Skip to main content

Bacillus thuringiensis Characterization: Morphology, Physiology, Biochemistry, Pathotype, Cellular, and Molecular Aspects

  • Chapter
  • First Online:
Bacillus thuringiensis and Lysinibacillus sphaericus

Abstract

In this publication, “Bacillus thuringiensis and Lysinibacillus sphaericus – characterization and use in the field of biocontrol,” this chapter can be seen as a brief general and historical introduction to the central theme of the book, where data on the cellular physiology, biochemical, genetic, molecular, and toxicological aspects of the bacterium, B. thuringiensis (Bt), are reported. This predominant entomopathogenic prokaryote was discovered and denominated Bt around a century ago, between 1902 and 1911. From the microbiological point of view, this bacterium is ubiquitous, Gram-positive, produces ellipsoidal but predominantely cilindrical endospores (central to paracentral) and contains a parasporal inclusion body called crystal or δ-endotoxin. The crystal is constituted of Cry proteins with molecular weight between 30 kDa and 140 kDa, which are coded by cry genes. On the other hand, this bacterial species synthesizes several enzymes and toxins that give them a wide adaptation to natural habitats. Bt strains have been studied and, over time, characterized and described as toxic and specific for Lepidoptera, Diptera, Coleoptera, Nematoda, Protozoa, Trematoda, Acari, Hymenoptera, Hemiptera, Orthoptera, Isoptera, Mallophaga, and among other target pests. Globally, 82 Bt serovars sometimes called subspecies were described until 1999, which currently correspond to more than 700 cry genes distributed in about 70 classes. The nomenclature review of cry genes, which encode Bt Cry proteins, has been published by Crickmore et al. and has been constantly updated on the website: http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizawa K (1971) Strain improvement and preservation of virulence of pathogens. In: Burges HD, Hussey NW (eds) Microbial control of insects and mites. Academic, London, pp 655–672

    Google Scholar 

  • Allen AD, Velez-Quinones M, Eribo BE, Morris V (2015) MALDI-TOF MS as a supportive tool for the evaluation of bacterial diversity in soils from Africa and the Americas. Aerobiologia 31:111–126

    Article  Google Scholar 

  • Alves SB (1998) Controle microbiano de insetos. FEALQ, Piracicaba. 1998. 1116p

    Google Scholar 

  • Azevedo JL, Maccheroni W Jr, Pereira JO, Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3(1):40–65

    Article  Google Scholar 

  • Bechtel DB, Bulla LA (1982) Ultrastructural analysis of membrane development during Bacillus thuringiensis sporulation. J Ultrastruct Res 79:121–132

    Article  CAS  PubMed  Google Scholar 

  • Bhandari V, Ahmod NZ, Shah HN, Gupta RS (2013) Molecular signatures for Bacillus species: demarcation of the Bacillus subtilis and Bacillus cereus clades in molecular terms and proposal to limit the placement of new species into the genus bacillus. Int J Syst Evol Microbiol 63:2712–2726

    Article  CAS  PubMed  Google Scholar 

  • Bishop AH, Johnson C, Perani M (1999) The safety of Bacillus thuringiensis to mammals investigated by oral and subcutaneous dosage. World J Microbiol Biotechnol 15:375–380

    Article  Google Scholar 

  • Bottone EJ (2010) Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 23:382–438

    Article  PubMed  PubMed Central  Google Scholar 

  • Boukedi H, Sellami S, Ktari S, Hassan NB-B, Sellami-Boudawara T, Tounsi S et al (2016) Isolation and characterization of a new Bacillus thuringiensis strain with a promising toxicity against lepidopteran pests. Microbiol Res 186:9–15

    Article  PubMed  Google Scholar 

  • Brumlik MJ, Szymajda U, Zakowska D, Liang X, Redkar RJ, Patra G et al (2001) Use of long-range repetitive element polymorphism-PCR to differentiate Bacillus anthracis strains. Appl Environ Microbiol 67:3021–3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulla LA Jr, Bechtel DB, Kramer KJ, Shethna YI (1980) Ultrastructure, physiology, and biochemistry of Bacillus thuringiensis. CRC Crit Rev Microbiol 8:147–203

    Article  CAS  Google Scholar 

  • Cavados CFG, Fonseca RN, Chaves JQ, Rabinovitch L, Araújo Coutinho CJPC (2001) Identification of Entomathogenic Bacillus Isolated from Simukium (Diptera, Simuliidae) Larvae and Adults. Mem Inst Oswaldo Cruz, Rio de Janeiro 96(7):1017–21.

    Google Scholar 

  • Caamaño-Antelo S, Fernández-No IC, Böhme K, Ezzat-Alnakip M, Quintela-Baluja M, Barros-Velázquez J et al (2015) Genetic discrimination of foodborne pathogenic and spoilage Bacillus spp. based on three housekeeping genes. Food Microbiol 46:288–298

    Article  PubMed  CAS  Google Scholar 

  • Cantwell GE (1974) Insect diseases, vol 1 and 2. Marcel Dekker, New York

    Google Scholar 

  • Cardazzo B, Negrisolo E, Carraro L, Alberghini L, Patarnello T, Giaccone V (2008) Multiple-locus sequence typing and analysis of toxin genes in Bacillus cereus food-borne isolates. Appl Environ Microbiol 74:850–860

    Article  CAS  PubMed  Google Scholar 

  • Cardinali A, Pizzeghello D, Zanin G (2015) Fatty acid methyl Ester (FAME) succession in different substrates as affected by the co-application of three pesticides. PLoS ONE 10:e0145501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castilhos-Fortes R, Matsumura A, Diehl E, Fiuza LM (2001) Susceptibility of Nasutitermes ehrhardti (Isoptera: Termitidae) to Bacillus thuringiensis subspecies. Braz J Microbiol 33:212–222

    Google Scholar 

  • Chakroun M, Banyuls N, Bel Y, Escriche B, Ferré J (2016) Bacterial vegetative insecticidal proteins (Vip) from Entomopathogenic bacteria. Microbiol Mol Biol Rev 80(2):329–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaves JQ, Cavados CFG, Rabinovitch L (2008) Phenotypic and genotypic features of new autoagglutinating Bacillus thuringiensis strains. J. Invertebrate Pathology 98:85–92.

    Google Scholar 

  • Chen ML, Tsen HY (2002) Discrimination of Bacillus cereus and Bacillus thuringiensis with 16S rRNA and gyrB gene based PCR primers and sequencing of their annealing sites. Appl Environ Microbiol 92:912–919

    Article  CAS  Google Scholar 

  • Cherif A, Ettoumi B, Raddadi N, Daffonchio D, Boudabous A (2007) Genomic diversity and relationship of Bacillus thuringiensis and Bacillus cereus by multi-REP-PCR fingerprinting. Can J Microbiol 53:343–350

    Article  CAS  PubMed  Google Scholar 

  • Christensen H, Nordentoft S, Elmerdahl Olsen J (1998) Phylogenetic relationships of salmonella based on rRNA sequences. Int J Syst Bacteriol 48:605–610

    Article  CAS  PubMed  Google Scholar 

  • Claus D, Berkeley RCW (1986) Genus Bacillus Cohn 1872. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1104–1139

    Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal protein. Microbiol Mol Biol Rev 62(3):807–813

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Barjac H, Bonnefoi A (1962) Essai de classification biochimique et sérologique de 24 souches de Bacillus du type B. thuringiensis. BioControl 7:5–31

    Google Scholar 

  • De Barjac H, Bonnefoi A (1968) A classification of strains of Bacillus thuringiensis Berliner with a key to their differentiation. J Invertebr Pathol 11:335–347

    Article  PubMed  Google Scholar 

  • De Barjac H, Bonnefoi A (1973) Mise au point sur la classification des Bacillus thuringiensis. BioControl 18:5–17

    Google Scholar 

  • De Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17(4):193–199

    Article  PubMed  Google Scholar 

  • De Sarrau B, Clavel T, Clerté C, Carlin F, Giniès C et al (2012) Influence of anaerobiosis and low temperature on Bacillus cereus growth, metabolism, and membrane properties. Appl Environ Microbiol 78:1715–1723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (2009) The Firmicutes. Bergey’s Manual of Systematic Bacteriology, 2nd edn. Springer;NY, vol. 3. p 1–243.

