Skip to main content

Imaging of the Breast

  • Chapter
  • First Online:
Book cover Breast Cancer Management for Surgeons
  • 2541 Accesses

Abstract

Three imaging modalities – mammography, ultrasound and MRI – are used for evaluation of the breast in both the preventive and diagnostic setting. Each of these modalities is based on a different principle and carries both benefits and limitations. This chapter presents an overview of each method, describes the acquisition process and how to evaluate the images and discusses possible pitfalls and challenges. Typical findings of benign and malignant lesions for each modality are provided. Special attention is paid to a multimodality approach, practical considerations and preoperative use of the modalities; hints are given for clinical practice. A summary of the breast imaging reporting system (BI-RADS®) and an overview of interventional procedures are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

BI-RADS:

Breast Imaging Reporting and Data System

BLES:

Breast Lesion Excision System

BPE:

Background parenchymal enhancement

CC:

Craniocaudal

DBT:

Digital breast tomosynthesis

DCIS:

Ductal carcinoma in situ

DWI:

Diffusion-weighted images

FNAB:

Fine needle aspiration biopsy

MLO:

Medio-lateral oblique

MRI:

Magnetic resonance imaging

MRM:

Magnetic resonance mammography

MRS:

Magnetic resonance spectroscopy

NMLE:

Non-mass like enhancement

T1WI:

T1-weighted images

T2WI:

T2-weighted images

VAB:

Vacuum-assisted biopsy

References

  1. Yaffe MJ, Mainprize JG. Risk of radiation-induced breast cancer from mammography screening. Radiology. 2011;258:98–105.

    Article  PubMed  Google Scholar 

  2. Skaane P, Skjennald A. Screen-film mammography versus full-field digital mammography with soft-copy reading: randomized trial in a population-based screening program -- the Oslo II study. Radiology. 2004;232:197–204.

    Article  PubMed  Google Scholar 

  3. Pisano ED, Gatsonis C, Hendrick E, et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med. 2005;353:1773–83.

    Article  CAS  PubMed  Google Scholar 

  4. Young KC, Oduko JM. Radiation doses received in the United Kingdom breast screening Programme in 2010 to 2012. Br J Radiol. 2016;89(1058):20150831.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 2002;225:165–75.

    Article  PubMed  Google Scholar 

  6. Sickles EA, D’Orsi CJ, Bassett LW, et al. ACR BI-RADS® mammography. In: ACR BI-RADS® atlas, breast imaging reporting and data system. Reston: American College of Radiology; 2013.

    Google Scholar 

  7. Kerlikowske K, Zhu W, Hubbard RA, et al. Outcomes of screening mammography by frequency, breast density, and postmenopausal hormone therapy. JAMA Intern Med. 2013;173(9):807–16.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Checka CM, Chun JE, Schnabel FR, Lee J, Toth H. The relationship of mammographic density and age: implications for breast cancer screening. AJR Am J Roentgenol. 2012;198:292–5.

    Article  Google Scholar 

  9. Melnikow JM, Fenton JJ, Whitlock EP, et al. Supplemental screening for breast cancer in women with dense breasts: a systematic review for the U.S. preventive services task force. Evidence synthesis no. 126. AHRQ publication no. 14–05201-EF-3. Agency for Healthcare Research and Quality: Rockville; 2016.

    Google Scholar 

  10. Leung JWT, Sickles EA. Developing asymmetry identified on mammography: correlation with imaging outcome and pathologic findings. AJR. 2007;188(3):667–75.

    Article  PubMed  Google Scholar 

  11. Thurfjell MG, Vitak B, Azavedo E, Svane G, Thurfjell E. Effect on sensitivity and specificity of mammography screening with or without comparison of old mammograms. Acta Radiol. 2000;41(1):52–6.

    Article  CAS  PubMed  Google Scholar 

  12. Hadjuminas DJ, Zacharioudakis KE, Tasoulis MK, et al. Adequacy of diagnostic tests and surgical management of symptomatic invasive lobular carcinoma of the breast. Ann R Coll Surg Engl. 2015;97(8):578–83.

    Article  Google Scholar 

  13. Heidinger O, Heidrich J, Batzler WU, et al. Digital mammography screening in Germany: impact of age and histological subtype on program sensitivity. Breast. 2015;24(3):191–6.

    Article  PubMed  Google Scholar 

  14. Tilanus-Lithorst M, Verhoog L, Obdeijn IM, et al. A BRCA ½ mutation, high breast density and prominent pushing margins of a tumor independently contribute to a frequent false-negative mammography. Int J Cancer. 2002;102(1):91–5.

    Article  Google Scholar 

  15. Rauch GM, Hobbs BP, Kuerer HM, Scoggins ME, Yang WT, et al. Microcalcifications in 1657 patients with pure ductal carcinoma in situ of the breast: correlation with clinical, histopathologic, biologic features, and local recurrence. Ann Surg Oncol. 2016;23:482–9.

    Article  PubMed  Google Scholar 

  16. Dershaw DD. Mammography in patients with breast cancer treated by breast conservation (lumpectomy with or without radiation). AJR. 1995;164:309–16.

    Article  CAS  PubMed  Google Scholar 

  17. Gilbert FJ, Tucker L, Gillan MGC, Willsher P, Cooke J, Duncan KA, et al. The TOMMY trial: a comparison of TOMosynthesis with digital MammographY in the UK NHS breast screening Programme – a multicentre retrospective reading study comparing the diagnostic performance of digital breast tomosynthesis and digital mammography with digital mammography alone. Health Technol Assess. 2015;19(4):1.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mariscotti G, Houssami N, Durando M, et al. Accuracy of mammography, digital breast tomosynthesis, ultrasound and MR imaging in preoperative assessment of breast cancer. Anticancer Res. 2014;34:1219–25.

    PubMed  Google Scholar 

  19. Svahn TM, Houssami N, Sechopoulos I, Mattsson S. Review of radiation dose estimates in digital breast tomosynthesis relative to those in two-view full-field digital mammography. Breast. 2015;24(2):93–9.

    Article  CAS  PubMed  Google Scholar 

  20. Berg WA, Mendelson EB. Technologist-performed handheld screening breast US imaging: how is it performed and what are the outcomes to date? Radiology. 2014;272(1):12–27.

    Article  PubMed  Google Scholar 

  21. Berg WA, Blume JD, Cormack JB, et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 2008;299(18):2151–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tagliafico AS, Calabrese M, Mariscotti G, Houssami N, et al. Adjunct screening with tomosynthesis or ultrasound in women with mammographynegative dense breasts: Interim report of a prospective comparative trial. Clin Oncol. 2016;34(6):1882–1888.

    Google Scholar 

  23. Houssami N, Irwig L, Simpson JM, McKessar M, Blome S, Noakes J. Sydney breast imaging accuracy study: comparative sensitivity and specificity of mammography and sonography in young women with symptoms. AJR Am J Roentgenol. 2003;180:935–40.

    Article  PubMed  Google Scholar 

  24. Kelly KM, Dean J, Comulada WS. Lee SJ breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur Radiol. 2010;20(3):734–42.

    Article  PubMed  Google Scholar 

  25. Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology. 1995;196:123–34.

    Article  CAS  PubMed  Google Scholar 

  26. Hooley RJ, Scoutt LM, Philpotts LE. Breast ultrasonography: state of the art. Radiology. 2013;268(3):642–59.

    Article  PubMed  Google Scholar 

  27. Graf O, Helbich TH, Hopf G, Graf C, Sickles EA. Probably benign breast masses at US: is follow-up an acceptable alternative to biopsy? Radiology. 2007;244:87–93.

    Article  PubMed  Google Scholar 

  28. Bahl M, Baker JA, Greenup RA, Ghate SV, et al. Diagnostic value of ultrasound in female patients with nipple discharge. AJR Am J Roentgenol. 2015;205:203–8.

    Article  PubMed  Google Scholar 

  29. Humphrey KL, Saksena MA, Freer PE, Smith BL, Rafferty EA. To do or not to do: axillary nodal evaluation after ACOSOG Z0011 trial. Radiographics. 2014;34(7):1807–16.

    Article  PubMed  Google Scholar 

  30. Bedi DG, Krishnamurthy R, Krishnamurthy S, et al. Cortical morphologic features of axillary lymph nodes as a predictor of metastasis in breast cancer: in vitro sonographic study. AJR Am J Roentgenol. 2008;191(3):646–52.

