scholar
  2. 2.
    Bergeles, C., Gosline, A., Vasilyev, N., Codd, P., del Nido, P., Dupont, P.: Concentric tube robot design and optimization based on task and anatomical constraints. IEEE Trans. Robot. 31(1), 67–84 (2015)Google Scholar
  3. 3.
    Burgner-Kahrs, J., Rucker, D.C., Choset, H.: Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31(6), 1261–1280 (2015)Google Scholar
  4. 4.
    Dupont, P., Lock, J., Butler, E.: Torsional kinematic model for concentric tube robots. In: IEEE International Conference on Robotics and Automation, pp. 3851–3858 (2009)Google Scholar
  5. 5.
    Dupont, P., Lock, J., Itkowitz, B., Butler, E.: Design and control of concentric-tube robots. IEEE Trans. Robot. 26(2), 209–225 (2010)Google Scholar
  6. 6.
    Gilbert, H., Neimat, J., Webster, R.: Concentric tube robots as steerable needles: achieving follow-the-leader deployment. IEEE Trans. Robot. 31(2), 246–258 (2015)Google Scholar
  7. 7.
    Lee, D., Kim, J., Kim, J., Baek, C., Noh, G., Kim, D., Kim, K., Kang, S., Cho, K.: Anisotropic patterning to reduce instability of concentric-tube robots. IEEE Trans. Robot. 31(6), 1311–1323 (2015)Google Scholar
  8. 8.
    Rucker, D.C.: The mechanics of continuum robots: model–based sensing and control. Ph.D. thesis, Vanderbilt University (2011)Google Scholar
  9. 9.
    Rucker, D.C., Webster I, R.J., Chirikjian, G.S., Cowan, N.J.: Equilibrium conformations of concentric-tube continuum robots. Int. J. Robot. Res. 29, 1263–1280 (2010)Google Scholar
  10. 10.
    Webster I, R.J., Romano, J.M., Cowan, N.J.: Mechanics of precurved-tube continuum robots. IEEE Trans. Robot. 25, 67–78 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Cédric Girerd
    • 1
  • Kanty Rabenorosoa
    • 2
  • Pierre Renaud
    • 1
  1. 1.ICube, UDS-CNRS-INSAIllkirchFrance
  2. 2.FEMTO-ST, AS2M, Univ. Bourgogne Franche-ComtéUFC/ENSMM/CNRSBesançonFrance

Personalised recommendations