Skip to main content

Discrete Integrable Systems, Darboux Transformations, and Yang–Baxter Maps

  • Chapter
  • First Online:
Symmetries and Integrability of Difference Equations

Abstract

This chapter is devoted to the integrability of discrete systems and their relation to the theory of Yang–Baxter (YB) maps. Lax pairs play a significant role in the integrability of discrete systems. We introduce the notion of Lax pair by considering the well-celebrated doubly-infinite Toda lattice. In particular, we present solution of the Cauchy initial value problem via the method of the inverse scattering transform, provide a review of scattering theory of Jacobi matrices, and give the Riemann–Hilbert formulation of the inverse scattering transform. On the other hand, the Lax–Darboux scheme constitutes an important tool in the theory of integrable systems, as it relates several concepts of integrability. We explain the role of Darboux and Bäcklund transformations in the theory of integrable systems, and we show how they can be used to construct discrete integrable systems via the Lax–Darboux scheme. Moreover, we give an introduction to the theory of Yang–Baxter maps and we show its relation to discrete integrable systems. Finally, we demonstrate the construction of Yang–Baxter maps via Darboux transformations, using the Nonlinear Schrödinger (NLS) equation as illustrative example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We employ two notational conventions in this section. We use bold capital letters to denote a matrix, say A, and use the regular capital type of the same letter to denote its entries: A ij . Whenever it is clear from the context, we use x to denote a sequence \(\{x_{n}\}_{n\in \mathbb{Z}}\).

  2. 2.

    Finite Toda lattice is sometimes called the open Toda lattice.

  3. 3.

    Potential u may depend on a temporal parameter t, namely u = u(x, t).

  4. 4.

    Potential u[1] is a solution of the KdV equation, since it can be readily shown that the pair (y[1], u[1]) also satisfies the temporal part of the Lax pair for KdV.

  5. 5.

    These are orbits corresponding to the fixed points of the fractional linear transformations of the spectral parameter.

References

  1. M.J. Ablowitz, P.A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Note Series, vol. 149 (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  2. M.J. Ablowitz, A.S. Fokas, Complex Variables, 2nd edn. Cambridge Texts in Applied Mathematics, vol. 36 (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  3. M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform. SIAM Studies in Applied Mathematics, vol. 4 (SIAM, Philadelphia, 1981)

    Google Scholar 

  4. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Method for solving the sine-Gordon equation. Phys. Rev. Lett. 30, 1262–1264 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  5. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53(4), 249–315 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis, and Applications. Global Analysis, Pure and Applied Series B, vol. 2 (Addison-Wesley, Reading, 1983)

    Google Scholar 

  7. V.E. Adler, Recuttings of polygons. Funct. Anal. Appl. 27(2), 141–143 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. V.E. Adler, R. Yamilov, Explicit auto-transformations of integrable chains. J. Phys. A 27(2), 477–492 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. V.E. Adler, A.I. Bobenko, Yu.B. Suris, Classification of integrable equations on quad-graphs. The consistency approach. Commun. Math. Phys. 233(3), 513–543 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. V.E. Adler, A.I. Bobenko, Yu.B. Suris, Geometry of Yang–Baxter maps: pencils of conics and quadrirational mappings. Commun. Anal. Geom. 12(5), 967–1007 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. N.I. Akhiezer, Orthogonal polynomials on several intervals. Sov. Math. Dokl. 1, 989–992 (1960)

    MathSciNet  MATH  Google Scholar 

  12. N.I. Akhiezer, Continuous analogues of the polynomials orthogonal on the system of intervals. Dokl. Akad. Nauk SSSR 141, 263–266 (1961). In Russian

    MathSciNet  Google Scholar 

  13. V.I. Arnol’d, Mathematical Methods of Classical Mechanics, 2nd edn. Graduate Texts in Mathematics, vol. 60 (Springer, New York, 1989)

    Google Scholar 

  14. H.F. Baker, Note on the foregoing paper “commutative ordinary differential operators” by J. L. Burchnall and J. W. Chaundy. Proc. R. Soc. Ser. A 118(780), 584–593 (1928)

    Article  ADS  MATH  Google Scholar 

  15. R.J. Baxter, Partition function of the eight-vertex lattice model. Ann. Phys. 70(1), 193–228 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. G. Berkeley, A.V. Mikhailov, P. Xenitidis, Darboux transformations with tetrahedral reduction group and related integrable systems. J. Math. Phys. 57(9), 092701 (2016)

    Google Scholar 

  17. D. Bilman, On long-time asymptotics for the Toda lattice and its Hamiltonian perturbations. Ph.D. thesis, University of Illinois at Chicago (2015)

    Google Scholar 

  18. D. Bilman, T. Trogdon, Numerical inverse scattering for the Toda lattice. Comm. Math. Phys. 352(2), 805–879 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A.I. Bobenko, Yu.B. Suris, Integrable systems on quad-graphs. Int. Math. Res. Not. 2002(11), 573–611 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. V.M. Bukhshtaber, The Yang–Baxter transformation. Russ. Math. Surv. 53(6), 1343–1345 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Bury, Automorphic Lie algebras, corresponding integrable systems and their soliton solutions. Ph.D. thesis, University of Leeds (2010)

    Google Scholar 

  22. R. Bury, A.V. Mikhailov. Automorphic Lie algebras and corresponding integrable systems (2009). Draft (unpublished)

    Google Scholar 

  23. K.F. Clancey, I. Gohberg, Factorization of Matrix Functions and Singular Integral Operators. Operator Theory: Advances and Applications, vol. 3 (Birkhäuser, Basel, 1981)

    Google Scholar 

  24. G. Darboux, Sur une proposition relative aux équations linéaires. C. R. Acad. Sci. 94, 1456–1459 (1882)

    MATH  Google Scholar 

  25. E. Date, M. Jimbo, T. Miwa, Method for generating discrete soliton equations. I. J. Phys. Soc. Jpn. 51(12), 4116–4124 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. E. Date, M. Jimbo, T. Miwa, Method for generating discrete soliton equations. II. J. Phys. Soc. Jpn. 51(12), 4125–4131 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. E. Date, M. Jimbo, T. Miwa, Method for generating discrete soliton equations. III. J. Phys. Soc. Jpn. 52(2), 388–393 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. E. Date, M. Jimbo, T. Miwa, Method for generating discrete soliton equations. IV. J. Phys. Soc. Jpn. 52(3), 761–765 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. E. Date, M. Jimbo, T. Miwa, Method for generating discrete soliton equations. V. J. Phys. Soc. Jpn. 52(3), 766–771 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. E. Date, S. Tanaka, Analogue of inverse scattering theory for the discrete Hill’s equation and exact solutions for the periodic Toda lattice. Prog. Theor. Phys. 55(2), 457–465 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. T. Dauxois, M. Peyrard, S. Ruffo, The Fermi–Pasta–Ulam ‘numerical experiment’: history and pedagogical perspectives. Eur. J. Phys. 26(5), S3–S11 (2005)

    Article  MathSciNet  Google Scholar 

  32. P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes in Mathematics, vol. 3 (American Mathematical Society, Providence, 1999)

    Google Scholar 

  33. P. Deift, K.T.-R. McLaughlin, A continuum limit of the Toda lattice. Mem. Am. Math. Soc. 131(624) (1998)

    Google Scholar 

  34. P. Deift, X. Zhou, A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. (2) 137(2), 295–368 (1993)

    Google Scholar 

  35. P. Deift, X. Zhou, Asymptotics for the Painlevé II equation. Commun. Pure Appl. Math. 48(3), 277–337 (1995)

    Article  MATH  Google Scholar 

  36. P. Deift, S. Venakides, X. Zhou, The collisionless shock region for the long-time behavior of solutions of the KdV equation. Commun. Pure Appl. Math. 47(2), 199–206 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. V.G. Drinfel’d, On some unsolved problems in quantum group theory, in Quantum Groups (Springer, Berlin, 1992), pp. 1–8

    MATH  Google Scholar 

  38. B.A. Dubrovin, The inverse scattering problem for periodic short-range potentials. Funct. Anal. Appl. 9(1), 61–62 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  39. B.A. Dubrovin, Theta functions and non-linear equations. Russ. Math. Surv. 36(2), 11–92 (1981)

    Article  MATH  Google Scholar 

  40. B.A. Dubrovin, S.P. Novikov, A periodic problem for the Korteweg–de Vries and Sturm–Liouville equations. Their connection with algebraic geometry. Sov. Math. Dokl. 15(6), 1597–1601 (1974)

    MATH  Google Scholar 

  41. B.A. Dubrovin, V.B. Matveev, S.P. Novikov, Nonlinear equations of Korteweg–de Vries type, finite-band linear operators and Abelian varieties. Uspehi Mat. Nauk 31(187), 55–136 (1976). In Russian

    MathSciNet  MATH  Google Scholar 

  42. L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons. Classics in Mathematics (Springer, Berlin, 2007)

    Google Scholar 

  43. H. Flaschka, On the Toda lattice. II. Inverse-scattering solution. Prog. Theor. Phys. 51, 703–716 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. H. Flaschka, The Toda lattice. I. Existence of integrals. Phys. Rev. B 9(3), 1924–1925 (1974)

    MathSciNet  MATH  Google Scholar 

  45. H. Flaschka, D.W. McLaughlin, Canonically conjugate variables for the Korteweg–de Vries equation and the Toda lattice with periodic boundary conditions. Prog. Theor. Phys. 55(2), 438–456 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. J. Ford, The Fermi–Pasta–Ulam problem: paradox turns discovery. Phys. Rep. 213(5), 271–310 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  47. A.P. Fordy, Periodic cluster mutations and related integrable maps. J. Phys. A 47(47), 474003 (2014)

    Google Scholar 

  48. C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Method for solving the Korteweg–de Vries equation. Phys. Rev. Lett. 19(19), 1095–1097 (1967)

    Article  ADS  MATH  Google Scholar 

  49. F. Gesztesy, H. Holden, J. Michor, G. Teschl, Soliton Equations and Their Algebro-Geometric Solutions, vol. II. Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  50. G.G. Grahovski, A.V. Mikhailov, Integrable discretisations for a class of nonlinear Schrödinger equations on Grassmann algebras. Phys. Lett. A 377(45–48), 3254–3259 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. G.G. Grahovski, K.-S. Rizos, A. Mikhailov, Grassmann extensions of Yang–Baxter maps. J. Phys. A 49(14), 145202 (2016)

    Google Scholar 

  52. B. Grammaticos, A. Ramani, V.G. Papageorgiou, Do integrable mappings have the Painlevé property? Phys. Rev. Lett. 67(14), 1825–1828 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. B. Grammaticos, K.-Y. Schwarzbach, T. Tamizhmani (eds.), Discrete Integrable Systems. Lecture Notes in Physics (Springer, Berlin, 2004)

    Google Scholar 

  54. C. Gu, H. Hu, Z. Zhou, Darboux Transformations in Integrable Systems. Mathematical Physics Studies (Springer, New York, 2005)

    Book  MATH  Google Scholar 

  55. M. Hénon, Integrals of the toda lattice. Phys. Rev. B (3) 9(4), 1921–1923 (1974)

    Google Scholar 

  56. J. Hietarinta, C. Viallet, Integrable lattice equations with vertex and bond variables. J. Phys. A 44(38), 385201 (2011)

    Google Scholar 

  57. J. Hietarinta, N. Joshi, F.W. Nijhoff, Discrete Systems and Integrability. Cambridge Texts in Applied Mathematics, vol. 54 (Cambridge University Press, Cambridge, 2016)

    Google Scholar 

  58. R. Hirota, Nonlinear partial difference equations. I. A difference analogue of the Korteweg–de Vries equation. J. Phys. Soc. Jpn. 43(4), 1424–1433 (1977)

    MATH  Google Scholar 

  59. R. Hirota, Nonlinear partial difference equations. II. Discrete-time Toda equation. J. Phys. Soc. Jpn. 43(6), 2074–2078 (1977)

    ADS  MATH  Google Scholar 

  60. R. Hirota, Nonlinear partial difference equations. III. Discrete sine-Gordon equation. J. Phys. Soc. Jpn. 43(6), 2079–2086 (1977)

    MATH  Google Scholar 

  61. R. Hirota, Nonlinear partial difference equations. IV. Bäcklund transformations for the discrete-time Toda equation. J. Phys. Soc. Jpn. 45(1), 321–332 (1978)

    MATH  Google Scholar 

  62. A.R. Its, V.B. Matveev, Hill’s operator with finitely many gaps. Funct. Anal. Appl. 9(1), 65–66 (1975)

    Article  MATH  Google Scholar 

  63. A.R. Its, V.B. Matveev, Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg–de Vries equation. Theor. Math. Phys. 23(1), 343–355 (1975)

    Article  Google Scholar 

  64. S. Kamvissis, On the long time behavior of the doubly infinite Toda lattice under initial data decaying at infinity. Commun. Math. Phys. 153(3), 479–519 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. D.J. Kaup, A.C. Newell, An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19(4), 798–801 (1978)

    Article  ADS  MATH  Google Scholar 

  66. F. Klein, Ueber binäre formen mit linearen transformationen in sich selbst. Math. Ann. 9(2), 183–208 (1875)

    Article  MathSciNet  MATH  Google Scholar 

  67. S. Konstantinou-Rizos, Darboux transformations, discrete integrable systems and related Yang–Baxter maps. Ph.D. thesis, University of Leeds (2014)

    Google Scholar 

  68. S. Konstantinou-Rizos, A.V. Mikhailov, Darboux transformations, finite reduction groups and related Yang–Baxter maps. J. Phys. A 46(42), 425201 (2013)

    Google Scholar 

  69. S. Konstantinou-Rizos, A.V. Mikhailov, Anticommutative extension of the Adler map. J. Phys. A 49(30), 30LT3 (2016)

    Google Scholar 

  70. S. Konstantinou-Rizos, A.V. Mikhailov, P. Xenitidis, Reduction groups and related integrable difference systems of nonlinear Schrödinger type. J. Math. Phys. 56(8), 082701 (2015)

    Google Scholar 

  71. T.E. Kouloukas, V.G. Papageorgiou, Yang–Baxter maps with first-degree-polynomial 2 × 2 Lax matrices. J. Phys. A 42(40), 404012 (2009)

    Google Scholar 

  72. T.E. Kouloukas, V.G. Papageorgiou, Poisson Yang–Baxter maps with binomial Lax matrices. J. Math. Phys. 52(7), 073502 (2011)

    Google Scholar 

  73. I.M. Krichever, Integration of nonlinear equations by the methods of algebraic geometry. Funct. Anal. Appl. 11(1), 12–26 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  74. I.M. Krichever, Algebraic curves and non-linear difference equations. Russ. Math. Surv. 334), 255–256 (1978)

    Google Scholar 

  75. I.M. Krichever, Nonlinear equation and elliptic curves, in Current Problems in Mathematics, vol. 23. Itogi Nauki i Tekhniki (Akad. Nauk SSSR, VINITI, Moscow, 1983), pp. 79–136. In Russian

    Google Scholar 

  76. I.M. Krichever, Algebraic-geometrical methods in the theory of integrable equations and their perturbations. Acta Appl. Math. 39, 93–125 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  77. H. Krüger, G. Teschl, Long-time asymptotics for the Toda lattice in the soliton region. Math. Z. 262(3), 585–602 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  78. H. Krüger, G. Teschl, Long-time asymptotics of the Toda lattice for decaying initial data revisited. Rev. Math. Phys. 21(1), 61–109 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  79. P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  80. D. Levi, Nonlinear differential-difference equations as Bäcklund transformations. J. Phys. A 14(5), 1083–1098 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. D. Levi, R. Benguria, Bäcklund transformations and nonlinear differential difference equations. Proc. Natl. Acad. Sci. USA 77(9), 5025–5027 (1980)

    Article  ADS  MATH  Google Scholar 

  82. S.V. Manakov, Complete integrability and stochastization of discrete dynamical systems. Sov. Phys. JETP 40(2), 269–274 (1974)

    ADS  MathSciNet  Google Scholar 

  83. J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry, 2nd edn. Texts in Applied Mathematics, vol. 17 (Springer, New York, 1999)

    Google Scholar 

  84. V.B. Matveev, 30 years of finite-gap integration theory. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366(1867), 837–875 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons. Springer Series in Nonlinear Dynamics (Springer, Berlin, 1991)

    Google Scholar 

  86. H.P. McKean Jr., P. van Moerbecke, The spectrum of Hill’s equation. Invent. Math. 30(3), 217–274 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. A.V. Mikhailov, Formal diagonalisation of Lax–Darboux schemes. Model. Anal. Inf. Sist. 22(6), 795–817 (2015)

    Article  MathSciNet  Google Scholar 

  88. A.V. Mikhailov, A.B. Shabat, R.I. Yamilov, Extension of the module of invertible transformations. Classification of integrable systems. Commun. Math. Phys. 115(1), 1–19 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. A.V. Mikhailov, G. Papamikos, J.P. Wang, Darboux transformation with dihedral reduction group. J. Math. Phys. 55(11), 113507 (2014)

    Google Scholar 

  90. P.D. Miller, Topics in pde: integrable systems and Riemann–Hilbert problems. Lecture Notes, University of Michigan (2015)

    Google Scholar 

  91. J. Moser, Finitely many mass points on the line under the influence of an exponential potential—an integrable system, in Dynamical Systems, Theory and Applications. Lecture Notes in Physics (Springer, Berlin, 1975)

    Google Scholar 

  92. F.W. Nijhoff, Discrete systems and integrability. Lecture Notes, University of Leeds (2006)

    Google Scholar 

  93. F.W. Nijhoff, H.W. Capel, The discrete Korteweg–de Vries equation. Acta Appl. Math. 39(1–3), 133–158 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  94. F.W. Nijhoff, A.J. Walker, The discrete and continuous Painlevé VI hierarchy and the Garnier systems. Glasg. Math. J. 43(A), 109–123 (2001)

    Article  MATH  Google Scholar 

  95. F.W. Nijhoff, H.W. Capel, G.L. Wiersma, Integrable lattice systems in two and three dimensions. in Geometric Aspects of the Einstein Equations and Integrable Systems, ed. by R. Martini. Lecture Notes in Physics, vol. 239 (Springer, Berlin, 1984), pp. 263–302

    Google Scholar 

  96. S.P. Novikov, A periodic problem for the Korteweg–de Vries equation. Funct. Anal. Appl. 8(3), 236–246 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  97. S. Olver, Numerical solution of Riemann–Hilbert problems: Painlevé II. Found. Comput. Math. 11(2), 153–179 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. S. Olver, A general framework for solving Riemann–Hilbert problems numerically. Numer. Math. 122(2), 305–340 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  99. S. Olver, T. Trogdon, Nonlinear steepest descent and the numerical solution of Riemann–Hilbert problems. Commun. Pure Appl. Math. 67(8), 1353–1389 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  100. V.G. Papageorgiou, A.G. Tongas, Yang–Baxter maps and multi-field integrable lattice equations. J. Phys. A 40(42), 12677–12690 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. V.G. Papageorgiou, F.W. Nijhoff, H.W. Capel, Integrable mappings and nonlinear integrable lattice equations. Phys. Lett. A 147(2–3), 106–114 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  102. V.G. Papageorgiou, A.G. Tongas, A.P. Veselov, Yang–Baxter maps and symmetries of integrable equations on quad-graphs. J. Math. Phys. 47(8), 083502 (2006)

    Google Scholar 

  103. V.G. Papageorgiou, S.B. Suris, A.G. Tongas, A.P. Veselov, On quadrirational Yang–Baxter maps. SIGMA 6, 033 (2010)

    MathSciNet  MATH  Google Scholar 

  104. G.R.W. Quispel, F.W. Nijhoff, H.W. Capel, J. van der Linden, Linear integral equations and nonlinear difference-difference equations. Phys. A 125(2–3), 344–380 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  105. C. Rogers, W.K. Schief, Bäcklund and Darboux Transformations. Cambridge Texts in Applied Mathematics, vol. 30 (Cambridge University Press, Cambridge, 2016)

    Google Scholar 

  106. B. Simon, Sturm oscillation and comparison theorems, in Sturm–Liouville Theory, ed. by W.O. Amrein, A.M. Hinz, D.P. Pearson (Birkhäuser, Basel, 2005)

