Skip to main content

Mind–Body Techniques

  • Chapter
  • First Online:
Book cover Central Pain Syndrome

Abstract

Psychological treatment is targeted on pain cognition, e.g., catastrophizing, pain-related beliefs and coping, and social factors. In particular, catastrophizing is a predictor of a worse outcome for neuropathic pain, including CP [1]. Emotional and cognitive factors (e.g., anxiety, depression, and anger or, vice versa, positive emotions) are known to alter the perceived intensity of pain (the “salience”) but also the associated autonomic responses. Pain of longer durations, depression, anger, helplessness, and pain magnification, especially in single males, are independent predictor factors of suicidal ideation. On the other hand, women affected by CPSP use spiritual and religious activities as a coping strategy and perceive their emotional state as the cause of their pain [2]. In line with this finding, there is a significant positive correlation between spiritual well-being and both pain self-efficacy and satisfaction with life in SCI patients [3]. Importantly, elevated impulsive and neurotic personality tendencies and depressed mood are indicators of heightened risk of pain medication misuse [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Racine M, Moulin DE, Nielson WR, Morley-Forster PK, Lynch M, Clark AJ, Stitt L, Gordon A, Nathan H, Smyth C, Ware MA, Jensen MP. The reciprocal associations between catastrophizing and pain outcomes in patients being treated for neuropathic pain: a cross-lagged panel analysis study. Pain. 2016;157:1946–53.

    Article  PubMed  Google Scholar 

  2. Nogueira M, Teixeira MJ. Central pain due to stroke: cognitive representation and coping according to gender. Arq Neuropsiquiatr. 2012;70:125–8.

    Article  PubMed  Google Scholar 

  3. Siddall PJ, McIndoe L, Austin P, Wrigley PJ. The impact of pain on spiritual well-being in people with a spinal cord injury. Spinal Cord. 2017;55:105–11.

    Article  CAS  PubMed  Google Scholar 

  4. Clark JM, Cao Y, Krause JS. Risk of pain medication misuse after spinal cord injury: the role of substance use, personality, and depression. J Pain. 2017 (in press).

    Google Scholar 

  5. Edelson J, Fitzpatrick JL. A comparison of cognitive-behavioral and hypnotic treatments of chronic pain. J Clin Psychol. 1989;45:316–23.

    Article  CAS  PubMed  Google Scholar 

  6. Heutink M, Post MW, Luthart P, Schuitemaker M, Slangen S, Sweers J, Vlemmix L, Lindeman E. Long-term outcomes of a multidisciplinary cognitive behavioural programme for coping with chronic neuropathic spinal cord injury pain. J Rehabil Med. 2014;46:540–5.

    Article  PubMed  Google Scholar 

  7. Broderick JE, Keefe FJ, Schneider S, Junghaenel DU, Bruckenthal P, Schwartz JE, Kaell AT, Caldwell DS, McKee D, Gould E. Cognitive behavioral therapy for chronic pain is effective, but for whom? Pain. 2016;157:2115–23.

    Article  CAS  PubMed  Google Scholar 

  8. Kip KE, Tofthagen C, D'Aoust RF, Girling SA, Harper Y, Rosenzweig L. Pilot study of accelerated resolution therapy for treatment of chronic refractory neuropathic pain. Altern Complem Ther. 2016;22(6):243–50.

    Article  Google Scholar 

  9. Jensen MP, Barber J, Romano JM, Hanley MA, Raichle KA, Molton IR, Engel JM, Osborne TL, Stoelb BL, Cardenas DD, Patterson DR. Effects of self-hypnosis training and EMG biofeedback relaxation training on chronic pain in persons with spinal-cord injury. Int J Clin Exp Hypn. 2009a;57:239–68.

    Article  PubMed  PubMed Central  Google Scholar 

  10. George MS. Is functional magnetic resonance imaging-inspired electroencephalogram feedback the next new treatment in psychiatry? Biol Psychiatry. 2016;80:422–3.

