Skip to main content

Laser Forming

  • Chapter
  • First Online:
The Theory of Laser Materials Processing

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 119))

Abstract

The use of a laser beam in forming processes was introduced at the end of 20th century and is still under development. The laser beam makes forming technology applicable for industrial use, which formerly had to be done manually due to the lack of reproducibility or flexibility of the heat source used (e.g. straightening of distortion by heating with a gas torch). The main advantages of thermal forming processes are the fact that there is no spring-back effect and that tool and work piece are not in contact during the process. The latter fact also increases the flexibility of the processes, because no special tool is needed. Different geometries, therefore, can be produced by using the same set-up and changing only the process parameters. Thermal forming is based on the generation of stress and strain fields by elevated local temperatures. The different mechanisms can be grouped as direct thermal forming mechanisms (temperature gradient, residual stress point, upsetting and buckling mechanisms) and indirect thermal forming mechanisms (residual stress relaxation and martensite expansion mechanisms), where the distinguishing criterion is the driving force for the forming process. In addition to the thermal forming mechanisms a non-thermal laser beam forming mechanism (shock wave mechanism) is described in this chapter. Potential applications arise in the fields of forming, straightening and adjustment for both macro and micro components. Some examples are: rapid prototyping, precision adjustment, removing distortion and creating 3D complex shapes. Research is concentrating on the mechanisms of thermal forming, on the prediction of the strains and on the heating strategies and path planning in order to obtain a given shape. For the latter especially, a precise prediction of the forming results is necessary. This can be done by modelling the process numerically, which is often done by finite element methods nowadays. The calculation results of FEM simulation of thermal forming processes have a high degree of accuracy if the material parameters and the boundary conditions are defined correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Namba Y (1985) Laser forming in space. In: Proceedings of the International Conference on Lasers’85, pp 403–407

    Google Scholar 

  2. Namba Y (1987) Laser forming of metals and alloys. In: Laser advanced materials processing LAMP’87, High temperature society of Japan and Japan laser processing society, pp 601–606

    Google Scholar 

  3. Vollertsen F, Pretorius P (2005) Thermal bending: history and perspectives. In: Vollertsen F, Seefeld T (eds) Thermal forming, Proceedings of the IWOTE’05. BIAS-Verlag, Bremen, pp 1–19

    Google Scholar 

  4. Uelze A (1988) Thermisches Richtpunkten von gebeulten Feinblechfeldern. Schweißtechnik, vol 38, no 4, Berlin-Ost, pp 166–168

    Google Scholar 

  5. Male AT, Li PJ, Chen YQ, Zhang YM (1999) Flexible forming of sheet metal using plasma arc. ASME/MED 10:935–940

    Google Scholar 

  6. Pretorius T, Woitschig J, Vollertsen F (2005) Fast simulation of the temperature field for plasma jet forming. In: Vollertsen F, Seefeld T (eds) Thermal forming, Proceedings of the IWOTE’05. BIAS-Verlag, Bremen, pp 203–210

    Google Scholar 

  7. Komlódi A, Otto A (2005) Acceleration of the simulation of laser beam bending—challenges and possibilities. In: Vollertsen F, Seefeld T (eds) Thermal forming, Proceedings of the IWOTE’05. BIAS-Verlag, Bremen, pp 211–220

    Google Scholar 

  8. Grden M, Vollertsen F (2008) Fast simulation method of thermal bending along curved irradiation paths. In: Vollertsen F, Sakkiettibutra J (eds) Proceedings of the IWOTE’08, BIAS-Verlag, Bremen, pp 289–296

    Google Scholar 

  9. Vollertsen F (1996) Laserstrahlumformen - Lasergestützte Formgebung: Verfahren, Mechanismen, Modellierung. Meisenbach, Bamberg

    Google Scholar 

  10. Pretorius T, Woitschig J, Habedank G, Vollertsen F (2006) Thermal generation of residual stress fields for purpose of distortion minimization. Materialwissenschaft und Werkstofftechnik 37(1):85–91

    Article  Google Scholar 

  11. Vollertsen F, Rödle M (1994) Model for the temperature gradient mechanism of laser bending. In: Geiger M, Vollertsen F (eds) Laser assisted net shape engineering LANE’94, vol I. Meisenbach, Bamberg, pp 371–378

    Google Scholar 

  12. Hänsch H (1984) Schweißeigenspannungen und Formänderungen an stabilen Bauteilen. DVS/VEB Verlag Technik, Berlin

    Google Scholar 

  13. Koerdt M, von Beren JD, Schilf M, Vollertsen F (2007) Straightening of ship structures using a laser beam. In: Vollertsen F, Emmelmann C, Schmidt M, Otto A (eds) Proceedings of lasers in manufacturing LIM 2007, Munich, Germany, pp 517–522

    Google Scholar 

  14. Koerdt M, von Beren JD, Schilf M, Vollertsen F (2008) Richten mit dem Laserstrahl. Schiff & Hafen, February 2008, 2:64–67

    Google Scholar 

  15. Geiger M, Kraus J, Pohl T, Hoffmann P, Vollertsen F (1994) Analytisches Modell für das Laserstrahlbiegen von Profilen. Laser Magazin 10(6):18–25

    Google Scholar 

  16. Zhou JZ, Yang JC, Zhang YK, Zhou M (2002) A study on super-speed forming of metal sheet by laser shock waves. J Mater Process Technol 129:241–244

