Skip to main content

Basic Concepts of Laser Drilling

  • Chapter
  • First Online:
The Theory of Laser Materials Processing

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 119))

Abstract

The state of the technology of s pulse laser applications is dominated by single pulse drilling, percussion drilling and even trepanning used for high speed drilling with melt expulsion. However, short ps pulses have to be addressed anyway, since there are technical aspects in addition to achieve high speeds in drilling, namely, structuring and tapering while maintaining the mechanical integrity of operation. As an example, to avoid delamination of thermal barrier coatings while structuring the inlet of cooling holes in turbine manufacturing as well as to avoid cracking at the drilled wall forces the scientist needs to take into consideration the mechanisms of short pulse ablation at least in the case of ps pulses. The variety of intriguing physical phenomena span from recast formation well known from the action of s-pulses, via formation of cracks typical for ns- to ps-pulse duration, towards homogeneous expansion, phase explosion and spallation characteristic for fs-pulses. The numerous phenomena are related to physical models describing propagation and absorption of radiation, ionization, evaporation and non-linear transport of mass, momentum and energy. Technical achievements like lasers emitting 100 ps or shorter pulses and related experimental observations introduce the future need for simulations to cope also with kinetic properties of beam-matter interaction. Temperatures approaching the critical state during ablation with pulse durations in the range from some ps to a few hundred ns raise the question whether Equation of State phenomena are contributing to the overall appearance in drilling. In particular, beam aberrations instead of a free running or multiply reflected beam pattern are encountered in modelling independent of pulse duration. Beam aberrations are not only introduced by the action of beam guiding and forming optics, but also by spatially distributed feedback from the dynamical shape of the ablated material surface. Effects changing the phase distribution of the incident laser radiation are incorporated in the models for the first time: for example, some temporal and spatial changes of the density in the gaseous phase. In drilling, the dynamical phenomena governing the shape of the drilled hole are identified experimentally and can be related to the processing parameters theoretically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horn A, Mingareev I, Miyamoto I (2006) Ultra-fast diagnostics of laser-induced melting of matter. JLMN-J Laser Micro/Nanoeng 1(3):264–268

    Article  Google Scholar 

  2. Horn A, Mingareev I, Werth A, Kachel M, Brenk U (2007) Investigations on ultrafast welding of glass-glass and glass-silicon. In: 9th international conference on laser ablation, Teneriffe (Spain) 24–28 Sept 2007, in press

    Google Scholar 

  3. Lehner C, Mann K, Kaiser E (2003) Bohren von Kühl und Schmierlöchern. In: Hügel H, Dausinger F, Müller M (eds), Tagungsband Stuttgarter Lasertage SLT03:103–106

    Google Scholar 

  4. Schneider M, Berthe L, Fabbro R, Muller M, Nivard M (2007) Gas investigation for laser drilling. LIA J Laser Appl 19(3):165–169

    Article  ADS  Google Scholar 

  5. Pashby IR, McNally CA (2004) Laser-drilling through plasma-sprayed thermal barrier coatings on nickel based superalloys. In: Proceedings of the 23rd international congress on applications of lasers and electro-optics 2004, 5p

    Google Scholar 

  6. Sezera HK, Lia L, Schmidta M, Pinkertona AJ, Anderson B, Williams P (2006) Effect of beam angle on HAZ, recast and oxide layer characteristics in laser drilling of TBC nickel superalloys. Int J Mach Tools Manuf 46(15):1972–1982

    Article  Google Scholar 

  7. Matijasevic-Lux B, Neidel A, Riesenbeck E, Ullrich T, Völker J, Wallich S (2007) Hot cracking in the heat affected zone of laser drilled turbine blades made from the nickel-based superalloy Rene-80. Prakt Metallogr 449

    Google Scholar 

  8. Sezer HK, Li L, Wu Z, Anderson B, Williams P (2007) Non-destructive microwave evaluation of TBC delamination induced by acute angle laser drilling. Meas Sci Technol 18:167–175

    Article  ADS  Google Scholar 

  9. Willach J (2005) Herstellung von konturierten Bohrungen in Mehrschichtsystemen mit Nd:YAG-Laserstrahlung. PhD thesis, Chair Laser Technology LLT, RWTH Aachen University

    Google Scholar 

  10. Trippe L (2007) Reduzieren erstarrter Schmelze in der Bohrung beim Einzelpuls- und Perkussionsbohren mit Nd:YAG-Laserstrahlung. PhD thesis, Chair Laser Technology LLT, RWTH Aachen University

    Google Scholar 

  11. Dürr U (2004) Industrielles Laserbohren. Laser 2:18–21

    Google Scholar 

  12. Rapp J (2003) The laser with BOSCH - a flexible tool in serial production of an automotive supplier. First international symposium on high-power laser macroprocessing, Band 4831:390–396

    Google Scholar 

  13. Poprawe R (2007) High precision high-speed laser ablation by Taylored Light. In: 9th international conference laser ablation COLA207, Tenerife, Spain, Sept 24–28