    Google Scholar 

  • Diomandé SE, Guinebretière M-H, De Sarrau B, Broussolle V, Brillard J et al (2015) Fatty acid profiles and desaturase-encoding genes are different in thermo- and psychrotolerant strains of the Bacillus cereus Group. BMC Res Notes 8:329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dulmage H (1981) Insecticidal activity of isolates of Bacillus thuringiensis and their potential control. In: Burges HD. (ed) 1970–1980Microbial control of pests and plant diseases. Academic, London, pp 193–222

    Google Scholar 

  • Feitelson J, Payne J, Kim L (1992) Bacillus thuringiensis: insects and beyond. Bio/Technology 10:271–275

    Article  Google Scholar 

  • Fiuza LM (2001) Bacillus thuringiensis: características e potencial no manejo de insetos. Acta Biol Leopoldensia 23:141–156

    Google Scholar 

  • Fiuza LM (2009) Mecanismo de ação de Bacillus thuringiensis. Biotecnol Ciênc Desenvolvimento 38:32–35

    Google Scholar 

  • García K, Ibarra JE, Bravo A, Díaz J, Gutiérrez D, Torres PV et al (2015) Variability of Bacillus thuringiensis strains by ERIC-PCR and biofilm formation. Curr Microbiol 70:10–18

    Article  PubMed  CAS  Google Scholar 

  • Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ et al (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739

    Article  CAS  PubMed  Google Scholar 

  • Ghassemi-Kahrizeh A, Aramideh S (2014) Sub-lethal effects of Bacillus thuringiensis Berliner on larvae of Colorado potato beetle, leptinotarsa decemlineata (say) (Coleoptera: Chrysomelidae). Arch Phytopathol Plant Protect 48:259–267

    Article  Google Scholar 

  • Glaeser SP, Kämpfer P (2015) Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 38:237–245

    Article  CAS  PubMed  Google Scholar 

  • Glare TR, O’Callaghan M (2000) Bacillus thuringiensis biology, ecology and safety. Wiley, Chichester, 350

    Google Scholar 

  • Goldberg L, Margalit J (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Urano taenia unguiculata, Culex univitattus, Aedes aegypti and Culex pipiens. Mosq News 37:355–358

    Google Scholar 

  • Gordon R, Haynes WC, Pang CH-N (1973) The genus Bacillus. Agriculture Handbook no. 427. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Grove M, Kimble W, McCarthy WJ (2001) Effects of individual Bacillus thuringiensis insecticidal crystal proteins on adult Heliothis virescens (F.) and Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). BioControl 46:321

    Article  CAS  Google Scholar 

  • Habib MEM, Andrade CES (1998) Bactérias entomopatogênicas. In: Alves SB (ed) Controle microbiano de insetos. Fealq, Piracicaba, pp 383–446

    Google Scholar 

  • Helgason E, Tourasse NJ, Meisal R, Caugant DA, Kolstø A-B (2004) Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl Environ Microbiol 70:191–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández CS, Ferré J, Larget-Thiéry I (2001) Update on the detection of β-exotoxin in Bacillus thuringiensis strains by HPLC analysis. J Appl Microbiol 90:643–647

    Article  PubMed  Google Scholar 

  • Hernández CS, Martínez C, Porcar M, Caballero P, Ferré J (2003) Correlation between serovars of Bacillus thuringiensis and type I β-exotoxin production. J Invertebr Pathol 82:57–62

    Article  PubMed  Google Scholar 

  • Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed  PubMed Central  Google Scholar 

  • Höfte H, De Greve H, Seurink J, Jansens S, Mahillon J, AMpe C, Vanderkerckhove J, Vanderbruggen H, Vanmontagu M, Zabeau M, Vaeck M (1986) Structural and functional analysis of a cloned delta-endotoxin of Bacillus thuringiensis Berliner 1715. Eur J Biochem 161:273–280

    Article  PubMed  Google Scholar 

  • Ibrahim MA, Griko N, Junker M, Bulla LA (2010) Bacillus thuringiensis. A genomics and proteomics perspective. Bioengineered Bugs 1(1):31–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Joung K-B, Côté J-C (2001) A phylogenetic analysis of Bacillus thuringiensis serovars by RFLP-based ribotyping. Appl Environ Microbiol 91:279–289

    Article  CAS  Google Scholar 

  • Kämpfer P (1994) Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–98

    Article  Google Scholar 

  • Karas M, Bahr U, Hillenkamp F (1989) UV laser matrix desorption/ionization mass spectrometry of proteins in the 100 000 dalton range. Int J Mass Spectrom Ion Process 92:231–242

    Article  CAS  Google Scholar 

  • Katara J, Deshmukh R, Singh NK, Kaur S (2013) Diversity analysis of Bacillus thuringiensis isolates recovered from diverse habitats in India using random amplified polymorphic DNA (RAPD) markers. Int J Biol Sci 13:514

    Article  CAS  Google Scholar 

  • Katara JL, Kaur S, Kumari GK, Singh NK (2016) Prevalence of cry2-type genes in Bacillus thuringiensis isolates recovered from diverse habitats in India and isolation of a novel cry2Af2 gene toxic to Helicoverpa armigera (cotton boll worm). Can J Microbiol 62:1003–1012

    Article  CAS  PubMed  Google Scholar 

  • La Duc MT, Satomi M, Agata N, Venkateswaran K (2004) gyrB as a phylogenetic discriminator for members of the Bacillus anthraciscereusthuringiensis group. J Microbiol Methods 56:383–394

    Article  PubMed  CAS  Google Scholar 

  • Lacey LA, Brooks WM (1997) Initial handling and diagnosis of diseased insects. In: Lacey LA (ed) Manual of techniques in insect pathology. Academic, San Diego, pp 1–15

    Chapter  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: Back to the future. J Invert Pathol 132:1–41

    Article  CAS  Google Scholar 

  • Lecadet M-M, Frachon E, Dumanoir VC, Ripouteau H, Hamon S, Laurent P, Thiery I (1999) Updating the H-antigen classification of Bacillus thuringiensis. J Appl Microbiol 86:660–672

    Google Scholar 

  • Lereclus D, Delécluse A, Lecadet MM (1993) Diversity of Bacillus thuringiensis toxins and genes. In: Enwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis: an environmental biopesticide: theory and practice. Wiley, West Sussex, pp 37–69

    Google Scholar 

  • Lima ASG, Guidelli AM, Abreu IL, Lemos MVF (2002) Identification of new isolates of Bacillus thuringiensis using rep-PCR products and δ-endotoxin electron microscopy. Genetics and Mol Biolog 25:225–229

    Google Scholar 

  • Logan N (2012) BacilIlus and relatives in foodborne illness. Journal of Applied Microbiology 112:417–429

    Article  CAS  PubMed  Google Scholar 

  • Logan NA, De Vos P (2009) Genus Bacillus Cohn 1872. In: P. De Vos, G. M. Garrity, D. Jones, N. R. Krieg, W. Ludwig, F. A. Rainey, K. H. Schleifer & W. B. Whitman (ed) Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 3. Springer, New York

    Google Scholar 

  • Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P, Fritze D, Heyndrickx M, Kampfer P, Rabinovitch L, Salkinoja-Salonen MS, Seldin L, Ventosa A (2009) Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121

    Article  CAS  PubMed  Google Scholar 

  • Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci 95:3140–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiden MC, Van Rensburg MJJ, Bray JE, Earle SG, Ford SA, Jolley KA et al (2013) MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol 11:728–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzano M, Giusto C, Iacumin L, Cantoni C, Comi G (2009) Molecular methods to evaluate biodiversity in Bacillus cereus and Bacillus thuringiensis strains from different origins. Food Microbiol 26:259–264

    Article  CAS  PubMed  Google Scholar 

  • Mun Huang W (1996) Bacterial diversity based on type II DNA topoisomerase genes. Annu Rev Genet 30:79–107

    Article  Google Scholar 

  • Park S, Kim H, Kim J, Kim T, Kim H et al (2007) Simultaneous detection and identification of Bacillus cereus group bacteria using multiplex PCR. J Microbiol Biotechnol 17:1177

