Skip to main content

Compliant Serial 3R Chain with Spherical Flexures

  • Chapter
  • First Online:
Advances in Robot Kinematics 2016

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 4))

Abstract

A spherical flexure is a special kind of compliant hinge specifically conceived for spherical motion. It features an arc of a circle as centroidal axis and an annulus sector as cross-section, circle and annulus having a common center coinciding to that of the desired spherical motion. This paper investigates a compliant spherical 3R open chain that is obtained by the in-series connection of three identical spherical flexures having coincident centers and mutually orthogonal axes of maximum rotational compliance. The considered spherical chain is intended to be used as a complex flexure for the development of spatial parallel manipulators. The compliance matrix of the proposed chain is first determined via an analytical procedure. Then, the obtained equations are used in a parametric study to assess the influence of spherical flexure geometry on the overall stiffness performances of the considered 3R open chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belfiore, N.P., Balucani, M., Crescenzi, R., Verotti, M.: Performance analysis of compliant MEMS parallel robots through pseudo-rigid-body model synthesis. In: ASME ESDA 11th Biennial Conference on Engineering Systems Design and Analysis, pp. 329–334 (2012)

    Google Scholar 

  2. Carter Hale, L.: Principles and techniques for designing precision machines. Ph.D. thesis, Department of Mechanical Engineering, MIT, Cambridge, MA (1999)

    Google Scholar 

  3. Chen, S., Culpepper, M.L.: Design of a six-axis micro-scale nanopositioner \(\mu \)hexflex. Precis. Eng. 30(3), 314–324 (2006)

    Article  Google Scholar 

  4. Dong, W., Sun, L., Du, Z.: Stiffness research on a high-precision, large-workspace parallel mechanism with compliant joints. Precis. Eng. 32(3), 222–231 (2008)

    Article  Google Scholar 

  5. Dunning, A., Tolou, N., Herder, J.: A compact low-stiffness six degrees of freedom compliant precision stage. Precis. Eng. 37(2), 380–388 (2013)

    Article  Google Scholar 

  6. Greenberg, H., Gong, M., Magleby, S., Howell, L.: Identifying links between origami and compliant mechanisms. Mech. Sci 2(2), 217–225 (2011)

    Article  Google Scholar 

  7. Hanna, B.H., Lund, J.M., Lang, R.J., Magleby, S.P.: Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Mater. Struct. 23(9), 094009 (2014)

    Article  Google Scholar 

  8. Hesselbach, J., Wrege, J., Raatz, A., Becker, O.: Aspects on design of high precision parallel robots. Assem. Autom. 24(1), 49–57 (2004)

    Article  Google Scholar 

  9. Hong, M.B., Jo, Y.H.: Design and evaluation of 2-DOF compliant forceps with force-sensing capability for minimally invasive robot surgery. IEEE Trans. Robot. 28(4), 932–941 (2012)

    Article  Google Scholar 

  10. Howell, L.L.: Compliant Mechanisms. Wiley, New York (2001)

    Google Scholar 

  11. Jacobsen, J.O., Chen, G., Howell, L.L., Magleby, S.P.: Lamina emergent torsional (LET) joint. Mech. Mach. Theory 44(11), 2098–2109 (2009)

    Article  MATH  Google Scholar 

  12. Li, G., Chen, G.: Achieving compliant spherical linkage designs from compliant planar linkages based on prbm: a spherical young mechanism case study. In: 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 193–197, IEEE (2012)

    Google Scholar 

  13. Lobontiu, N.: Compliant Mechanisms: Design of Flexure Hinges. CRC Press (2002)

    Google Scholar 

  14. Lobontiu, N., Paine, J., Garcia, E., Goldfarb, M.: Corner-filleted flexure hinges. J. Mech. Des. 123(3), 346–352 (2001)

    Article  Google Scholar 

  15. Love, A.: A Treatise on the Mathematical Theory. Dover Public (1944)

    Google Scholar 

  16. Lyse, I., Johnston, B.: Structural beams in torsion, 1934. Fritz Laboratory Reports (1934)

    Google Scholar 

  17. Machekposhti, D.F., Tolou, N., Herder, J.: A review on compliant joints and rigid-body constant velocity universal joints toward the design of compliant homokinetic couplings. J. Mech. Des. 137(3), 032301 (2015)

    Article  Google Scholar 

  18. Moon, Y., Choi, J.: A compliant parallel mechanism for needle intervention. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4875–4878 (2013)

    Google Scholar 

  19. Palmieri, G., Palpacelli, M.C., Callegari, M.: Study of a fully compliant u-joint designed for minirobotics applications. ASME J. Mech. Des. 134(11), 111003(9) (2012)

    Article  Google Scholar 

  20. Parlaktaş, V., Tanık, E.: Single piece compliant spatial slider-crank mechanism. Mech. Mach. Theory 81, 1–10 (2014)

    Article  Google Scholar 

  21. Paros, J.: How to design flexure hinges. Mach. Des. 37, 151–156 (1965)

    Google Scholar 

  22. Parvari Rad, F., Berselli, G., Vertechy, R., Parenti-Castelli, V.: Evaluating the spatial compliance of circularly curved-beam flexures. In: Computational Kinematics, pp. 329–336. Springer (2013)