    Google Scholar 

  14. Gillner A, Wawers W (2006) Drilling holes. Industrial Laser Solutions, May 29–31

    Google Scholar 

  15. Shi P, Du K (2003) Subsurface precision maching of glass substrate by innovative lasers. Glass Sci Techn 76(2):95–98

    Google Scholar 

  16. Gillner A, Yeh L, Dohrn A, Bayer A (2002) Laser micro manufacturing of moulds and forming parts. Proc LPM, LIA, SPIE 4830:429–434

    Article  ADS  Google Scholar 

  17. Kreutz EW, Horn A, Poprawe R (2005) Electron excitation in glasses followed by time- and space-measuring tools. Appl Surf Sci 248(1–4):66–70

    Article  ADS  Google Scholar 

  18. Meijer J, Du K, Gillner A, Hoffmann D, Kovalenko DS, Masuzawa T, Ostendorf A, Poprawe R, Schulz W (2002) Laser machining by short and ultrashort pulses, state of the art. Ann CIRP, Keynote STC E 531–550

    Google Scholar 

  19. Baltuska A, Udem T, Uiberacker M, Hentschel M, Goulielmakis E, Gohle C, Holzwarth R, Yakovlev VS, Scrinzi A, Hansch TW, Krausz F (2003) Attosecond control of electronic processes by intense light fields. Nature 421(6923):611–615

    Google Scholar 

  20. Hügel H, Dausinger F (2004) Fundamentals of laser-induced processes. In: Martienssen M, Poprawe R, Weber H, Herziger G (ed) New series Landolt-Börnstein: laser applications. (Series: laser physics and applications, vol VIII/1C), 1. Aufl Springer, Berlin, pp 3–62

    Google Scholar 

  21. Wiesemann M (2004) Process monitoring and open-loop control. In: Martienssen M, Poprawe R, Weber H, Herziger G (ed) New series Landolt-Börnstein: laser applications. (Series: laser physics and applications, vol VIII/1C), 1. Aufl Springer, Berlin, pp 243–272

    Google Scholar 

  22. Schneider M, Fabbro R et al (2005) Gas investigation on laser drilling. In: LIA proceedings ICALEO, CD-Version, pp 1094–1099

    Google Scholar 

  23. Walther K, Brajdic M, Kreutz EW (2006) Enhanced processing speed in laser drilling of stainless steel by spatially and temporally superposed pulsed Nd: YAG laser radiation. Int J Adv Man Tech 895–899

    Google Scholar 

  24. Semak VV, Campbell BR, Thomas JG (2006) On the possible effect of pedestal pulse on material removal by ultrahigh intensity laser pulses. J Phys D: Appl Phys 39:3440–3449

    Article  ADS  Google Scholar 

  25. Perez D, Lewis LJ (2003) Molecular dynamics studies of ablation of solids under femtosecond pulses. Phys Rev B 67:184102

    Article  ADS  Google Scholar 

  26. Zhigilei LV, Garrison BJ (2000) Microscopic mechanisms of laser ablation of organic solids in thermal and stress confinement irradiatin regimes. J Appl Phys 88(3):1281–1298

    Article  ADS  Google Scholar 

  27. Urbassek M, Schäfer C, Zhigilei LV (2002) Metal ablation by picosecond laser pulses: a hybrid simulation. Phys Rev B 66:115404

    Article  ADS  Google Scholar 

  28. Aoki K, Bardos C, Takata S (2003) Knudsen layer for gas mixtures. J Stat Phys 112(3/4):629–655

    Article  MathSciNet  MATH  Google Scholar 

  29. Brabec T, Krausz F (2000) Intense few-cycle laser fields: frontiers of nonlinear optics. Rev Mod Phys 72:545

    Article  ADS  Google Scholar 

  30. Kostrykin V, Niessen M, Jandeleit J, Schulz W, Kreutz EW, Poprawe R (1998) Picosecond laser pulses induced heat and mass transfer. In: Santa Fe, Phipps CR (ed) High-power laser ablation, SPIE proceedings, vol 3343, pp 971–982

    Google Scholar 

  31. Wang X, Riffe D, Lee Y, Downer M (1994) Time resolved electron temperature measurement in highly excited gold target using femtosecond thermionic emission. Phys Rev B 50:8016–8019

    Article  ADS  Google Scholar 

  32. Anisimov S, Kapelovich B, Perel’man T (1974) Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov Phys JETP 39:375–377

    ADS  Google Scholar 

  33. Chin SL, Lambropoulos P (1984) Multiphoton ionization of atoms. Academic Press, Toronto

    Google Scholar 

  34. Walz S (2003) Laser-Neutralteilchen Massenspektrometrie, Thesis. Albert-Ludwigs-Universität Freiburg i Br

    Google Scholar 

  35. Agostini P, Fabre F, Mainfray G, Petite G, Rahman NK (1979) Free-free transitions following six-photon ionization of xenon atoms. Phys Rev Lett 42:1127

    Article  ADS  Google Scholar 

  36. Ammosov MV, Delone NB, Krainov VP (1986) Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov Phys JETP 64:1191

    Google Scholar 

  37. Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House Publishers

    Google Scholar 

  38. Yu W, Mittra R, Su T, Liu Y, Yang Y (2006) Parallel finite-difference time-domain method. Artech House Publishers

    Google Scholar 

  39. Teague MR (1983) Deterministic phase retrieval: a green’s function solution. J Opt Soc Am 73:1434

    Article  ADS  Google Scholar 

  40. Vasil’ev LA (1971) Schlieren methods, Israel programme for scientific translations, p 201

    Google Scholar 

  41. Bennett CE (1934) Precise measurement of dispersion in nitrogen. Phys Rev 45(1):200–207

    Article  ADS  Google Scholar 

  42. Peck ER, Khanna BN (1966) Dispersion of nitrogen. J Opt Soc Am 56(8):1059–1063

    Article  ADS  Google Scholar 

  43. Aden M (1994) Plasmadynamik beim laserinduzierten Verdampfungsprozess einer ebenen Metalloberfläche. Shaker Verlag

    Google Scholar 

  44. Ichimaru S (1973) Basic principles of plasma physics: a statistical approach. The Benjamin/Cummings Publishing Co

    Google Scholar 

  45. Aoki K, Sone Y (1991) Gas flows around the condensed phase with strong evaporation or condensation—fluid dynamics equation and its boundary condition on the interface and their application. In: Gatignol R, Soubbaramayer (eds), Advances in kinetic theory and continuum mechanics, proceedings of a symposium held in honor of professor Henri Cabannes at the University Pierre et Marie Curie, Paris, 1990. Springer, Berlin, pp 43–54

    Google Scholar 

  46. More RM, Warren KH, Young DA, Zimmerman GB (1988) A new quotidian equation of state (QEOS) for hot dense matter. Phys Fluids 31:3059–3078

    Article  ADS  MATH  Google Scholar 

  47. Constantin R, Foias C, Nicolaenko B, Temam R (1989) Integral manifolds and inertial manifolds for dissipative partial differential equations. Springer, New York

    Book  MATH  Google Scholar 

  48. Robinson JC (1995) Finite-dimensional behavior in dissipative partial differential equations. Chaos 5:330–345

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Poprawe R, Schulz W (2003) Development and application of new high-power laser beam sources. RIKEN Rev No 50:3–10

    Google Scholar 

  50. Kostrykin V, Schulz W, Niessen M, Michel J (2004) Short time dynamics in laser material processing. In: Radons G, Neugebauer R (eds) Nonlinear dynamics of production systems. Wiley-VCH, pp 443–452

    Google Scholar 

  51. Schulz W, Kostrykin V, Michel J, Niessen M (2004) Modelling and simulation of process monitoring and control in laser cutting. In: Radons G, Neugebauer R (eds) Nonlinear dynamics of production systems. Wiley-VCH, Weinheim, pp 411–426. Michel J, Pfeiffer S, Schulz W, Niessen M, Kostrykin V (2004) Approximate model for laser welding, pp 427–442. Kostrykin V, Schulz W, Niessen M, Michel J (2004) Short-time dynamics in laser material processing, pp 443–452

    Google Scholar 

  52. Schulz W, Willach J, Peterreit J, Trippe L, Kreutz EW (2004) Verfahren zum Bohren von metallischen Werkstoffen sowie von geschichteten metallischen Werkstoffen und solchen, die mindestens eine keramische Schicht aufweisen. German patent 10 2004 014 820

    Google Scholar 

  53. Ruf A, Breitling B, Berger P, Dausinger F, Hügel H (2003) Modeling and investigation of melt flow ejection dynamics for laser drilling with short pulses. In: Miyamoto I, Kobayashi KF, Sugioka K, Poprawe R (eds) 3rd international symposium on LPM. Proceedings of SPIE, vol 4830, pp 73–78

    Google Scholar 

  54. Dausinger F (2000) Laserverfahren für Mikrobohrungen. Springer, Berlin

    Book  Google Scholar 

  55. Kaspar J, Luft A, Nolte S, Will M, Beyer E (2006) Laser helical drilling of silicon wafers with ns to fs pulses: scanning electron microscopy and transmission electron microscopy characterization of drilled through-holes. J Laser Appl 18(2):85–92

    Article  Google Scholar 

  56. Wawers W, Gillner A (2007) Device for drilling and removing material using a laser beam. Patent abstract WO/2007/000194

    Google Scholar 

Download references

Acknowledgements

The support of diagnosis and simulation applied to high speed drilling under contract no. Kr 516/30-3 and the investigations related to non-linear coupling of gas and vapour flow with the condensed phase as well as inertial confinement under contract no. SCHU 1506/1-1 EN116/4-1 by the German Research Foundation is gratefully acknowledged. The research related to mapping of physical domains was funded by the German Research Foundation DFG as part of the Cluster of Excellence “Integrative Production Technology for High-Wage Countries” at RWTH Aachen University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schulz, W., Eppelt, U. (2017). Basic Concepts of Laser Drilling. In: Dowden, J., Schulz, W. (eds) The Theory of Laser Materials Processing. Springer Series in Materials Science, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-319-56711-2_6

Download citation

Publish with us

Policies and ethics