    CAS  PubMed  Google Scholar 

  • Perani M, Bishop AH, Vaid A (1998) Prevalence of β-exotoxin, diarrhoeal toxin and specific δ-endotoxin in natural isolates of Bacillus thuringiensis. FEMS Microbiol Lett 160:55–60

    CAS  PubMed  Google Scholar 

  • Pérez-Losada M, Cabezas P, Castro-Nallar E, Crandall KA (2013) Pathogen typing in the genomics era: MLST and the future of molecular epidemiology. Infect Genet Evol 16:38–53

    Article  PubMed  CAS  Google Scholar 

  • Peruca APS, Vilas-Bôas GT, Arantes OMN (2008) Genetic relationships between sympatric populations of Bacillus cereus and Bacillus thuringiensis, as revealed by rep-PCR genomic fingerprinting. Mem Inst Oswaldo Cruz 103:497–500

    Article  CAS  PubMed  Google Scholar 

  • Pfrunder S, Grossmann J, Hunziker P, Brunisholz R, Gekenidis M-T, Drissner D (2016) Bacillus cereus group-type strain-specific diagnostic peptides. J Proteome Res 15:3098–3107

    Article  CAS  PubMed  Google Scholar 

  • Pinto LMN, Berlitz DL, Raquel C-F, Fiuza LM (2009) Toxinas de Bacillus thuringiensis. Biotecnol Ciênc Desenvolvimento (Online) 38:24–31

    Google Scholar 

  • Polanczyk RA, Alves SB (2005) Biological parameters of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) assayed with Bacillus thuringiensis Berliner. Sci Agric 62:464–468

    Article  Google Scholar 

  • Prabhakar A, Bishop AH (2014) Comparative studies to assess bacterial communities on the clover phylloplane using MLST, DGGE and T-RFLP. World J Microbiol Biotechnol 30:153–161

    Article  CAS  PubMed  Google Scholar 

  • Rabinovitch L, Cavados CFG, Lima MM (1998) Bacillus entomopatogênicos. Dos Bacillus entomopatogênicos: o que se espera? Rev Biotecnol Ciênc e Desenvolvimentosenv 6:40–41

    Google Scholar 

  • Rabinovitch L, Del Mastro NL, Silva CMB, Santos BS, Resende MC, Vivoni AM, Alves RSA (2014) Selective inactivation of spore maintaining larvicidal activity in Btserovarisraelensis irradiated with gamma rays. Neotropical Biology and Conservation 9(3):120–124.

    Google Scholar 

  • Rai P, Sharma A, Saxena P, Soni AP, Chakdar H, Kashyap PL et al (2015) Comparison of molecular and phenetic typing methods to assess diversity of selected members of the genus Bacillus. Microbiology 84:236–246

    Article  CAS  Google Scholar 

  • Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29:303–329

    CAS  PubMed  Google Scholar 

  • Reyes-Ramirez A, Ibarra JE (2005) Fingerprinting of Bacillus thuringiensis type strains and isolates by using Bacillus cereus group-specific repetitive extragenic palindromic sequence-based PCR analysis. Appl Environ Microbiol 71:1346–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribier J, Lecadet MM (1973) Electron microscope and kinetic studies of sporulation in Bacillus thuringiensis var. Berliner 1715. Observations concerning the production of parasporal inclusion. Ann Microbiol 124:311–344

    CAS  Google Scholar 

  • Salama HS, El-Ghany NA, Saker MM (2015) Diversity of Bacillus thuringiensis isolates from Egyptian soils as shown by molecular characterization. J Genet Eng Biotechnol 13:101–109

    Article  Google Scholar 

  • Salazar-Marroquın EL, Galan-Wonga LJ, Moreno-Medin VR, Reyes-Lopez MA, Pereyra-Alfereza B (2016) Bacteriocins synthesized by Bacillus thuringiensis: generalities and potential applications. Rev Med Microbiol 27:95–101

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchis V, Bourguet D (2009) Bacillus thuringiensis: applications in agriculture and insect resistance management-a review. In: Sustainable agriculture. Springer, Berlin, pp 243–255

    Chapter  Google Scholar 

  • Santos Junior HJG, Marques EJ, Polanczyk RA, Pratissoli D, Rondelli VM (2009) Suscetibilidade de Helicoverpa zea (Boddie) (Lep., Noctuidae) a Bacillus thuringiensis Berliner (Bacillaceae). Arq Inst Biol 76:625–631

    Google Scholar 

  • Sauka DH, Basile JI, Benintende G (2012) Evidence of Bacillus thuringiensis intra-serovar diversity revealed by Bacillus cereus group-specific repetitive extragenic palindromic sequence-based PCR genomic fingerprinting. J Mol Microbiol Biotechnol 21:184–190

    Article  CAS  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticide crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schumann P, Maier T (2014) MALDI-TOF mass spectrometry applied to classification and identification of bacteria. Methods Microbiol 41:275–306

    Article  CAS  Google Scholar 

  • Sebesta K, Farkas J, Horska K (1981) Thuringiensin, the beta-exotoxin of Bacillus thuringiensis. Microbiol Control Pests Plants Dis 8:249–281

    Google Scholar 

  • Sedaratian A, Fathipour Y, Talaei-Hassanloui R, Jurat-Fuentes JL (2013) Fitness costs of sublethal exposure to Bacillus thuringiensis in Helicoverpa armigera: a carryover study on offspring. Appl Environ Microbiol 137:540–549

    Google Scholar 

  • Selinger LB, Khachatourians GG, Byers JR, Hynes MF (1998) Expression of a Bacillus thuringiensis delta-endotoxin gene byBacillus pumillus. Can. J. Microbiol 44(2):259–269.

    Google Scholar 

  • Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E, Rolain JM et al (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551

    Article  CAS  PubMed  Google Scholar 

  • Shangkuan Y-H, Chang Y-H, Yang J-F, Lin H-C, Shaio M-F (2001) Molecular characterization of Bacillus anthracis using multiplex PCR, ERIC-PCR and RAPD. Lett Appl Microbiol 32:139–145

    Article  CAS  PubMed  Google Scholar 

  • Shapiro-Ilan DI, Fuxa JR, Lacey LA, Onstad DW, Kayae HK (2005) Definitions of pathogenicity and virulence in invertebrate pathology. J Invertebr Pathol 88:1–7

    Article  PubMed  Google Scholar 

  • Siegel JP (2001) The mammalian safety of Bacillus thuringiensis based insecticides. J Invertebr Pathol 77:13–21

    Article  CAS  PubMed  Google Scholar 

  • Soberón M, Lopez-Díaz JA, Bravo A (2013) Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganisms. Peptides 41:87–93

    Article  PubMed  CAS  Google Scholar 

  • Soufiane B, Côté J-C (2009) Discrimination among Bacillus thuringiensis H serotypes, serovars and strains based on 16S rRNA, gyrB and aroE gene sequence analyses. Antonie Van Leeuwenhoek 95:33–45

    Article  CAS  PubMed  Google Scholar 

  • Stark JD, Banks JE (2003) Population-level effect of pesticides and other toxicants on arthropods. Annu Rev Entomol 48:505–519

    Article  CAS  PubMed  Google Scholar 

  • Steinhaus, EA, Martignoni ME (1970). An abridged glossary of terms used in invertebrate pathology, 2nd edn. USDA Forest Service, PNW Forest and Range Experiment Station, Corvallis

    Google Scholar 

  • Tanada Y, Fuxa JR (1987) The host population. In: Fuxa JR, Tanada Y (eds) Epizootiology of insect diseases. Wiley, New York, pp 113–157

    Google Scholar 

  • Tanada Y, Kaya HK (1993) Insect pathology. Academic, San Diego

    Google Scholar 

  • Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T et al (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  • Tayabali AF, Seligy VL (2000) Human cell exposure assays of bacillus thuringiensis commercial insecticides: production of Bacillus cereus-like cytolytic effects from outgrowth of spores. Environ Health Perspect 108(10):919–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teramoto K, Sato H, Sun L, Torimura M, Tao H (2007) A simple intact protein analysis by MALDI-MS for characterization of ribosomal proteins of two genome-sequenced lactic acid bacteria and verification of their amino acid sequences. J Proteome Res 6:3899–3907

    Article  CAS  PubMed  Google Scholar 

  • Thomas SR, Elkinton JS (2004) Pathogenicity and virulence. J Invertebr Pathol 85:146–151