    Google Scholar 

  23. Parvari Rad, F., Berselli, G., Vertechy, R., Parenti-Castelli, V.: Stiffness analysis of a fully compliant spherical chain with two degrees of freedom. In: Advances in Robot Kinematics, pp. 273–284. Springer (2014)

    Google Scholar 

  24. Parvari Rad, F., Berselli, G., Vertechy, R., Parenti-Castelli, V.: Design and stiffness analysis of a compliant spherical chain with three degrees of freedom. Precis. Eng. 47, 1–9 (2017)

    Google Scholar 

  25. Parvari Rad, F., Vertechy, R., Berselli, G., Parenti-Castelli, V.: Analytical compliance analysis and finite element verification of spherical flexure hinges for spatial compliant mechanisms. Mech. Mach. Theory 101, 168–180 (2016)

    Article  Google Scholar 

  26. Pham, H.H., Chen, I.M.: Stiffness modeling of flexure parallel mechanism. Precis. Eng. 29(4), 467–478 (2005)

    Article  Google Scholar 

  27. Polit, S., Dong, J.: Development of a high-bandwidth XY nanopositioning stage for high-rate micro-/nanomanufacturing. IEEE/ASME Trans. Mechatron. 16(4), 724–733 (2011)

    Article  Google Scholar 

  28. Ratchev, S.: Precision assembly technologies for mini and micro products. In: Proceedings of the IFIP TC5 WG5, 5 Third International Precision Assembly Seminar (IPAS’2006), 19–21 February 2006, Bad Hofgastein, Austria, vol. 198. Springer Science & Business Media (2006)

    Google Scholar 

  29. Rubbert, L., Renaud, P., Gangloff, J.: Design and optimization for a cardiac active stabilizer based on planar parallel compliant mechanisms. In: ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, pp. 235–244. American Society of Mechanical Engineers (2012)

    Google Scholar 

  30. Sauceda-Carvajal, A., Kennedy-Cabrera, H.D., Hernndez-Torres, J., Herrera-May, A.L., Mireles, J.: Compliant MEMS mechanism to extend resolution in fourier transform spectroscopy. In: Proceedings of SPIE, Micromachining and Microfabrication Process Technology XIX 8973, 89,730S–89,730S–9 (2014)

    Google Scholar 

  31. Schotborgh, W., Kokkeler, F., Tragter, H., van Houten, F.: Dimensionless design graphs for flexure elements and a comparison between three flexure elements. Precis. Eng. 29(1), 41–47 (2005)

    Article  Google Scholar 

  32. Su, H.J.: Mobility analysis of flexure mechanisms via screw algebra. J. Mech. Robot. 3(4), 041010 (2011)

    Article  Google Scholar 

  33. Tanık, Ç.M., Parlaktaş, V., Tanık, E., Kadıoğlu, S.: Steel compliant cardan universal joint. Mech. Mach. Theory 92, 171–183 (2015)

    Article  Google Scholar 

  34. Teo, T.J., Chen, I.M., Yang, G.: A large deflection and high payload flexure-based parallel manipulator for uv nanoimprint lithography: Part ii. Stiffness modeling and performance evaluation. Precis. Eng. 38(4), 872–884 (2014)

    Article  Google Scholar 

  35. Tian, Y., Shirinzadeh, B., Zhang, D., Zhong, Y.: Three flexure hinges for compliant mechanism designs based on dimensionless graph analysis. Precis. Eng. 34(1), 92–100 (2010)

    Article  Google Scholar 

  36. Tian, Y., Zhang, D., Shirinzadeh, B.: Dynamic modelling of a flexure-based mechanism for ultra-precision grinding operation. Precis. Eng. 35(4), 554–565 (2011)

    Article  Google Scholar 

  37. Trease, B., Moon, Y., Kota, S.: Design of large-displacement compliant joints. J. Mech. Des. 127(4), 788–798 (2005)

    Article  Google Scholar 

  38. Wilding, S.E., Howell, L.L., Magleby, S.P.: Spherical lamina emergent mechanisms. Mech. Mach. Theory 49, 187–197 (2012)

    Article  Google Scholar 

  39. Wu, T.L., Chen, J.H., Chang, S.H.: A six-dof prismatic-spherical-spherical parallel compliant nanopositioner. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(12), 2544–2551 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Parvari Rad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Parvari Rad, F., Vertechy, R., Berselli, G., Parenti-Castelli, V. (2018). Compliant Serial 3R Chain with Spherical Flexures. In: Lenarčič, J., Merlet, JP. (eds) Advances in Robot Kinematics 2016. Springer Proceedings in Advanced Robotics, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-56802-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56802-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56801-0

  • Online ISBN: 978-3-319-56802-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics