Skip to main content

The American Bacillus thuringiensis Based Biopesticides Market

  • Chapter
  • First Online:

Abstract

Bt-based biopesticides are among the main tactics for agricultural pest control in many production systems, mainly due to high efficiency and the ability to preserve natural enemies and the environment. North America (Canada and USA) and Brazil stand out as the two largest world markets for these products. The main targets are larvae of the spruce budworm (Choristoneura fumiferana) responsible for forest defoliation in Canada and the gypsy moth (Lymantria dispar) in the United States. Bt biopesticides have been used against these pests since the 1980s and represent the oldest IPM system using these products worldwide. The Brazilian example is more recent and involves two species of noctuids, Helicoverpa armigera and Chrysodeixis includens which became very serious problems in all agricultural areas. Bt biopesticides provided a satisfactory control efficiency, making Brazil a world reference. The total Bt biopesticide usage reached over 4.5 million liters/kilograms in the 2013/2014 crop seasons, which corresponds to a sprayed area of approximately 9 million ha. Reasons for this increase, and subsequent decrease, in the Brazilian Bt biopesticides market are discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrofit (2017) http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed on 03 Feb 2017

  • Ahmad M, Iqbal AM, Ahmad Z (2003) Susceptibility of Helicoverpa armigera (Lepidoptera: Noctuidae) to new chemistries in Pakistan. Crop Prot 22:539–544.

    Google Scholar 

  • Alves SB, Moino A Jr, Almeida JEM (1998) Desenvolvimento, potencial de uso e comercialização de produtos microbianos. In: Alves SB (ed) Controle microbiano de insetos. FEALQ, Piracicaba, pp 1143–1163. 1163p

    Google Scholar 

  • Alves LFA, Alves SB, Lopes RB, Augusto NT (2001) Estabilidade de uma formulação de Bacillus sphaericus armazenada sob diferentes temperaturas. Sci Agric 58:21–26

    Article  Google Scholar 

  • de Amorim GV, Whittome B, Shore B, Levin DB (2001) Identification of Bacillus thuringiensis subspecies kurstaki strain HD1-like bacteria from environmental and human samples after aerial spraying of Victoria, British Columbia, Canada with foray 48B. Appl Environ Microbiol 67:1035–1043

    Article  Google Scholar 

  • Axelson JN, Smith DJ, Daniels LD, Alfaro RI (2015) Multicentury reconstruction of western spruce budworm outbreaks in central British Columbia, Canada. For Ecol Manag 335:235–248

    Article  Google Scholar 

  • Bauce E, Carisey N, Dupont A, van Frankenhuyzen K (2004) Bacillus thuringiensis subsp. kurstaki (Btk) aerial spray prescriptions for balsam fir stand protection against spruce budworm (Lepidoptera: Tortricidae). J Econ Entomol 97:1624–1634

    Article  PubMed  Google Scholar 

  • Bobrowski VL, Pasquali G, Bodanese-Zanettini MH, Pinto LMF, Fiuza LM (2002) Characterization of two Bacillus thuringiensis isolates from South Brazil and their toxicity against Anticarsia gemmatalis (Lepidoptera: Noctuidae). Biol Control 25:129–135

    Article  CAS  Google Scholar 

  • CAB International Centre (2010) The 2010 wordwide biopesticides market summary. CAB Internation Centre, Wallingford. 40p

    Google Scholar 

  • Correia ACB (1986) Efeito de Bacillus thuringiensis Berliner sobre parâmetros biológicos de Spodoptera frugiperda (Smith & Abbot, 1797), p.95. In: Congresso Brasileiro de Entomologia, 10. Rio de Janeiro, Anais SBE

    Google Scholar 

  • Dourado PM, Bacalhau FB, Amado D, Carvalho RA, Martinelli S, Head GP, Omoto C (2016) High susceptibility to Cry1Ac and low resistance allele frequency reduce the risk of resistance of Helicoverpa armigera to Bt soybean in Brazil. PLoS One 11:e0161388. http://doi.org/10.1371/journal.pone.0161388

    Article  PubMed  PubMed Central  Google Scholar 

  • Downes S, Mahon R (2012) Sucesses and challenges of managing resistance in Helicoverpa armigera to Bt cotton in Australia. GM Crops and Food 3:228–234

    Google Scholar 

  • Entwistle PF, Cory JS, Bailey MJ, Higgs S (1993) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester. 311p

    Google Scholar 

  • Figueiredo MB, Coutinho JM, Orlando A (1960) Novas perspectivas para o controle biológico de algumas pragas com Bacillus thuringiensis. Arq Inst Biol 27:77–88

    Google Scholar 

  • Fragoso DB, Alcantara PH (2014) Fome de pasto: surtos de lagartas desfolhadoras em pastagens! Fronteira Agric 6: 4p

    Google Scholar 

  • van Frankenhuyzen K (1995) Development and current status of Bacillus thuringiensis for control of defoliating forest insects. For Chron 66(498):507

    Google Scholar 

  • van Frankenhuyzen K (2013) Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. J Invertebr Pathol 114:76–85

    Article  PubMed  Google Scholar 

  • van Frankenhuyzen K, West RJ, Kenis M (2002) Lambdina fiscellaria fiscellaria (Guenée), Hemlock looper (Lepidoptera: Geometridae). In: Mason PG, Huber JT (eds) Biological control Programmes in Canada, 1981–2000. CABI Publ, Wallingford, pp 141–144

    Google Scholar 

  • van Frankenhuyzen K, Reardon RC, Dubois NR (2007) Forest defoliators. In: Lacey LL, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer, Dordrecht, pp 481–504

    Chapter  Google Scholar 

  • van Frankenhuyzen K, Ryall K, Liu Y, Meating J, Bolan P, Scarr T (2011) Prevalence of Nosema sp. (Microsporidia: Nosematidae) during an outbreak of the jack pine budworm in Ontario. J Invertebr Pathol 108:201–208

    Article  PubMed  Google Scholar 

  • van Frankenhuyzen K, Lucarotti CJ, Lavallée R (2015) Canadian contributions to forest insect pathology and the use of pathogens in forest pest management. Can Entomol 00:1–29

    Google Scholar 

  • Fundecitrus (2000) Tecnologia contra o bicho-furão. Rev Fundecitrus 96:8–10

    Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Kohl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258

    Article  CAS  PubMed  Google Scholar 

  • Habbib MEEM, Ferraz JMG, Oliveira GG (1987) Avaliação de uma nova formulação de Bacillus thuringiensis var. kurstaki em larvas de Spodoptera frugiperda (J.E Smith, 1797), p.218. In: Congresso Brasileiro de Entomologia. 11, Salvador. Anais SBE

    Google Scholar 

  • Habib MEM, Amaral MEC (1985) Aerial application of Bacillus thuringiensis against the velvetbean caterpillar Anticarsia gemmatalis Huebner, in soybean fields. Rev Agric 60:141–149

    Google Scholar 

  • Habib MEM, Andrade CFS (1991) Controle microbiano de insetos com o uso de bactérias. Inf Agrop 15(167):21–26

    Google Scholar 

  • Hajek AE, Tobin PC (2009) North American eradications of Asian and European gypsy moth. In: Hajek AE, Glare TR, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods. Springer, Dordrecht, pp 71–89. 366p

    Chapter  Google Scholar 

  • Hirose E, Moscardi F (2012) Insetos de outras regiões do mundo: Ameaças. In: Hoffmann-Campo CB, Correa-Ferreira BS, Moscardi F. (Org.). Soja: Manejo Integrado de Insetos e Artropodes-pragas, 1st edn. EMBRAPA, Brasilia, pp 445–492

    Google Scholar 

  • Hoffmann-Campo CB, Oliveira LJ, Moscardi F, Gazzoni DL, Corrêa-Ferreira BS, Lorini I, Borges M, Panizzi AR, Sosa-Gómez DR, Corso IA (2003) Integrated pest management in Brazil. In: Maredia KM, Dakouo D, Mota-Sanchez D (eds) Integrated pest management in the global arena. Cabi Publishing: Crowmwell Press, Trowbridge, pp 285–299

    Chapter  Google Scholar 

  • McCullough DG (2000) A review of factors affecting the population dynamics of jack pine budworm (Choristoneura pinus pinus freeman). Popul Ecol 42:243–256

    Article  Google Scholar 

  • Moscardi F (1999) Assessment of the application of baculoviruses for control of lepidoptera. Annu Rev Entomol 44:257–289

    Article  CAS  PubMed  Google Scholar 

  • Patil S, Bashasab F, Vijaykumar, Basavanagoud, Kuruvinashetti MS, Patil BV (2006) Genetic relatedness among Helicoverpa armigera (Hübner) occurring on different host plants as revealed by random amplified polymorphic DNA markers. J Asia Pac Entomol 9:227–233

    Article  Google Scholar 

  • Pigatti A, Figueiredo MB, Orlando A (1960) Experiências de laboratório sobre a atividade de novos inseticidas contra o mandorová da mandioca. Biológico 26:47–51

    Google Scholar 

  • Polanczyk RA, Valicente FH, Barreto MR (2008) Utilização de Bacillus thuringiensis no controle de pragas agrícolas na América Latina. In: Alves SB, Lopes RB (eds) Controle Microbiano de Pragas na América Latina: avanços e desafios. Ed. FEALQ, Piracicaba, pp 111–136. 414p

    Google Scholar 

  • Pomari-Fernandes A, de Bueno AF, Sosa-Gomez DR (2015) Helicoverpa armigera: current status and future perspectives in Brazil. Curr Agric Sc Technol 21:1–8

    Google Scholar 

  • Reardon R, Dubois N, McLane W (1994) Bacillus thuringiensis for managing gypsy moth: a review. FHM-NC-01-94. USDA Forest Service, National Center of Forest Health Management, Hamden

    Google Scholar 

  • Royama T (1984) Population dynamics of the spruce budworm Choristoneura fumiferana. Ecol Monogr 54:429–462

    Article  Google Scholar 

  • Sheehan K.A (1996) Effects of insecticide treatments on subsequent defoliation by western spruce budworm in Oregon and Washington: 1982–1992. General Technical report PNW-GTR-367, Pacific Northwest Research Station, USDA Forest Service, Portland

    Google Scholar 

  • Sindiveg (2015) Balanço 2015. Setor de agroquímicos confirma queda de vendas. http://www.sindiveg.org.br/docs/balanco-2015.pdf. Accessed on 05 Jan 2017

  • Sosa-Gómez DR, Specht A, Paula-Moraes SV, Lopes-Lima A, Yano SAC, Micheli A, Morais EGF, Gallo P, Pereira PRVS, Salvadori JR, Botton M, Zenker MM, Azevedo-Filho WS (2016) Timeline and geographical distribution of Helicoverpa armigera (Hübner) (Lepidoptera, Noctuidae: Heliothinae) in Brazil. Rev Bras Entomol 60:101–104

    Article  Google Scholar 

  • Souza ML (2001) Utilização de microrganismos na agricultura. Biotecnol Ciências Desenvolv 21:s28–s31

    Google Scholar 

  • Tabashnik BE, Daid Mota-Sanchez D, Whalon ME, Hollingworth RM, Carriere DY (2014) Terms for proactive management of resistance to Bt crops and pesticides. J Econ Entomol 107:496–507

    Article  CAS  PubMed  Google Scholar 

  • Tay WT, Soria MF, Walsh T, Thomazoni D, Silvie P et al (2013) A brave new world for an old world Pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PLoS One 8(11):e80134. doi:10.1371/journal.pone.0080134

    Article  PubMed  PubMed Central  Google Scholar 

  • Tobin PC, Blackburn LM (2007) Slow the spread: a national program to manage the gypsy moth. Gen Tech Rep NRS-6. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square. 109p

    Google Scholar 

  • Tomquelski GV, Martins GLM, Dias TS (2015) Características e manejo de pragas da cultura da soja. Pesq Tecn Prod 2:61–82

    Google Scholar 

  • Van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101:1–16

    Article  PubMed  Google Scholar 

  • Wu KM (2007) Regional management strategy for cotton bollworm Helicoverpa armigera in China. Control of Insect Pests 7:559–565

    Google Scholar 

  • Wyckhuys KAG, Lu Y, Morales H, Vazquez LL, Jesusa CL, Legaspi JC, Eliopoulos PA, Hernandez LM (2013) Current status and potential of conservation biological control for agriculture in the developing world. Biol Control 65:152–167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Antonio Polanczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Polanczyk, R.A., van Frankenhuyzen, K., Pauli, G. (2017). The American Bacillus thuringiensis Based Biopesticides Market. In: Fiuza, L., Polanczyk, R., Crickmore, N. (eds) Bacillus thuringiensis and Lysinibacillus sphaericus. Springer, Cham. https://doi.org/10.1007/978-3-319-56678-8_11

Download citation

Publish with us

Policies and ethics