    Article  PubMed  Google Scholar 

  • Tsai SF, Liu BL, Liao JW, Wang JS, Hwanh JS, Wang SC, Tzeng YM, Ho SP (2003) Pulmonary toxicity of thuringiensin administered intratracheally in Sprague-Dawley rats. Toxicology 186:205–216

    Article  CAS  PubMed  Google Scholar 

  • Van Belkum A (2003) High-throughput epidemiologic typing in clinical microbiology. Clin Microbiol Infect 9:86–100

    Article  PubMed  Google Scholar 

  • Van Frankenhuyzen K (1993) The challenge of Bacillus thuringiensis. In: Entwistle P, Cory J, Bailey M, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, New York, pp 1–35

    Google Scholar 

  • Van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101:1–16

    Google Scholar 

  • Van Frankenhuyzen K (2013) Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. J Invertebr Pathol 114:76–85

    Google Scholar 

  • Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, et al (2015) Microbial species delineation using whole genome sequences. Nucleic Acids Research gkv657.

    Google Scholar 

  • Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Biol 5:25–40

    CAS  Google Scholar 

  • Vidal-Quist JC, Rogers HJ, Mahenthiralingam E, Berry C (2013) Bacillus thuringiensis colonises plant roots in a phylogeny-dependent manner. FEMS Microbiol Ecol 86:474–489

    Article  CAS  PubMed  Google Scholar 

  • Wang L-T, Lee F-L, Tai C-J, Kasai H (2007) Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 57:1846–1850

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and Eucarya. Proc Natl Acad Sci 87:4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano Y, Nakayama A, Ishihara K, Saito H (1998) Adaptive changes in membrane lipids of barophilic bacteria in response to changes in growth pressure. Appl Environ Microbiol 64:479–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H et al (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645

    Article  CAS  PubMed  Google Scholar 

  • Zahner V, Cabral DA, Régua-Mangia AH, Rabinovitch L, Moreau G, Mcintosh D (2005) Distribution of genes encoding putative virulence factors and fragment length polymorphisms in the vrrA gene among Brazilian isolates of Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol 71(12):8107–8114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahner V, de Silva ACTC, de Moraes GP, McIntosh D, de Filippis I (2013) Extended genetic analysis of Brazilian isolates of Bacillus cereus and Bacillus thuringiensis. Mem Inst Oswaldo Cruz 108:65–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang MY, Lovgren A, Lauden R (1995) Adhesion and cytotoxicity of Bacillus thuringiensis to cultured Spodoptera and Drosophila cells. J. Invertebrate Pathology 66:4651

    Google Scholar 

  • Zhang Y, Ma Y, Wan PJ, Mu LL, Li GQ (2013) Bacillus thuringiensis insecticidal crystal proteins affect lifespan and reproductive performance of Helicoverpa armigera and Spodoptera exigua adults. J Econ Entomol 106:614–621

    Article  CAS  PubMed  Google Scholar 

  • Zhong C, Ellar DJ, Bishop A, Johnson C, Lin S, Hart ER (2000) Characterization of a Bacillus thuringiensis d-endotoxin which is toxic to insects in three orders. J Invertebr Pathol 76:131–139

    Article  CAS  PubMed  Google Scholar 

  • Ziegler D, Pothier JF, Ardley J, Fossou RK, Pflüger V, De Meyer S et al (2015) Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS. Appl Microbiol Biotechnol 99:5547–5562

    Article  CAS  PubMed  Google Scholar 

  • Zwick ME, Joseph SJ, Didelot X et al (2012) Genomic characterization of the Bacillus cereus sensu lato species: Backdrop to the evolution of Bacillus anthracis. Genome Research 22(8):1512–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Mariana Fiuza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rabinovitch, L. et al. (2017). Bacillus thuringiensis Characterization: Morphology, Physiology, Biochemistry, Pathotype, Cellular, and Molecular Aspects. In: Fiuza, L., Polanczyk, R., Crickmore, N. (eds) Bacillus thuringiensis and Lysinibacillus sphaericus. Springer, Cham. https://doi.org/10.1007/978-3-319-56678-8_1

Download citation

Publish with us

Policies and ethics