    Article  Google Scholar 

  17. Schulze Niehoff H, Vollertsen F (2005) Non-thermal laser stretch-forming. In: Geiger M, Duflou J, Kals HJJ, Shirvani B, Singh UP (eds) 11th international conference on sheet metal, Adv Mater Res 6–8:433–440

    Google Scholar 

  18. Vollertsen F (2005) Laser induced and laser assisted forming technologies. In: Bariani PF (ed) Advanced technology of plasticity, Proceedings of the 8th ICTP, Verona, p 557

    Google Scholar 

  19. Reinhart G, Härtl J, Lehner C (2001) New ways for a reliable laser beam welding process. In: Geiger M, Otto A (eds) Laser assisted net shape engineering 3, Proceedings of 3rd LANE, Erlangen, Meisenbach-Verlag, Bamberg, pp 687–696

    Google Scholar 

  20. Reinhart G, Härtl J (2004) The usage of active gases to elevate the efficiency of welding with high power diode lasers. Ann Ger Acad Soc Prod Eng 11(2):79–82

    Google Scholar 

  21. Thomy C, Seefeld T, Vollertsen, F (2005) Application of high-power fiber lasers for joining of steel and aluminium alloys. In: Proceedings of 3rd International WLT-Conference. Lasers in Manufacturing, AT-Fachverlag, Stuttgart, pp 27–32

    Google Scholar 

  22. Verhoeven ECM, de Bie HFP, Hoving W (2000) Laser adjustment of reed switches: micron accuracy in mass production. LIA, Laser Inst Am 90B:21–30

    Google Scholar 

  23. Hoving W (1997) Accurate manipulation using laser technology. Proc SPIE—Int Soc Opt Eng 3097:284–295

    ADS  Google Scholar 

  24. Geiger M, Hennige T, Huber A, Müller B (1999) Laserstrahlumformen als Innovation für das Justieren vormontierter Systeme. Umformtechnik 2000 Plus:149–162

    Google Scholar 

  25. Peck DE, Deysel P (2001) Beam spring flexible manufacturing production line. In: Proceedings of 20th ICALEO 2001, Laser Institute of America, Orlando, USA, CD-ROM F209

    Google Scholar 

  26. Hornfeck T, Silvanus J, Zaeh MF, Schoberth A (2005) EcoShape—a robust laser beam forming process of aluminium alloys for aerospace applications. In: Vollertsen F, Seefeld T (eds) 1st international workshop on thermal forming IWOTE’05. BIAS-Verlag, Bremen, pp 139–147

    Google Scholar 

  27. Geiger M, Vollertsen F, Amon S (1991) Flexible Blechumformung mit Laserstrahlung - Laserstrahlbiegen. Blech, Rohre, Profile 38(11):856–861

    Google Scholar 

  28. Mucha Z, Hoffmann J, Kalita W, Mucha S (1997) Laser forming of thick free plates. In: Proceedings of LANE, Laser assisted net shape engineering, CIRP international seminar on manufacturing systems, vol 30, pp 383–392

    Google Scholar 

  29. Bartkowiak K, Edwardson SP, Borowski J, Dearden G, Watkins KG (2005) Laser forming of thin metal components for 2D and 3D applications using a high beam quality, low power Nd:YAG laser and rapid scanning optics. In: Vollertsen F, Seefeld T (eds) 1st international workshop on thermal forming IWOTE’05. BIAS-Verlag, Bremen, pp 111–129

    Google Scholar 

  30. Osakada K, Otsu M, Matsumoto R (2005) Thermal forming of pipes. In: Vollertsen F, Seefeld T (eds) Thermal forming, Proceedings of the IWOTE’05. BIAS-Verlag, Bremen, pp 131–138

    Google Scholar 

  31. Olowinsky A, Gillner A, Poprawe R (1997) Mikrojustage durch Laserstrahlumformen. In: Proceedings of Sensor 97, Nürnberg, May 1997, AMA Fachverband für Sensorik, pp 133–137

    Google Scholar 

  32. Hagenah H, Wurm T (2005) Problem specific design of actuators for micro adjustment. Adv Mater Res 6–8:271–278

    Article  Google Scholar 

  33. Zimmermann M, Dirschel M, Stark M (2006) Mikrojustierung mit Licht. Mikroproduktion 2:32–35

    Google Scholar 

  34. Widłaszewski J (2005) Micro adjustment by thermal upsetting. In: Vollertsen F, Seefeld T (eds) Thermal forming, Proceedings of the IWOTE’05. BIAS-Verlag, Bremen, pp 93–109

    Google Scholar 

  35. Sakkiettibutra J, Vollertsen F (2008) Effects of varying heating duration on thermal upsetting. In: Vollertsen F, Sakkiettibutra J (eds) Proceedings of the IWOTE’08, BIAS-Verlag, Bremen, pp 45–54

    Google Scholar 

  36. Engler I (1999) Verfahrenskombination Laserstrahlschweißen und -richten am Beispiel einer Titan-Leichtbaustruktur. Dissertation University of Bremen, Strahltechnik vol 12, BIAS-Verlag, Bremen

    Google Scholar 

  37. Hoffmann F, Keßler O, Lübben T, Mayr P (2002) Distortion Engineering - Verzugsbeherrschung in der Fertigung. HTM l57(3):213–217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Pretorius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pretorius, T. (2017). Laser Forming. In: Dowden, J., Schulz, W. (eds) The Theory of Laser Materials Processing. Springer Series in Materials Science, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-319-56711-2_10

Download citation

Publish with us

Policies and ethics