    Article  PubMed  Google Scholar 

  31. Vassallo P, Wernecke K, Roos N, Peters PE. Differentiation of benign from malignant superficial lymphadenopathy: the role of high-resolution US. Radiology. 1992;183(1):215–20.

    Article  CAS  PubMed  Google Scholar 

  32. Houssami N, Turner RM. Staging the axilla in women with breast cancer: the utility of preoperative ultrasound-guided needle biopsy. Cancer Biol Med. 2014;11:69–77.

    PubMed  PubMed Central  Google Scholar 

  33. Rautiainen S, Masarwah A, Sudah M, et al. Axillary lymph node biopsy in newly diagnosed invasive breast cancer: comparative accuracy of fine-needle aspiration biopsy versus core-needle biopsy. Radiology. 2013;269(1):54–60.

    Article  PubMed  Google Scholar 

  34. Sardanelli F, Boetes C, Borisch B, et al. Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. Eur J Cancer. 2010;46(8):1296–316.

    Article  PubMed  Google Scholar 

  35. Hodgson DC, Cotton C, Crystal P, Nathan PC. Impact of early breast cancer screening on mortality among young survivors of childhood Hodgkin's lymphoma. J Natl Cancer Inst. 2016;108(7).Print 2016 Jul.

    Google Scholar 

  36. Phi XA, Houssami N, Obdeijn IM, et al. Magnetic resonance imaging improves breast screening sensitivity in BRCA mutation carriers age ≥ 50 years: evidence from an individual patient data meta-analysis. J Clin Oncol. 2015;33(4):349–56.

    Article  PubMed  Google Scholar 

  37. Kuhl CK, Schrading S, Leutner CC, et al. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J Clin Oncol. 2005;23(33):8469–76.

    Article  PubMed  Google Scholar 

  38. Esserman L, Kaplan E, Partridge S, et al. MRI phenotype is associated with response to doxorubicin and cyclophosphamide neoadjuvant chemotherapy in stage III breast cancer. Ann Surg Oncol. 2001;8(6):54–9.

    Article  Google Scholar 

  39. Lobbes MB, Prevos R, Smidt M, Tjan-Heijnen VC, van Goethem M, Schipper R, et al. The role of magnetic resonance imaging in assessing residual disease and pathologic complete response in breast cancer patients receiving neoadjuvant chemotherapy: a systematic review. Insights Imaging. 2013;4:163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thomsen HS, Morcos SK, Almen T, et al. ESUR contrast medium safety committee. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR contrast medium safety committee guidelines. Eur Radiol. 2013;23(2):307–18.

    Article  PubMed  Google Scholar 

  41. Ray JG, Vermeulen MJ, Bharatha A, Montanera WJ, Park AL. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016;316(9):952–61.

    Article  PubMed  Google Scholar 

  42. Kuhl C. The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology. 2007;244(2):356–78.

    Article  PubMed  Google Scholar 

  43. Partridge SC, DeMartini WB, Kurland BF, Eby PR, White SW, Lehman CD. Quantitative diffusion-weighted imaging as an adjunct to conventional breast MRI for improved positive predictive value. AJR. 2009;193:1716–22.

    Article  PubMed  Google Scholar 

  44. Begley JK, Redpath TW, Bolan PJ, Gilbert FJ. In vivo proton magnetic resonance spectroscopy of breast cancer: a review of the literature. Breast Cancer Res. 2012;14(2):207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Giess CS, Yeh ED, Raza S, Birdwell RL. Background parenchymal enhancement at breast MR imaging: normal patterns, diagnostic challenges, and potential for false-positive and false-negative interpretation. Radiographics. 2014;34(1):234–47.

    Article  PubMed  Google Scholar 

  46. King V, Brooks JD, Bernstein JL, et al. Background parenchymal enhancement at breast MR imaging and breast cancer risk. Radiology. 2011;260:50–60.

    Article  PubMed  Google Scholar 

  47. Performance measures for 1,838,372 screening mammography examinations from 2004 to 2008 by age: based on BCSC data through 2009. Breast Cancer Surveillance Consortium. http://breastscreening.cancer.gov/statistics/performance/screening/2009/perf_age.html. Accessed 15 July 2015.

  48. Leach MO, Boggtis CR, Dixon AK, et al. Screening with magnetic resonance imaging and mammography of a UK population at high familiar risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet. 2005;365(9473):1769–78.

    Article  CAS  PubMed  Google Scholar 

  49. Soo MS, Baker JA, Rosen EL. Sonographic detection and sonographically guided biopsy of breast microcalcifications. AJR Am J Roentgenol. 2003;180(4):941–8.

    Article  PubMed  Google Scholar 

  50. Kuhl CK, Schrading S. Bieling HB, et al. MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet. 2007;370(9586):458–92.

    Article  Google Scholar 

  51. Houssami N, Hayes DF. Review of preoperative magnetic resonance imaging (MRI) in breast cancer: should MRI be performed on all women with newly diagnosed, early stage breast cancer? CA Cancer J Clin. 2009;59(5):290–302.

    Article  PubMed  Google Scholar 

  52. Morrow M, Waters J, Morris E. MRI for breast cancer screening, diagnosis, and treatment. Lancet. 2011;378:1804–11.

    Article  PubMed  Google Scholar 

  53. Brennan ME, Houssami N, Lord S, et al. Magnetic resonance imaging screening of the contralateral breast in women with newly diagnosed breast cancer: systematic review and meta-analysis of incremental cancer detection and impact on surgical management. J Clin Oncol. 2009;27:5640–9.

    Article  PubMed  Google Scholar 

  54. Fancellu A, Turner RM, Dixon JM, et al. Meta-analysis of the effect of preoperative breast MRI on the surgical management of ductal carcinoma in situ. Br J Surg. 2015;102(8):883–93.

    Article  CAS  PubMed  Google Scholar 

  55. Mann RM, Hoogeveen YL, Blickman JG, Boetes C. MRI compared to conventional diagnostic work-up in the detection and evaluation of invasive lobular carcinoma of the breast: a review of existing literature. Breast Cancer Res Treat. 2008;107:1–14.

    Article  PubMed  Google Scholar 

  56. Meissnitzer M, Dershaw DD, Lee CH, Morris EA. Targeted ultrasound of the breast in women with abnormal MRI findings for whom biopsy has been recommended. AJR Am J Roentgenol. 2009;193(4):1025–9.

    Article  PubMed  Google Scholar 

  57. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA, et al. ACR BI-RADS® atlas, breast imaging reporting and data system. American College of Radiology: Reston; 2013.

    Google Scholar 

  58. Dahabreh IJ, Wieland LS, Adam GP, Halladay C, Lau J, Trikalinos TA. Core needle and open surgical biopsy for diagnosis of breast lesions: an update to the 2009 report. Comparative effectiveness review no. 139. (prepared by the Brown evidence-based practice center under contract 290–2012-00012-I.) AHRQ publication no. 14-EHC040-EF. Rockville: Agency for Healthcare Research and Quality; 2014.

    Google Scholar 

  59. Park H-L, Hong J. Vacuum-assisted breast biopsy for breast cancer. Gland Surg. 2014;3(2):120–7.

    PubMed  PubMed Central  Google Scholar 

  60. Medjhoul A, Canale S, Mathieu MC, Uzan C, Garbay JR, Dromain C, Balleyguier C. Breast lesion excision sample (BLES biopsy) combining stereotactic biopsy and radiofrequency: is it a safe and accurate procedure in case of BIRADS 4 and 5 breast lesions? Breast J. 2013;19(6):590–4.

    Article  PubMed  Google Scholar 

  61. Seror JY, Lesieur B, Scheuer-Niro B, et al. Predictive factors for complete excision and underestimation of one-pass en bloc excision of non-palpable breast lesions with the intact® breast lesion excision system. Eur J Radiol. 2012;81(4):719–24.

    Article  PubMed  Google Scholar 

  62. Corsi F, Sorrentino L, Bossi D, Sartain A, Foschi D. Preoperative localization and surgical margins in conservative breast surgery. Int J Surg Oncol. 2013;2013:793–819.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Steyerova MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Steyerova, P. (2018). Imaging of the Breast. In: Wyld, L., Markopoulos, C., Leidenius, M., Senkus-Konefka, E. (eds) Breast Cancer Management for Surgeons. Springer, Cham. https://doi.org/10.1007/978-3-319-56673-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56673-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56671-9

  • Online ISBN: 978-3-319-56673-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics