Advertisement

GABA Agonists

  • Sergio Canavero
  • Vincenzo Bonicalzi
Chapter

Abstract

GABA receptors are pentameric heterooligomers; at least 19 distinct GABA-A receptor subunit genes exist, classified into eight classes (α1–6, β1–3, γ1–3, δ, ε, θ, π, and ρ1–3). GABA-A receptor assembly can be derived from a permutation and combination of two, three, four, or even five different subunits. Distribution of the major subunits in various regions of the brain varies. Importantly, GABA neurotransmission can be recoded to become excitatory under certain conditions (Tables 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, and 11.7).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Canavero S, Bonicalzi V, Pagni CA, Castellano G, Merante R, Gentile S, Bradac GB, Bergui M, Benna P, Vighetti S, et al. Propofol analgesia in central pain: preliminary clinical observations. J Neurol. 1995;242(9):561–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Canavero S, Bonicalzi V. Intravenous subhypnotic propofol in central pain: a double-blind, placebo-controlled, crossover study. Clin Neuropharmacol. 2004;27(4):182–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Mailis A, Amani N, Umana M, Basur R, Roe S. Effect of intravenous sodium amytal on cutaneous sensory abnormalities, spontaneous pain and algometric pain pressure thresholds in neuropathic pain patients: a placebo-controlled study. II. Pain. 1997;70(1):69–81.CrossRefPubMedGoogle Scholar
  4. 4.
    Mailis-Gagnon A, Yegneswaran B, Bharatwal B, Krassioukov AV. Effects of intravenous sodium amobarbital vs lidocaine on pain and sensory abnormalities in patients with spinal cord injury. J Spinal Cord Med. 2009;32(1):49–53.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dellemijn PL, Vanneste JA. Randomised double-blind active-placebo-controlled crossover trial of intravenous fentanyl in neuropathic pain. Lancet. 1997;349(9054):753–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Drewes AM, Andreasen A, Poulsen LH. Valproate for treatment of chronic central pain after spinal cord injury. A double-blind cross-over study. Paraplegia. 1994;32(8):565–9.PubMedGoogle Scholar
  7. 7.
    Plotkin R. Results in 60 cases of deep brain stimulation for chronic intractable pain. Appl Neurophysiol. 1982;45(1–2):173–8.PubMedGoogle Scholar
  8. 8.
    Tasker RR, DeCarvalho G, Dostrovsky JO. The history of central pain syndromes, with observations concerning the pathophysiology and treatment. In: Casey KL, editor. Pain and central nervous system disease. The central pain syndromes. New York: Raven Press; 1991. p. 31–58.Google Scholar
  9. 9.
    Yamamoto T, Katayama Y, Hirayama T, Tsubokawa T. Pharmacological classification of central post-stroke pain: comparison with the results of chronic motor cortex stimulation therapy. Pain. 1997;72(1–2):5–12.CrossRefPubMedGoogle Scholar
  10. 10.
    Wajima Z, Shitara T, Inoue T, Ogawa R. Severe lightning pain after subarachnoid block in a patient with neuropathic pain of central origin: which drug is best to treat the pain? Clin J Pain. 2000;16(3):265–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Yamamoto T, Watanabe M, Obuchi T, Kano T, Kobayashi K, Oshima H, Fukaya C, Yoshino A. Importance of pharmacological evaluation in the treatment of poststroke pain by spinal cord stimulation. Neuromodulation. 2016;19(7):744–51.CrossRefPubMedGoogle Scholar
  12. 12.
    Canavero S, Bonicalzi V. The neurochemistry of central pain: evidence from clinical studies, hypothesis and therapeutic implications. Pain. 1998;74(2–3):109–14. ReviewCrossRefPubMedGoogle Scholar
  13. 13.
    Cardenas DD, Jensen MP. Treatments for chronic pain in persons with spinal cord injury: a survey study. J Spinal Cord Med. 2006;29(2):109–17.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tourian AY. Deafferentation syndrome: medical treatment. In: Nashold BS, Ovelmen-Levitt J, editors. Deafferentation pain syndromes. Pathophysiology and treatment. New York: Raven Press; 1991. p. 331–40.Google Scholar
  15. 15.
    Que JC, Siddall PJ, Cousins MJ. Pain management in a patient with intractable spinal cord injury pain: a case report and literature review. Anesth Analg. 2007;105(5):1462–73.CrossRefPubMedGoogle Scholar
  16. 16.
    Hanrahan SJ, Greger B, Parker RA, Ogura T, Obara S, Egan TD, House PA. The effects of propofol on local field potential spectra, action potential firing rate, and their temporal relationship in humans and felines. Front Hum Neurosci. 2013;7:136.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ching S, Brown EN. Modeling the dynamical effects of anesthesia on brain circuits. Curr Opin Neurobiol. 2014;25:116–22.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Verdonck O, Reed SJ, Hall J, Gotman J, Plourde G. The sensory thalamus and cerebral motor cortex are affected concurrently during induction of anesthesia with propofol: a case series with intracranial electroencephalogram recordings. Can J Anaesth. 2014;61(3):254–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Song XX, Yu BW. Anesthetic effects of propofol in the healthy human brain: functional imaging evidence. J Anesth. 2015;29(2):279–88.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sergio Canavero
    • 1
  • Vincenzo Bonicalzi
    • 2
  1. 1.HEAVEN/GEMINI International Collaborative GroupTurinItaly
  2. 2.AOUCittà della Salute e della Scienza di Torino, Department of Neurosciences, Rita Levi MontalciniUniversità di TorinoTurinItaly

Personalised recommendations