    Google Scholar 

  107. E.K. Sklyanin, Classical limits of the \(\mathop{\mathrm{SU}}\nolimits (2)\)-invariant solutions of the Yang–Baxter equation. J. Sov. Math. 40(1), 93–107 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  108. Yu.B. Suris, Bi-Hamiltonian structure of the qd algorithm and new discretizations of the Toda lattice. Phys. Lett. A 206(3–4), 153–161 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. Yu.B. Suris, A.P. Veselov, Lax matrices for Yang–Baxter maps. J. Nonlinear Math. Phys. 10(2), 223–230 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  110. W.W. Symes, Hamiltonian group actions and integrable systems. Phys. D 1(4), 339–374 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  111. W.W. Symes, The qr algorithm and scattering for the finite nonperiodic toda lattice. Phys. D 4(2), 275–280 (1981/82)

    Google Scholar 

  112. G. Szegő, Orthogonal Polynomials, 4th edn. American Mathematical Society Colloquium-Publications, vol. 23 (American Mathematical Society, Providence, 1975)

    Google Scholar 

  113. T.R. Taha, M.J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. I. Analytical. J. Comput. Phys. 55(2), 192–202 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  114. T.R. Taha, M.J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation. J. Comput. Phys. 55(2), 203–230 (1984)

    Google Scholar 

  115. T.R. Taha, M.J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical, Korteweg-de Vries equation. J. Comput. Phys. 55(2), 231–253 (1984)

    Google Scholar 

  116. G. Teschl, Oscillation theory and renormalized oscillation theory for Jacobi operators. J. Differ. Equ. 129(2), 532–558 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices. Mathematical Surveys and Monographs, vol. 72 (American Mathematical Society, Providence, 2000)

    Google Scholar 

  118. T. Trogdon, S. Olver, Numerical inverse scattering for the focusing and defocusing nonlinear Schrödinger equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469(2149), 20120330 (2013)

    Google Scholar 

  119. T. Trogdon, S. Olver, Riemann–Hilbert Problems, Their Numerical Solution and the Computation of Nonlinear Special Functions (SIAM, Philadelphia, 2016)

    MATH  Google Scholar 

  120. T. Trogdon, S. Olver, B. Deconinck, Numerical inverse scattering for the Korteweg–de Vries and modified Korteweg–de Vries equations. Phys. D 241(11), 1003–1025 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  121. P. van Moerbeke, The spectrum of Jacobi matrices. Invent. Math. 37(1), 45–81 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  122. A.P. Veselov, Integrable maps. Russ. Math. Surv. 46(5), 1–51 (1991)

    Article  MATH  Google Scholar 

  123. A.P. Veselov, Yang–Baxter maps and integrable dynamics. Phys. Lett. A 314(3), 214–221 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  124. A.P. Veselov, Yang–Baxter maps: dynamical point of view, in Combinatorial Aspect of Integrable Systems. MSJ Memoirs, vol. 17, pp. 145–167 (Mathematical Society of Japan, Tokyo, 2007)

    Google Scholar 

  125. H.D. Wahlquist, F.B. Estabrook, Bäcklund transformation for solutions of the Korteweg–de Vries equation. Phys. Rev. Lett. 31(23), 1386–1390 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  126. C.N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19(23), 1312–1315 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  127. N.J. Zabusky, M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240–243 (1963)

    Article  ADS  MATH  Google Scholar 

  128. V.E. Zakharov (ed.), What Is Integrability? Springer Series in Nonlinear Dynamics (Springer, Berlin, 1991)

    Google Scholar 

  129. V.E. Zakharov, L.D. Faddeev, Korteweg–de Vries equation: a completely integrable Hamiltonian system. Funct. Anal. Appl. 5(4), 280–287 (1971)

    Article  MATH  Google Scholar 

  130. V.E. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 61(1), 62–69 (1972)

    ADS  MathSciNet  Google Scholar 

  131. V.E. Zakharov, A.B. Shabat, A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Funct. Anal. Appl. 8(3), 226–235 (1974)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the organizers of the summer school Abecedarian of SIDE 12 for the opportunity to participate as lecturers, as well as for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Bilman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bilman, D., Konstantinou-Rizos, S. (2017). Discrete Integrable Systems, Darboux Transformations, and Yang–Baxter Maps. In: Levi, D., Rebelo, R., Winternitz, P. (eds) Symmetries and Integrability of Difference Equations. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-56666-5_5

Download citation

Publish with us

Policies and ethics