Skip to main content

Bacillus thuringiensis: Different Targets and Interactions

  • Chapter
  • First Online:
Book cover Bacillus thuringiensis and Lysinibacillus sphaericus

Abstract

In the microbial control of pests, the entomopathogen Bacillus thuringiensis offers the best biological alternative to chemical insecticides, either alone or in combination with other methods of field control, and is also a source of genes for the genetic engineering of plants. In this work, aspects related to new targets of this bacterium are described such as: Acromyrmex spp.; Nasutitermes ehrhardt; Euschistus heros; Oryzophagus oryzae; Blatella germanica; Pyricularia grisea, Rhizoctonia solani, Fusarium oxysporum; Fusarium solani and Meloidogyne spp. Also discussed are the interactions of Bacillus thuringiensis and B. subtilis with other biological control agents: Purpureocillium lilacinus; Campoletis flavicincta; Nuclear Polyhedrosis Virus; plant extracts and essential oils from medicinal plants. Data from our research group of Microbiology and Toxicology in Agroecosystems (MToxAgro/CNPq), as well as collaborating researchers of some public and private institutions of Brazil will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araújo FF, Henning AA, Hungri M (2005) Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechnol 21:1639–1645

    Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashoub AH, Amara MT (2010) Biocontrol activity of some bacterial genera against root-knot nematode, Meloidogyne incognita. J Am Sci 6(10):321–328

    Google Scholar 

  • Bell HA, Down RE, Edwards JP, Gatehouse JA, Gatehouse AMR (2005) Digestive proteolytic activity in the gut and salivary glands of the predatory bug Podisus maculiventris (Heteroptera: Pentatomidae), effect of proteinase inhibitors. Eur J Entomol 102:139–145

    Article  CAS  Google Scholar 

  • Berlitz DL (2014) Potencial biotecnológico de Bacillus thuringiensis e Bacillus subtilis no controle biológico de nematoides. 136 f. São Leopoldo, UNISINOS. Tese (Doutorado em Biologia). Programa de Pós Graduação em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo

    Google Scholar 

  • Berlitz DL, Fiuza LM (2006) Bacillus thuringiensis e Melia azedarach. Aplicações e interações no controle de insetos-praga. Biotecnol, Ciênc Desenvolvimento 35:62–68

    Google Scholar 

  • Berlitz DL, Azambuja AO, Sebben A, Oliveira JV, Fiuza LM (2012) Mortality of Oryzophagus oryzae (Costa Lima, 1936) (Coleoptera: Curculionidae) and Spodoptera frugiperda (J E Smith, 1797) (Lepidoptera: Noctuidae) larvae exposed to Bacillus thuringiensis and extracts of Melia azedarach. Braz Arch Biol Technol 55(5):725–731

    Article  CAS  Google Scholar 

  • Berlitz DL, Saul DA, Machado V, Santin RC, Guimarães AM, Matsumura ATS, Ribeiro BM, Fiuza LM (2013) Bacillus thuringiensis: molecular characterization, ultrastructural and nematoxicity to Meloidogyne sp. J Biopest 6(2):120–128

    CAS  Google Scholar 

  • Berlitz DL, Rabinovitch L, Machado V, Santin RC, Guimarães AM, Matsumura ATS, Cassal M, Fiuza LM (2016) Evaluation of biocontrol of the Meloidogyne javanica with Bacillus subtilis and Purpureocillium lilacinus in greenhouse with lettuce. Int J Res Eng, IT Soc Sci 6(7):38–45

    Google Scholar 

  • Bettiol W (1991) Controle biológico de doenças do filoplano. In: Bettiol W (ed) Controle biológico de doenças de plantas. EMBRAPA-CNPDA, Jaguariúna, p 338

    Google Scholar 

  • Breuer M, Hoste B, De Loof A, Naqvi SNH (2003) Effect of Melia azedarach extract on the activity of NADPH-cytochrome c reductase and cholinesterase in insects. Pestic Biochem Physiol 76:99–103

    Article  CAS  Google Scholar 

  • Carpinella MC, Defago MT, Valladares G, Palacios SM (2003) Antifeedant and inseticide properties of a limnoid from Melia azedarach (Meliaceae) with potencial use for pest management. J Agric Food Chem 51:369–374

    Article  CAS  PubMed  Google Scholar 

  • Castagnone-Sereno P, Danchin EG, Perfus-Barbeoch L, Abad P (2013) Diversity and evolution of root-knot nematodes, genus Meloidogyne: new insights from the genomic era. Annu Rev Phytopathol 51:203–220

    Article  CAS  PubMed  Google Scholar 

  • Castilhos-Fortes R, Matsumura ATS, Diehl E, Fiuza LM (2002) Susceptibility of Nasutitermes ehrhardti (Isoptera: Termitidae) to Bacillus thuringiensis subspecies. Braz J Microbiol 33(3):219–222. http://dx.doi.org/10.1590/S1517-83822002000300006

    Article  Google Scholar 

  • Chougule NP, Bonning BC (2012) Toxins for transgenic resistance to hemipteran pests. Toxins 4:405–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collange B, Navarrete M, Peyre G, Mateille T, Tchamitchian M (2011) Root-knot nematode (Meloidogyne) management in vegetable crop production: the challenge of an agronomic system analysis. Crop Prot 30:1251–1262

    Article  Google Scholar 

  • Cunha FM, Caetano FH, Wanderley-Teixeira V, Torres JB, Teixeira AAC, Alves LC (2012) Ultra-structure and histochemistry of digestive cells of Podisus nigrispinus (Hemiptera: Pentatomidae) fed with prey reared on Bt-cotton. Mícron 43:245–250

    PubMed  Google Scholar 

  • Davies KG, Curtis RHC (2011) Cuticle surface coat of plant-parasitic nematodes. Annu Rev Phytopathol 49:135–156

    Article  CAS  PubMed  Google Scholar 

  • Dequech STB, Silva RFP, Fiuza LM (2005) Interação entre Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), Campoletis flavicincta (Ashmead) (Hymenoptera: Ichneumonidae) e Bacillus thuringiensis aizawai, em laboratório. Neotrop Entomol 34(6):937–944

    Article  Google Scholar 

  • Dequech STB, Silva RFP, Fiuza LM, Zumba RC (2007) Histopatologia de lagartas de Spodoptera frugiperda (Lep., Noctuidae) infectadas por Bacillus thuringiensis aizawai e com ovos de Campoletis flavicincta (Hym., Ichneumonidae). Ciênc Rural 37(1):273–276

    Article  Google Scholar 

  • Doyle EA, Lambert KN (2002) Cloning and characterization of a sophageal-gland-specific pectate lyase from the root-knot nematode Meloidogyne javanica. Mol Plant Microbe Interact 15(6):549–556

    Article  CAS  PubMed  Google Scholar 

  • Elling AA (2013) Major emerging problems with minor Meloidogyne species. Phytopathology 103:1092–1102

    Article  PubMed  Google Scholar 

  • El-Moneim TSA, Massoud SI (2009) The effect of endotoxin produced by Bacillus thuringiensis (Bt.) against Meloidogyne incognita. Egypt J Nat Toxins 6(1):83–93

    Google Scholar 

  • Emprapa (2016) Disponível: https://www.embrapa.br/soja/cultivos/soja1 Consulta em 28 de novembro de 2016

  • Fernandes WD, Ferraz JMG, Ferracini VL, Habib MEM (1996) Deterrência alimentar e toxicidez de extratos vegetais em adultos de Anthonomus grandis Boh. (Coleoptera: Curculionidae). Anais Soc Entomológica Brasil 25:553–556

    Google Scholar 

  • Hübner M (2004) Bioatividade de extratos vegetais e isolados de Bacillus thuringiensis nos insetos urbanos Blatella germanica (L.) e Periplaneta americana (L.) (Blattodea, Blattellidae). Dissertação: Mestrado. Universidade do vale do Rio dos Sinos, São Leopoldo. 72p

    Google Scholar 

  • Joo SB, Kumar VJR, Ahmad RI, Kim B, Park W, Park S, Kim S, Kim S, Lim J, Park Y (2012) Bacterial mixture from greenhouse soil as a biocontrol agent against root-knot nematode, Meloidogyne incognita, on oriental melon. J Microbiol Biotechnol 22(1):114–117

    Article  Google Scholar 

  • Khan TA, Saxena SK (1997) Integrated management of root knot nematode Meloidogyne javanica infecting tomato using organic materials and Paecilomyces lilacinus. Bioresour Technol 61:47–250

    Article  Google Scholar 

  • Khan A, Williams KL, Nevalainen HKM (2004) Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biol Control 31:346–352

    Article  CAS  Google Scholar 

  • Knaak N, Fiuza LM (2005) Histopathology of Anticarsia gemmatalis Hübner (Lepidoptera; Noctuidae) treated with Nucleopolyhedrovirus and Bacillus thuringiensis serovar kurstaki. Braz J Microbiol 36(2):196–200. http://dx.doi.org/10.1590/S1517-83822005000200017

    Article  Google Scholar 

  • Knaak N, Rohr AA, Fiuza LM (2007) In vitro effect of Bacillus thuringiensis strains and cry proteins in phytopathogenic fungi of paddy rice-field. Braz J Microbiol 38(3):526–530. http://dx.doi.org/10.1590/S1517-83822007000300027

    Article  Google Scholar 

  • Knaak N, Tagliari MS, Fiuza LM (2010) Histopatologia da interação de Bacillus thuringiensis e extratos vegetais no intestino médio de Spodoptera frugiperda (Lepidoptera: Noctuidae). Arq Inst Biol 77(1):83–89

    Google Scholar 

  • Knaak N, Wiest SLF, Soares W, Fiuza LM (2015) Natural products: insecticidal and antimicrobial activity. In: A. Mendez Vilas (ed) The battle against microbial pathogens: basic science technological advances and educational programs. Formatex, pp 328–335

    Google Scholar 

  • Lamovsek J, Urek G, Trdan S (2013) Biological control of root-knot nematodes (Meloidogyne spp.): microbes against the pests. Acta Agric Slov 101(2):263–275

    Article  Google Scholar 

  • Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Epton HAS, Harbour A (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J Appl Bacteriol 78:97–108

    Article  CAS  PubMed  Google Scholar 

  • Lucho APR (2004) Manejo de Spodoptera frugiperda (J. E. Smith 1797) (Lepidoptera: Noctuidae) em arroz irrigado. Dissertação: Mestrado. Universidade do Vale do Rio dos Sinos – São Leopoldo. 73p

    Google Scholar 

  • Mariano RLR, Silveira EB, Assis SMP, Maria A, Gomes A, Peixoto AR, Donato MTS (2004) Importância de bactérias promotoras de crescimento e de biocontrole de doenças de plantas para uma agricultura sustentável. Anais Acad Pernambucana Ciênc Agron 1:89–111

    Google Scholar 

  • Mavingui P, Heulin T (1994) In vitro chitinase and antifungal activity of a soil, rhizosphere and rhizoplane population of Bacillus polymyxa. Soil Biol Biochem 26:801–803

    Article  CAS  Google Scholar 

  • Mitchum MG, Wang X, Wang J, Davis E (2012) Role of nematode peptides and other small molecules in plant parasitism. Annu Rev Phytopathol 50:175–195

    Article  CAS  PubMed  Google Scholar 

  • Moens M, Perry RN (2009) Migratory plant endoparasitic nematodes: a group rich in contrasts and divergence. Annu Rev Phytopathol 47:313–332

    Article  CAS  PubMed  Google Scholar 

  • Nitao JK, Meyer SLF, Chitwood DJ (1999) In-vitro assays of Meloidogyne incognita and Heterodera glycines for detection of nematode-antagonistic fungal compounds. J Nematol 31(2):172–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pal-Bais H, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  Google Scholar 

  • Pinto LMN, Azambuja AO, Diehl E, Fiuza LM (2003) Pathogenicity of Bacillus thuringiensis isolated from two species of Acromyrmex (Hymenoptera, Formicidae). Braz J Biol 63(2):301–306. http://dx.doi.org/10.1590/S1519-69842003000200015

    Article  CAS  PubMed  Google Scholar 

  • Ravari SB, Moghaddam EM (2015) Efficacy of Bacillus thuringiensis Cry14 toxin against root knot nematode, Meloidogyne javanica. Plant Prot Sci 51(1):46–51

    Article  CAS  Google Scholar 

  • Rosso M, Favery B, Piotte C, Arthaud L, De Boer JM, Hussey RS, Jaap Bakker J, Baum TJ, Abad P (1999) Isolation of a cDNA encoding a b-1,4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism. Mol Plant-Microbe Interact 12(7):585–591

    Article  CAS  PubMed  Google Scholar 

  • Saito ML, Lucchini F (1998) Substâncias obtidas de plantas e a procura por praguicidas eficientes e seguros ao meio ambiente. EMBRAPA-CNPMA, Jaguariúna, p 46

    Google Scholar 

  • Schünemann R (2015). Espectro inseticida da soja Bt e proteínas cry em lagartas (Anticarsia gemmatalis) e percevejos (Euschistus heros). Tese: Doutorado. Universidade do Vale do Rio dos Sinos – São Leopoldo, p 132

    Google Scholar 

  • Sharma RD, Gomes AC (1996) Controle biológico de Meloidogyne arenaria com Pausteria penetrans. Nematol Brasileira 23(1):47–52

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour Technol 69:167–179

    Article  CAS  Google Scholar 

  • Spier MS et al (2013) Aspectos ecológicos de Atta sexdens piriventris Santschi (Hymenoptera: Formicidae) no município de Capinzal, Santa Catarina, Brasil. Entomobrasilis 6(1):94–96

    Article  Google Scholar 

  • Tian BY, Yang JK, Lian LH, Wang CY, Zhang KQ (2007) Role of neutral protease from Brevibacillus laterosporus in pathogenesis of nematode. Appl Microbiol Biotechnol 74:372–380

    Article  CAS  PubMed  Google Scholar 

  • Todorova S, Kozhuharova L (2010) Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil. World J Microbiol Biotechnol 26:1207–1216

    Article  CAS  PubMed  Google Scholar 

  • Vendramin JD (2002) O controle biológico e a resistência de plantas. In: Controle Biológico no Brasil. Manole, São Paulo, pp 511–520

    Google Scholar 

  • Vovlas N, Rapoport HF, Jiménez DRM, Castillo P (2005) Differences in feeding sites induced by root-knot nematodes, Meloidogyne spp., in chickpea. Phytopathology 95:368–375

    Article  PubMed  Google Scholar 

  • Wei JZ, Hale C, Carta L, Platzer E, Wong C, Fang SC, Arojan RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. PNAS 100(5):2760–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Xiong J, Zhou Q, Luo H, Hu S, Xia L, Sun M, Li L, Yu Z (2015) The diverse nematicidal properties and biocontrol efficacy of Bacillus thuringiensis Cry6A against the root-knot nematode Meloidogyne hapla. J Invertebr Pathol 125:73–80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank all those who directly or indirectly participated in the elaboration of this work, contributing with data, personal communications, photographs and literature. In this context, in particular, researchers or collaborating professors and undergraduate and postgraduate students of public and private institutions in Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Mariana Fiuza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fiuza, L.M., Berlitz, D.L., de Oliveira, J.V., Knaak, N. (2017). Bacillus thuringiensis: Different Targets and Interactions. In: Fiuza, L., Polanczyk, R., Crickmore, N. (eds) Bacillus thuringiensis and Lysinibacillus sphaericus. Springer, Cham. https://doi.org/10.1007/978-3-319-56678-8_9

Download citation

Publish with us

Policies and ethics