Symmetry-Preserving Numerical Schemes

Part of the CRM Series in Mathematical Physics book series (CRM)


In these lectures we review two procedures for constructing finite difference numerical schemes that preserve symmetries of differential equations. The first approach is based on Lie’s infinitesimal symmetry generators, while the second method uses the novel theory of equivariant moving frames. The advantages of both techniques are discussed and illustrated with the Schwarzian differential equation, the Korteweg–de Vries equation and Burgers’ equation. Numerical simulations are presented and innovative techniques for obtaining better invariant numerical schemes are introduced. New research directions and open problems are indicated at the end of these notes.



The research of the first author is supported in part by a Tier 2 NSERC Canada Research Chair grant. The authors would like to thank the organizers of the ASIDE summer school for inviting them to give a series of lectures on continuous symmetries of discrete equations. We also thank Peter J. Olver for his comments on our lecture notes.


  1. 1.
    D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. (N.S.) 47(2), 281–354 (2010)Google Scholar
  2. 2.
    M.I. Bakirova, V.A. Dorodnitsyn, An invariant difference model for the equation u t = u xx + δulnu. Differ. Equ. 30(10), 1565–1570 (1994)Google Scholar
  3. 3.
    M.I. Bakirova, V.A. Dorodnitsyn, R.V. Kozlov, Symmetry-preserving difference schemes for some heat transfer equations. J. Phys. A 30(23), 8139–8155 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    A. Bihlo, Invariant meshless discretization schemes. J. Phys. A 46(6), 062001 (2013)Google Scholar
  5. 5.
    A. Bihlo, J.-C. Nave, Invariant discretization schemes using evolution-projection techniques. SIGMA 9, Paper 052 (2013)Google Scholar
  6. 6.
    A. Bihlo, J.-C. Nave, Convecting reference frames and invariant numerical models. J. Comput. Phys. 272, 656–663 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    A. Bihlo, R.O. Popovych, Invariant discretization schemes for the shallow-water equations. SIAM J. Sci. Comput. 34(6), B810–B839 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    A. Bihlo, E. Dos Santos Cardoso-Bihlo, R.O. Popovych, Invariant parameterization and turbulence modeling on the beta-plane. Phys. D 269, 48–62 (2014)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    A. Bihlo, X. Coiteux-Roy, P. Winternitz, The Korteweg–de Vries equation and its symmetry-preserving discretization. J. Phys. A 48(5), 055201 (2015)Google Scholar
  10. 10.
    A. Bihlo, E. Dos Santos Cardoso-Bihlo, R.O. Popovych, Algebraic method for finding equivalence groups. J. Phys. Conf. Ser. 621, 012001 (2015)CrossRefGoogle Scholar
  11. 11.
    G.W. Bluman, S.C. Anco, Symmetry and Integration Methods for Differential Equations. Applied Mathematical Sciences, vol. 154 (Springer, New York, 2002)Google Scholar
  12. 12.
    G.W. Bluman, A.F. Cheviakov, S.C. Anco, Applications of Symmetry Methods to Partial Differential Equations. Applied Mathematical Sciences, vol. 168 (Springer, New York, 2010)Google Scholar
  13. 13.
    A. Bourlioux, C. Cyr-Gagnon, P. Winternitz, Difference schemes with point symmetries and their numerical tests. J. Phys. A 39(22), 6877–6896 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    A. Bourlioux, R. Rebelo, P. Winternitz, Symmetry preserving discretization of \(\mathop{\mathrm{sl}}\nolimits (2, \mathbb{R})\) invariant equations. J. Nonlinear Math. Phys. 15(Suppl. 3), 362–372 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    M. Boutin, On orbit dimensions under a simultaneous Lie group action on n copies of a manifold. J. Lie Theory 12(1), 191–203 (2002)MathSciNetMATHGoogle Scholar
  16. 16.
    R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt, P.A. Griffiths, Exterior Differential Systems. Mathematical Sciences Research Institute Publications, vol. 18 (Springer, New York, 1991)Google Scholar
  17. 17.
    C. Budd, V. Dorodnitsyn, Symmetry-adapted moving mesh schemes for the nonlinear Schrödinger equation. J. Phys. A 34(48), 10387–10400 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    R. Campoamor-Stursberg, M.A. Rodríguez, P. Winternitz, Symmetry preserving discretization of ordinary differential equations. Large symmetry groups and higher order equations. J. Phys. A 49(3), 035201 (2016)Google Scholar
  19. 19.
    J. Carminati, K. Vu, Symbolic computation and differential equations: Lie symmetries. J. Symb. Comput. 29(1), 95–116 (2000)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    B. Champagne, P. Winternitz, On the infinite-dimensional symmetry group of the Davey–Stewartson equations. J. Math. Phys. 29(1), 1–8 (1988)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    M. Chhay, A. Hamdouni, Lie symmetry preservation by finite difference schemes for the Burgers equation. Symmetry 2(2), 868–883 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    D. David, N. Kamran, D. Levi, P. Winternitz, Symmetry reduction for the Kadomtsev–Petviashvili equation using a loop algebra. J. Math. Phys. 27(5), 1225–1237 (1986)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    V.A. Dorodnitsyn, Transformation groups in net spaces. J. Sov. Math. 55(1), 1490–1517 (1991)CrossRefMATHGoogle Scholar
  24. 24.
    V. Dorodnitsyn, Noether-type theorems for difference equations. Appl. Numer. Math. 39(3–4), 307–321 (2001)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    V. Dorodnitsyn, Applications of Lie Groups to Difference Equations. Differential and Integral Equations and Their Applications, vol. 8 (CRC Press, Boca Raton, 2011)Google Scholar
  26. 26.
    V. Dorodnitsyn, R. Kozlov, A heat transfer with a source: the complete set of invariant difference schemes. J. Nonlinear Math. Phys. 10(1), 16–50 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    V. Dorodnitsyn, P. Winternitz, Lie point symmetry preserving discretizations for variable coefficient Korteweg–de Vries equations. Nonlinear Dyn. 22(1), 49–59 (2000)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    V. Dorodnitsyn, R. Kozlov, P. Winternitz, Lie group classification of second-order ordinary difference equations. J. Math. Phys. 41(1), 480–504 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    V. Dorodnitsyn, R. Kozlov, P. Winternitz, Symmetries, Lagrangian formalism and integration of second order ordinary difference equations. J. Nonlinear Math. Phys. 10(Suppl. 2), 41–56 (2003)MATHGoogle Scholar
  30. 30.
    V. Dorodnitsyn, R. Kozlov, P. Winternitz, Continuous symmetries of Lagrangians and exact solutions of discrete equations. J. Math. Phys. 45(1), 336–359 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    S. Elaydi, An Introduction to Difference Equations, 3rd edn. Undergraduate Texts in Mathematics (Springer, New York, 2005)Google Scholar
  32. 32.
    M. Faucher, P. Winternitz, Symmetry analysis of the Infeld–Rowlands equation. Phys. Rev. E (3) 48(4), 3066–3071 (1993)Google Scholar
  33. 33.
    M. Fels, P.J. Olver, Moving coframes. II. Regularization and theoretical foundations. Acta Appl. Math. 55(2), 127–208 (1999)CrossRefMATHGoogle Scholar
  34. 34.
    R.B. Gardner, The Method of Equivalence and Its Applications. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 58 (SIAM, Philadelphia, 1989)Google Scholar
  35. 35.
    H.W. Guggenheimer, Differential Geometry. Dover Books on Advanced Mathematics (Dover, New York, 1977)Google Scholar
  36. 36.
    E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration, 2nd edn. Springer Series in Computational Mathematics, vol. 31 (Springer, Berlin, 2006)Google Scholar
  37. 37.
    R. Hernández Heredero, D. Levi, P. Winternitz, Symmetry preserving discretization of the Burgers equation, in SIDE III—Symmetries and Integrability of Difference Equations, ed. by D. Levi, O. Ragnisco, vol. 25, CRM Proceedings & Lecture Notes (American Mathematical Society, Providence, 2000), pp.197–208CrossRefGoogle Scholar
  38. 38.
    R. Hirota, Nonlinear partial difference equations. I. A difference analogue of the Korteweg–de Vries equation. J. Phys. Soc. Jpn. 43(4), 1424–1433 (1977)MATHGoogle Scholar
  39. 39.
    W. Huang, R.D. Russell, Adaptive Moving Mesh Methods. Applied Mathematical Sciences, vol. 174 (Springer, New York, 2011)Google Scholar
  40. 40.
    P.E. Hydon, Discrete point symmetries of ordinary differential equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1975), 1961–1972 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    P.E. Hydon, How to construct the discrete symmetries of partial differential equations. Eur. J. Appl. Math. 11(5), 515–527 (2000)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    P.E. Hydon, Symmetries and first integrals of ordinary difference equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456(2004), 2835–2855 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    P.E. Hydon, Symmetry Methods for Differential Equations. Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2000)Google Scholar
  44. 44.
    P.E. Hydon, Difference Equations by Differential Equation Methods. Cambridge Monographs on Applied and Computational Mathematics, vol. 27 (Cambridge University Press, Cambridge, 2014)Google Scholar
  45. 45.
    P.E. Hydon, E.L. Mansfield, Extensions of Noether’s second theorem: from continuous to discrete systems. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2135), 3206–3221 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    N.H. Ibragimov, R.N. Ibragimov, Applications of Lie Group Analysis in Geophysical Fluid Dynamics. Ser. Complex Nonlinearity Chaos, vol. 2. (World Scientific Publishing, Singapore, 2011)Google Scholar
  47. 47.
    N. Kamran, Contributions to the study of the equivalence problem of Élie Cartan and its applications to partial and ordinary differential equations. Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8o (2) 45(7) (1989)Google Scholar
  48. 48.
    J.P. Kenney, Evolution of differential invariant signatures and applications to shape recognition. Ph.D. Thesis, University of Minnesota (2009)Google Scholar
  49. 49.
    P. Kim, Invariantization of the Crank–Nicolson method for Burgers’ equation. Phys. D 237(2), 243–254 (2008)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    P. Kim, P.J. Olver, Geometric integration via multi-space. Regul. Chaotic Dyn. 9(3), 213–226 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and Computational Mathematics, vol. 14 (Cambridge University Press, Cambridge, 2004)Google Scholar
  52. 52.
    R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2002)Google Scholar
  53. 53.
    D. Levi, M.A. Rodríguez, λ-symmetries for discrete equations. J. Phys. A 43(29), 292001 (2010)Google Scholar
  54. 54.
    D. Levi, R.I. Yamilov, Conditions for the existence of higher symmetries and nonlinear evolutionary equations on the lattice. in Algebraic Methods in Physics, ed. by Y. Saint-Aubin, L. Vinet, CRM Series in Mathematical Physics (Springer, New York, 2001), pp. 135–148Google Scholar
  55. 55.
    D. Levi, R.I. Yamilov, The generalized symmetry method for discrete equations. J. Phys. A 42(45), 454012 (2009)Google Scholar
  56. 56.
    D. Levi, P. Winternitz, Continuous symmetries of difference equations. J. Phys. A 39(2), R1–R63 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    D. Levi, S. Tremblay, P. Winternitz, Lie point symmetries of difference equations and lattices. J. Phys. A 33(47), 8507–8523 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    D. Levi, S. Tremblay, P. Winternitz, Lie symmetries of multidimensional difference equations. J. Phys. A 34(44), 9507–9524 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    D. Levi, M.C. Nucci, M.A. Rodríguez, λ-symmetries for the reduction of continuous and discrete equations. Acta Appl. Math. 122, 311–321 (2012)Google Scholar
  60. 60.
    D. Levi, L. Martina, P. Winternitz, Lie-point symmetries of the discrete Liouville equation. J. Phys. A 48(2), 025204 (2015)Google Scholar
  61. 61.
    D. Levi, L. Martina, P. Winternitz, Structure preserving discretizations of the Liouville equation and their numerical tests. SIGMA 11, Paper 080 (2015)Google Scholar
  62. 62.
    D. Levi, C. Scimiterna, Z. Thomova, P. Winternitz, Contact transformations for difference schemes. J. Phys. A 45(2), 022001 (2012)Google Scholar
  63. 63.
    H. Levy, F. Lessman, Finite Difference Equations (Dover, New York, 2011)MATHGoogle Scholar
  64. 64.
    E.L. Mansfield, A Practical Guide to the Invariant Calculus Cambridge Monographs on Applied and Computational Mathematics, vol. 26 (Cambridge University Press, Cambridge, 2010)CrossRefGoogle Scholar
  65. 65.
    E.L. Mansfield, P.E. Hydon, Difference forms. Found. Comput. Math. 8(4), 427–467 (2008)MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    G. Marí Beffa, P.J. Olver, Poisson structures for geometric curve flows in semi-simple homogeneous spaces. Regul. Chaotic Dyn. 15(4–5), 532–550 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    G. Marí Beffa, E.L. Mansfield, Discrete moving frames on lattice varieties and lattice based multispaces. Found. Comput. Math. (2016). doi: 10.1007/s10208-016-9337-5 Google Scholar
  68. 68.
    P.J. Olver, Applications of Lie Groups to Differential Equations, 2nd edn. Graduate Texts in Mathematics, vol. 107 (Springer, New York, 1993)Google Scholar
  69. 69.
    P.J. Olver, Moving frames and singularities of prolonged group actions. Sel. Math. (N.S.) 6(1), 41–77 (2000)Google Scholar
  70. 70.
    P.J. Olver, Geometric foundations of numerical algorithms and symmetry. Appl. Algebra Eng. Commun. Comput. 11(5), 417–436 (2001)MathSciNetCrossRefMATHGoogle Scholar
  71. 71.
    P.J. Olver, Equivalence, Invariants, and Symmetry (Cambridge University Press, Cambridge, 2009)MATHGoogle Scholar
  72. 72.
    P.J. Olver, Recursive moving frames. Res. Math. 60(1–4), 423–452 (2011)MathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    P.J., Olver, J. Pohjanpelto, Moving frames for Lie pseudo-groups. Can. J. Math. 60(6), 1336–1386 (2008)Google Scholar
  74. 74.
    P.J. Olver, J. Pohjanpelto, Differential invariant algebras of Lie pseudo-groups. Adv. Math. 222(5), 1746–1792 (2009)MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    P.J. Olver, F. Valiquette, Recursive moving frames for Lie pseudo-groups. Preprint, University of Minnesota (2015)Google Scholar
  76. 76.
    L.V. Ovsiannikov, Group Analysis of Differential Equations (Academic Press, New York, 1982)MATHGoogle Scholar
  77. 77.
    G.R.W. Quispel, D.I. McLaren, A new class of energy-preserving numerical integration methods. J. Phys. A 41(4), 045206, 7 (2008)Google Scholar
  78. 78.
    R. Rebelo, F. Valiquette, Symmetry preserving numerical schemes for partial differential equations and their numerical tests. J. Differ. Equ. Appl. 19(5), 738–757 (2013)MathSciNetCrossRefMATHGoogle Scholar
  79. 79.
    R. Rebelo, F. Valiquette, Invariant discretization of partial differential equations admitting infinite-dimensional symmetry groups. J. Differ. Equ. Appl. 21(4), 285–318 (2015)MathSciNetCrossRefMATHGoogle Scholar
  80. 80.
    J.N. Reddy, An Introduction to Finite Element Method. McGraw-Hill Series in Mechanical Engineering, 3rd edn. (McGraw-Hill, New York, 2006)Google Scholar
  81. 81.
    M.A. Rodríguez, P. Winternitz, Lie symmetries and exact solutions of first-order difference schemes. J. Phys. A 37(23), 6129–6142 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  82. 82.
    Yu.I. Shokin, The Method of Differential Approximation. Springer Series in Computational Physics (Springer, Berlin, 1983)Google Scholar
  83. 83.
    Z. Thomova, P. Winternitz, Maximal abelian subgroups of the isometry and conformal group of Euclidean and Minkowski spaces. J. Phys. A 31(7), 1831–1858 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  84. 84.
    F. Valiquette, Solving local equivalence problems with the equivariant moving frame method. SIGMA 9, Paper 029 (2013)Google Scholar
  85. 85.
    M. Welk, P. Kim, P.J. Olver, Numerical invariantization for morphological PDE schemes, in Scale Space and Variational Methods in Computer Vision, ed. by F. Sgallari, A. Murli, N. Paragios. Lecture Notes in Computer Science, vol. 4485 (Springer, New York, 2007), pp. 508–519Google Scholar
  86. 86.
    P. Winternitz, Symmetries of discrete systems, in Discrete Integrable Systems, ed. by B. Grammaticos, Y. Kosmann-Schwarzbach, T. Tamizhmani. Lecture Notes in Physics, vol. 644 (Springer, Berlin, 2004), pp. 185–243Google Scholar
  87. 87.
    N.N. Yanenko, Yu.I. Shokin, Group classification of difference schemes for the system of equations of gas dynamics. Trudy Mat. Inst. Steklov. 122, 85–97 (1973). In RussianMathSciNetGoogle Scholar
  88. 88.
    G. Zhong, J.E. Marsden, Lie–Poisson Hamilton–Jacobi theory and Lie–Poisson integrators. Phys. Lett. A 133(3), 134–139 (1988)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMemorial University of NewfoundlandSt. John’sCanada
  2. 2.Department of MathematicsState University of New York at New PaltzNew PaltzUSA

Personalised recommendations