Skip to main content

Effect of Bacillus thuringiensis on Parasitoids and Predators

  • Chapter
  • First Online:
Book cover Bacillus thuringiensis and Lysinibacillus sphaericus

Abstract

Advances in biotechnological studies have led to the development of genetically modified (GM) crops. The commercial release of transgenic plants producing Bacillus thuringiensis (Bt) insecticidal proteins has contributed to the management of several insect pests worldwide. Additionally, the use of selective products such as Bt-bioinsecticides allows for the conservation of beneficial organisms, including parasitoids and predators, in agricultural ecosystems, thus reducing chemical insecticidal applications. The use of these bioinsecticides reduces production costs, improves product quality, and can serve as a good strategy to slow the evolution of resistance in insect pest populations. Numerous studies have investigated the effects of Bt on insect pests and on their natural enemies. Here we review the effects of Bt on parasitoids and predators and emphasize that although Bt should be selective for natural enemies, special attention should be paid to the sublethal effects of these products on the biology and/or behavior of natural enemies. Thus, this chapter describes the possible effects of Bt on some predators and parasitoids species, including Bt-bioinsecticides and GM plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrol DP (2013) Integrated pest management: current concepts and ecological perspectives. Academic, San Diego. 584p

    Google Scholar 

  • Alcantara EP (2012) Post commercialization monitoring of the long-term impact of Bt corn on non-target arthropod communities in commercial farms and adjacent riparian areas in the Philippines. Transgenic Plants Insects 41:1268–1276

    Google Scholar 

  • Carvalho VFP, Vacari AM, Pomari AF, De Bortoli CP, Ramalho DG, De Bortoli SA (2012) Interaction between the predator Podisus nigrispinus (Hemiptera: Pentatomidae) and the entomopathogenic bacteria Bacillus thuringiensis. Environ Entomol 41:1454–1461

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zhao JZ, Collins HL, Earle ED, Cao J, Shelton AM (2008) A critical assessment of the effects of Bt transgenic plants on parasitoids. PLoS One 3:e2284

    Article  PubMed  PubMed Central  Google Scholar 

  • da Cunha FM, Caetano FH, Wanderley-Teixeira V, Torres JB, Teixeira AAC, Alves LC (2012) Ultra-structure and histochemistry of digestive cells of Podisus nigrispinus (Hemiptera: Pentatomidae) fed with prey reared on Bt-cotton. Micron 43:245–250

    Article  PubMed  Google Scholar 

  • Dibelli W, De Bortoli SA, Volpe HXL, Vacari AM, Magalhães GO, Duarte RT, Polanczyk RA (2013) Effect of Bacillus thuringiensis on the biological parameters and phytophagy of Podisus nigrispinus (Hemiptera: Pentatomidae). Entomol Gen 34:313–321

    Article  Google Scholar 

  • Ferry N, Mulligan EA, Majerus MEN, Gatehouse AMR (2007) Biotrophic and tritrophic effects of Bt Cry3A transgenic potato on beneficial, non-target, beetles. Environ Entomol 16:795–812

    CAS  Google Scholar 

  • Furlong MJ, Ju KH, Su PW, Chol JK, Li RC, Zaluchi MP (2008) Integration of endemic enemies and Bacillus thuringiensis to manage insect pests of Brassica crops in North Korea. Agric Ecosyst Environ 125:223–238

    Article  Google Scholar 

  • Garantonakis N, Varikou K, Birouraki A (2016) Comparative selectivity of pesticides used in greenhouses, on the aphid parasitoid Aphidius colemani (Hymenoptera: Braconidae). Biocontrol Sci Tech 26:678–690

    Article  Google Scholar 

  • Glare TR, O’Callaghan M (2000) Bacillus thuringiensis: biology, ecology and safety. Wiley, Chichester. 350p

    Google Scholar 

  • Glare TR, Jurat-Fuentes JL, O’Callaghan M (2017) Basic and applied research: entomopathogenic bacteria. In: Lacey LA (ed) Microbial control of insect and mite pests – from theory to practice. Academic, London, pp 47–68

    Chapter  Google Scholar 

  • González-Zamora JE, Camúñez S, Avilla C (2007) Effect of Bacillus thuringiensis Cry toxins on developmental and reproductive characteristics of the predator Orius albidepennis (Hemiptera: Anthocoridae) under laboratory conditions. Environ Entomol 36:1246–1253

    Article  PubMed  Google Scholar 

  • Goulart RM (2010) Ação de Bacillus thuringiensis Berliner nas características biológicas de outros inimigos naturais. 119f. Tese de doutorado (Entomologia Agrícola), Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal

    Google Scholar 

  • Goulart RM, Volpe HXL, Vacari AM, Thuler RT, De Bortoli SA (2012) Insecticide selectivity to two species of Trichogramma in three different hosts, as determined by IOBC/WPRS methodology. Pest Manag Sci 68:240–244

    Article  CAS  PubMed  Google Scholar 

  • Goulart RM, De Bortoli SA, Vacari AM, Laurentis VL, Veiga ACP, De Bortoli CP, Polanczyk RA (2015) Effect of Bacillus thuringiensis on the characteristics of the predator Orius insidiosus Say (Hemiptera: Anthocoridae) feeding on eggs of Plutella xylostella L. (Lepidoptera: Plutellidae). Bioassay 10:1–7

    Article  Google Scholar 

  • Guo YY, Tian JC, Shi WP, Dong XH, Romeis J, Naranjo SE, Hellmich RL, Shelton AM (2016) The interaction of two-spotted spider mites, Tetranychus urticae Koch, with cry protein production and predation by Amblyseius andersoni (chant) in Cry1Ac/Cry2Ab cotton and Cry1F maize. Transgenic Res 25:33–44

    Article  CAS  PubMed  Google Scholar 

  • Hagenbucher S, Wackers F, Romeis J (2014) Aphid honeydew quality as a food source for parasitoids in maintained in Bt cotton. PLoS One 9:e107806

    Article  PubMed  PubMed Central  Google Scholar 

  • Han P, Velasco-Hernández MC, Ramirez-Romero R, Desneux N (2016) Behavioral effects of insect-resistant genetically modified crops on phytophagous and beneficial arthropods: a review. J Pest Sci 89:859–883

    Article  Google Scholar 

  • Kalha CS, Singh PP, Kang SS, Hunjan MS, Gupta V, Sharma R (2013) Entomopathogenic viruses and bacteria for insect-pest control. In: Abrol DP (ed) Integrated pest management: current concepts and ecological perspectives. Academic, San Diego, pp 225–244

    Google Scholar 

  • Ksentini I, Jardak T, Zeghal N (2010) Bacillus thuringiensis, deltamethrin and spinosad side-effects on three Trichogramma species. Bull Insectol 63:31–37

    Google Scholar 

  • Lacey LA (2017) Entomopathogens used as microbial control agents. In: Lacey LA (ed) Microbial control of insect and mite pests – from theory to practice. Academic, London, pp 3–12

    Chapter  Google Scholar 

  • Laurentis VL (2017) Helicoverpa armigera: táticas para o manejo integrado. 120 p. Ph.D. Dissertation (Agricultural Entomology). São Paulo State University, Jaboticabal, São Paulo

    Google Scholar 

  • Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365

    Article  CAS  PubMed  Google Scholar 

  • Lundgren JG, Gassmann AJ, Bernal J, Duan JJ, Ruberson J (2009) Ecological compatibility of GM crops and biological control. Crop Prot 28:1017–1030

    Article  Google Scholar 

  • Magalhães GO, Vacari AM, De Bortoli CP, Pomari AF, De Bortoli SA, Polanczyk RA (2015a) Interactions between Bt-bioinsecticides and Podisus nigrispinus (Dallas) (Hemiptera: Pentatomidae), a predator of Plutella xylostella (L.) (Lepidoptera: Plutellidae). Neotropical Entomol 44:521–527

    Article  Google Scholar 

  • Magalhães GO, Vacari AM, Laurentis VL, De Bortoli SA, Polanczyk RA (2015b) Interactions of Bacillus thuringiensis bioinsecticides and the predatory stink bug Podisus nigrispinus to control Plutella xylostella. J Appl Entomol 139:123–133

    Article  Google Scholar 

  • Mohankumar S, Ramasubramanian T (2013) Role of genetically modified insect-resistant crops in IPM: agricultural, ecological and evolutionary implications. In: Abrol DP (ed) Integrated pest management: current concepts and ecological perspectives. Academic, San Diego, pp 371–400

    Google Scholar 

  • Nascimento ML, Capalbo DF, Moraes GJ, De Nardo EA, Mais AH, Oliveira RCAL (1998) Effect of a formulation of Bacillus thuringiensis Berliner var. kurstaki on Podisus nigrispinus Dallas (Heteroptera: Pentatomidae). J Invertebr Pathol 72:178–180

    Article  CAS  PubMed  Google Scholar 

  • Nga LT, Kumar P (2008) Contributions of parasitoids and Bacillus thuringiensis to the management of diamondback moth in highland crucifer production in Da Lat, Vietnam. J Asia Pac Entomol 11:59–64

    Article  Google Scholar 

  • Nunes JCS, Silva AL, Veloso VRS, Santos SV, Santos SP (1999) Seletividade de inseticidas aos predadores das pragas do algodoeiro. Pesqui Agrop Trop 29:71–75

    Google Scholar 

  • Pimentel D (2013) Pesticides applied for the control of invasive species in the United States. In: Abrol DP (ed) Integrated pest management: current concepts and ecological perspectives. Academic, San Diego, pp 111–124

    Google Scholar 

  • Polanczyk RA, Pratissoli D, Vianna UR, Oliveira GS, Andrade GS (2006) Interação entre inimigos naturais: Trichogramma e Bacillus thuringiensis no controle biológico de pragas agrícolas. Acta Sci Agron 28:233–239

    Article  Google Scholar 

  • Pratissoli D, Polanczyk RA, Vianna UR, Andrade GS, Oliveira RGS (2006) Desempenho de Trichogramma pratissolii Querino and Zucchi (Hymenoptera: Trichogrammatidae) em ovos de Anagasta kuehniella (Zeller) (Lepidoptera: Pyralidae) sob efeito de Bacillus thuringiensis Berliner. Ciênc Rural 36:369–377

    Article  Google Scholar 

  • Raen AZ, Cong D, Fang W, Yu-Fa P, Gong-Yin Y (2016) Thrips-mediated impacts from transgenic rice expressing Cry1Ab on ecological fitness of non-target predator Orius tantilus (Hemiptera: Anthocoridae). J Integr Agric 15:2059–2069

    Article  CAS  Google Scholar 

  • Resende DC, Mendes SM, Marucci RC, Silva AC, Campanha MM (2016) Does Bt maize cultivation affect the non-target insect community in the agro-ecosystem. Rev Bras Entomologia 60:82–93

    Article  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71

    Article  CAS  PubMed  Google Scholar 

  • Rose R, Dively GP (2007) Effects of insecticide-treated and Lepidoptera-active Bt transgenic sweet corn on the abundance and diversity of arthropods. Transgenic Plants Insects 36:1254–1268

    CAS  Google Scholar 

  • Schoenly KG, Barrion A (2016) Designing standardized and optimized surveys to assess invertebrate biodiversity in tropical irrigated rice by using structured inventory and species richness models. Environ Entomol 45:446–464

    Article  PubMed  Google Scholar 

  • Silva DM, Bueno AF, Andrade K, Stecca CS, Neves PMOJ, Moscardi F (2016) Selectivity of organic compounds to the egg parasitoid Telenomus remus Nixon (Hymenoptera: Platygastridae). Semina 37:55–66

    Google Scholar 

  • Sparks TC, Nauen R (2015) IRAC: mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121:122–128

    Article  CAS  PubMed  Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    Article  CAS  PubMed  Google Scholar 

  • Thomazoni D, Soria MF, Degrande PE, Faccenda O, Silvie PJ (2013) Arthropods biodiversity index in bollgard cotton (Cry1Ac) in Brazil. Interciência 38:849–856

    Google Scholar 

  • Tian JC, Wang XP, Romeis J, Naranjo SE, Hellmich RL, Wang P, Earle ED, Shelton AM (2013) Bt crops producing Cry1Ac, Cry2Ab and Cry1F do not harm the green lacewing, Chrysoperla rufilabris. PLoS ONE 8:e60125

    Google Scholar 

  • Tian JC, Long LP, Wang XP, Naranjo SE, Romeis J, Hellmich RL, Wang P, Shelton AM (2014) Using resistant prey demonstrates that Bt plants producing Cry1Ac, Cry2Ab, and Cry1F have no negative effects on Geocoris punctipes and Orius insidiosus. Environ Entomol 43:242–251

    Article  CAS  PubMed  Google Scholar 

  • Torres JB, Ruberson J (2006) Interactions of Bt-cotton and the omnivorous big-eyed bug Geocoris punctipes (Say) a key predator in cotton fields. Biol Control 39:47–57

    Article  Google Scholar 

  • Torres JB, Ruberson J (2008) Interactions of Bacillus thuringiensis Cry1Ac toxin in genetically engineered cotton with predatory heteropterans. Transgenic Res 17:345–354

    Article  CAS  PubMed  Google Scholar 

  • Torres JB, Barros EM, Coelho RR, Pimentel RMM (2010) Zoophytophagous pentatomids feeding on plants and implications for biological control. Arthropod Plant Interact 4:219–227

    Article  Google Scholar 

  • Veiga ACP, Laurentis VL, Vacari AM, Volpe HXL, Ramalho DG, De Bortoli SA (2014) Behavior of Orius insidiosus preying on Aphis gossypii reared on transgenic and conventional cotton varieties. Acta Sci Agron 36:273–279

    Article  Google Scholar 

  • Yang B, Ouyang F, Parajulee M, Ge F (2015) Crop dominance exerts specific effects on foliage-dwelling arthropods in Bacillus thuringiensis cotton. Agric For Entomol 17:225–238

    Article  Google Scholar 

  • Zhang GF, Wan FH, Murphy ST, Guo JY, Liu WX (2008) Reproductive biology of two nontarget insect species, Aphis gossypii (Homoptera: Aphididae) and Orius sauteri (Hemiptera: Anthocoridae), on Bt and non-Bt cotton cultivars. Environ Entomol 31:1035–1042

    Google Scholar 

  • Zhao Y, Zhan S, Luo JY, Wang CY, Lv LM, Wang XP, Cui JJ, Lei CL (2016) Bt proteins Cry1Ah and Cry2Ab do not affect cotton aphid Aphis gossypii and ladybeetle Propylea japonica. Sci Rep 6:20368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwahlen C, Nentwig W, Bigler F, Hilbeck A (2000) Tritrophic interactions of transgenic Bacillus thuringiensis corn, Anaphothrips obscurus (Thysanoptera: Thripidae), and the predator Orius majusculus (Heteroptera: Anthocoridae). Environ Entomol 29:846–850

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Marieli Vacari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

De Bortoli, S.A., Vacari, A.M., Polanczyk, R.A., Veiga, A.C.P., Goulart, R.M. (2017). Effect of Bacillus thuringiensis on Parasitoids and Predators. In: Fiuza, L., Polanczyk, R., Crickmore, N. (eds) Bacillus thuringiensis and Lysinibacillus sphaericus. Springer, Cham. https://doi.org/10.1007/978-3-319-56678-8_5

Download citation

Publish with us

Policies and ethics