    Article  PubMed  Google Scholar 

  11. Martini M. Real, rubber or virtual: the vision of “one’s own” body as a means for pain modulation. A narrative review. Conscious Cogn. 2016;43:143–51.

    Article  PubMed  Google Scholar 

  12. Michielsen ME, Selles RW, van der Geest JN, Eckhardt M, Yavuzer G, Stam HJ, Smits M, Ribbers GM, Bussmann JB. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: a phase II randomized controlled trial. Neurorehabil Neural Repair. 2011;25:223–33.

    Article  PubMed  Google Scholar 

  13. Soler MD, Kumru H, Pelayo R, Vidal J, Tormos JM, Fregni F, Navarro X, Pascual-Leone A. Effectiveness of transcranial direct current stimulation and visual illusion on neuropathic pain in spianl cord injury. Brain. 2010;133:2565–77.

    Google Scholar 

  14. Pazzaglia M, Haggard P, Scivoletto G, Molinari M, Lenggenhager B. Pain and somatic sensation are transiently normalized by illusory body ownership in a patient with spinal cord injury. Restor Neurol Neurosci. 2016;34(4):603–13.

    PubMed  Google Scholar 

  15. Boesch E, Bellan V, Moseley GL, Stanton TR. The effect of bodily illusions on clinical pain: a systematic review and meta-analysis. Pain. 2016;157:516–29.

    Article  PubMed  Google Scholar 

  16. Thieme H, Morkisch N, Rietz C, Dohle C, Borgetto B. The efficacy of movement representation techniques for treatment of limb pain—a systematic review and meta-analysis. J Pain. 2016;17:167–80.

    Article  PubMed  Google Scholar 

  17. Volz MS, Suarez-Contreras V, Portilla AL, Illigens B, Bermpohl F, Fregni F. Movement observation-induced modulation of pain perception and motor cortex excitability. Clin Neurophysiol. 2015;126:1204–11.

    Article  PubMed  Google Scholar 

  18. Sharar SR, Alamdari A, Hoffer C, Hoffman HG, Jensen MP, Patterson DR. Circumplex model of affect: a measure of pleasure and arousal during virtual reality distraction analgesia. Games Health J. 2016;5:197–202.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wiederhold BK, Soomro A, Riva G, Wiederhold MD. Future directions: advances and implications of virtual environments designed for pain management. Cyberpsychol Behav Soc Netw. 2014;17:414–22.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fortney L. Recommending meditation. In: Rakel D, editor. Integrative medicine. Philadelphia: Elsevier Saunders; 2012. p. 873–81.

    Google Scholar 

  21. Zeidan F, Vago DR. Mindfulness meditation-based pain relief: a mechanistic account. Ann N Y Acad Sci. 2016;1373:114–27.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fox KC, Dixon ML, Nijeboer S, Girn M, Floman JL, Lifshitz M, Ellamil M, Sedlmeier P, Christoff K. Functional neuroanatomy of meditation: a review and meta-analysis of 78 functional neuroimaging investigations. Neurosci Biobehav Rev. 2016;65:208–28.

    Article  PubMed  Google Scholar 

  23. Meize-Grochowski R, Shuster G, Boursaw B, DuVal M, Murray-Krezan C, Schrader R, Smith BW, Herman CJ, Prasad A. Mindfulness meditation in older adults with postherpetic neuralgia: a randomized controlled pilot study. Geriatr Nurs. 2015;36:154–60.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Portenoy RK, Yang K, Thornton D. Chronic intractable pain: an atypical presentation of multiple sclerosis. J Neurol. 1988;235:226–8.

    Article  CAS  PubMed  Google Scholar 

  25. Craig AR, Hancock K, Dickson H, Chang E. Long-term psychological outcomes in spinal cord injured persons: results of a controlled trial using cognitive behavior therapy. Arch Phys Med Rehabil. 1997;78:33–8.

    Article  CAS  PubMed  Google Scholar 

  26. Norrbrink Budh C, Kowalski J, Lundeberg T. A comprehensive pain management programme comprising educational, cognitive and behavioural interventions for neuropathic pain following spinal cord injury. J Rehabil Med. 2006;38:172–80.

    Article  PubMed  Google Scholar 

  27. Cardenas DD, Jensen MP. Treatments for chronic pain in persons with spinal cord injury: a survey study. J Spinal Cord Med. 2006;29:109–117 (updates: Warms et al. Clin J Pain 18, 154–163).

    Google Scholar 

  28. Moseley GL. Using visual illusion to reduce at-level neuropathic pain in paraplegia. Pain. 2007;130:294–8.

    Article  PubMed  Google Scholar 

  29. Gustin SM, Wrigley PJ, Gandevia SC, Middleton JW, Henderson LA, Siddall PJ. Movement imagery increases pain in people with neuropathic pain following complete thoracic spinal cord injury. Pain. 2008;137:237–44.

    Article  PubMed  Google Scholar 

  30. Lee MG, Choi SS, Lee MK, Kong MH, Lee IO, Oh HR. Thoracic spinal cord stimulation for neuropathic pain after spinal meningioma removal: a case report. Clin J Pain. 2009;25:167–9.

    Google Scholar 

  31. Perry KN, Nicholas MK, Middleton JW. Comparison of a pain management program with usual care in a pain management center for people with spinal cord injury-related chronic pain. Clin J Pain. 2010;26:206–16.

    Article  PubMed  Google Scholar 

  32. Villiger M, Bohli D, Kiper D, Pyk P, Spillmann J, Meilick B, Curt A, Hepp-Reymond MC, Hotz-Boendermaker S, Eng K. Virtual reality-augmented neurorehabilitation improves motor function and reduces neuropathic pain in patients with incomplete spinal cord injury. Neurorehabil Neural Repair. 2013;27:675–83.

    Article  PubMed  Google Scholar 

  33. Jensen MP, Sherlin LH, Askew RL, Fregni F, Witkop G, Gianas A, Howe JD, Hakimian S. Effects of non-pharmacological pain treatments on brain states. Clin Neurophysiol. 2013;124:2016–24.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hassan MA, Fraser M, Conway BA, Allan DB, Vuckovic A. The mechanism of neurofeedback training for treatment of central neuropathic pain in paraplegia: a pilot study. BMC Neurol. 2015;15:200.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ehde DM, Alschuler KN, Osborne TL, Hanley MA, Jensen MP, Kraft GH. Utilization and patients’ perceptions of the effectiveness of pain treatments in multiple sclerosis: a cross-sectional survey. Disabil Health J. 2015;8:452–6.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jordan M, Richardson EJ. Effects of virtual walking treatment on spinal cord injury-related neuropathic pain: pilot results and trends related to location of pain and at-level neuronal hypersensitivity. Am J Phys Med Rehabil. 2016;95:390–6.

    PubMed  Google Scholar 

  37. Jensen MP, Patterson DR. Hypnotic approaches for chronic pain management: clinical implications of recent research findings. Am Psychol. 2014;69:167–77.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jensen MP, Barber J, Hanley MA, Engel JM, Romano JM, Cardenas DD, Kraft GH, Hoffman AJ, Patterson DR. Long-term outcome of hypnotic-analgesia treatment for chronic pain in persons with disabilities. Int J Clin Exp Hypn. 2008;56:156–169 (updates: Jensen et al. Int J Clin Exp Hypn. 2005;53:198–228).

    Google Scholar 

  39. Melzack R, Perry C. Self-regulation of pain: the use of alpha-feedback and hypnotic training for the control of chronic pain. Exp Neurol. 1975;46:452–69.

    Article  CAS  PubMed  Google Scholar 

  40. Appel PR, Bleiberg J. Pain reduction is related to hypnotizability but not to relaxation or to reduction in suffering: a preliminary investigation. Am J Clin Hypn. 2005–2006;48:153–161.

    Google Scholar 

  41. Jensen MP, Adachi T, Hakimian S. Brain oscillations, hypnosis, and hypnotizability. Am J Clin Hypn. 2015;57:230–53.

    Article  PubMed Central  Google Scholar 

  42. Jensen MP, Sherlin LH, Fregni F, Gianas A, Howe JD, Hakimian S. Baseline brain activity predicts response to neuromodulatory pain treatment. Pain Med. 2014;15:2055–2063 (duplicate: Jensen et al. Clin Neurophysiol. 2013;124:2016–24).

    Google Scholar 

  43. Askay SW, Patterson DR, Sharar SR. Virtual reality hypnosis. Contemp Hypn. 2009;26:40–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Danziger N, Fournier E, Bouhassira D, Michaud D, De Broucker T, Santarcangelo E, Carli G, Chertock L, Willer JC. Different strategies of modulation can be operative during hypnotic analgesia: a neurophysiological study. Pain. 1998;75:85–92.

    Article  CAS  PubMed  Google Scholar 

  45. Derbyshire SW, Whalley MG, Stenger VA, Oakley DA. Cerebral activation during hypnotically induced and imagined pain. NeuroImage. 2004;23:392–40.

    Article  PubMed  Google Scholar 

  46. Dane JR. Hypnosis for pain and neuromuscular rehabilitation with multiple sclerosis: case summary, literature review, and analysis of outcomes. Int J Clin Exp Hypn. 1996;44:208–31.

    Article  CAS  PubMed  Google Scholar 

  47. Sutcher H. Hypnosis as adjunctive therapy for multiple sclerosis: a progress report. Am J Clin Hypn. 1997;39:283–90.

    Article  CAS  PubMed  Google Scholar 

  48. Jensen MP, Barber J. Hypnotic analgesia of spinal cord injury pain. Aust J Clin Exp Hypn. 2000;28:150–68.

    Google Scholar 

  49. Oneal BJ, Patterson DR, Soltani M, Teeley A, Jensen MP. Virtual reality hypnosis in the treatment of chronic neuropathic pain: a case report. Int J Clin Exp Hypn. 2008;56:451–62.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jensen MP, Barber J, Romano JM, Molton IR, Raichle KA, Osborne TL, Engel JM, Stoelb BL, Kraft GH, Patterson DR. A comparison of self-hypnosis versus progressive muscle relaxation in patients with multiple sclerosis and chronic pain. Int J Clin Exp Hypn. 2009b;57:198–221.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stoelb BL, Jensen MP, Tackett MJ. Hypnotic analgesia for combat-related spinal cord injury pain: a case study. Am J Clin Hypn. 2009;51:273–80.

    Article  PubMed  Google Scholar 

  52. Jensen MP, Ehde DM, Gertz KJ, Stoelb BL, Dillworth TM, Hirsh AT, Molton IR, Kraft GH. Effects of self-hypnosis training and cognitive restructuring on daily pain intensity and catastrophizing in individuals with multiple sclerosis and chronic pain. Int J Clin Exp Hypn. 2011;59:45–63.

    Article  PubMed  Google Scholar 

  53. Jensen MP, Gianas A, George HR, Sherlin LH, Kraft GH, Ehde DM. Use of neurofeedback to enhance response to hypnotic analgesia in individuals with multiple sclerosis. Int J Clin Exp Hypn. 2016;64:1–23.

    Article  PubMed  Google Scholar 

  54. Daszkiewicz A, Gierlotka Z, Nierodziński W, Misiołek A, Misiołek H. Neuropathic pain after spinal cord injury resistant to conventional therapies—case report. Psychiatr Pol. 2016;50(2):345–55.

    Article  PubMed  Google Scholar 

  55. Widerstroem-Noga EG, Turk DC. Types and effectiveness of treatments used by people with chronic pain associated with spinal cord injuries: influence of pain and psychosocial characteristics. Spinal Cord. 2003;41:600–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Canavero, S., Bonicalzi, V. (2018). Mind–Body Techniques. In: Central Pain Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-56765-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56765-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56764-8

  • Online ISBN: 978-3-319-56765-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics