Discrete Integrable Systems, Darboux Transformations, and Yang–Baxter Maps

Part of the CRM Series in Mathematical Physics book series (CRM)


This chapter is devoted to the integrability of discrete systems and their relation to the theory of Yang–Baxter (YB) maps. Lax pairs play a significant role in the integrability of discrete systems. We introduce the notion of Lax pair by considering the well-celebrated doubly-infinite Toda lattice. In particular, we present solution of the Cauchy initial value problem via the method of the inverse scattering transform, provide a review of scattering theory of Jacobi matrices, and give the Riemann–Hilbert formulation of the inverse scattering transform. On the other hand, the Lax–Darboux scheme constitutes an important tool in the theory of integrable systems, as it relates several concepts of integrability. We explain the role of Darboux and Bäcklund transformations in the theory of integrable systems, and we show how they can be used to construct discrete integrable systems via the Lax–Darboux scheme. Moreover, we give an introduction to the theory of Yang–Baxter maps and we show its relation to discrete integrable systems. Finally, we demonstrate the construction of Yang–Baxter maps via Darboux transformations, using the Nonlinear Schrödinger (NLS) equation as illustrative example.



We would like to thank the organizers of the summer school Abecedarian of SIDE 12 for the opportunity to participate as lecturers, as well as for the financial support.


  1. 1.
    M.J. Ablowitz, P.A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Note Series, vol. 149 (Cambridge University Press, Cambridge, 1991)Google Scholar
  2. 2.
    M.J. Ablowitz, A.S. Fokas, Complex Variables, 2nd edn. Cambridge Texts in Applied Mathematics, vol. 36 (Cambridge University Press, Cambridge, 2003)Google Scholar
  3. 3.
    M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform. SIAM Studies in Applied Mathematics, vol. 4 (SIAM, Philadelphia, 1981)Google Scholar
  4. 4.
    M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Method for solving the sine-Gordon equation. Phys. Rev. Lett. 30, 1262–1264 (1973)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53(4), 249–315 (1974)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis, and Applications. Global Analysis, Pure and Applied Series B, vol. 2 (Addison-Wesley, Reading, 1983)Google Scholar
  7. 7.
    V.E. Adler, Recuttings of polygons. Funct. Anal. Appl. 27(2), 141–143 (1993)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    V.E. Adler, R. Yamilov, Explicit auto-transformations of integrable chains. J. Phys. A 27(2), 477–492 (1994)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    V.E. Adler, A.I. Bobenko, Yu.B. Suris, Classification of integrable equations on quad-graphs. The consistency approach. Commun. Math. Phys. 233(3), 513–543 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    V.E. Adler, A.I. Bobenko, Yu.B. Suris, Geometry of Yang–Baxter maps: pencils of conics and quadrirational mappings. Commun. Anal. Geom. 12(5), 967–1007 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    N.I. Akhiezer, Orthogonal polynomials on several intervals. Sov. Math. Dokl. 1, 989–992 (1960)MathSciNetMATHGoogle Scholar
  12. 12.
    N.I. Akhiezer, Continuous analogues of the polynomials orthogonal on the system of intervals. Dokl. Akad. Nauk SSSR 141, 263–266 (1961). In RussianMathSciNetGoogle Scholar
  13. 13.
    V.I. Arnol’d, Mathematical Methods of Classical Mechanics, 2nd edn. Graduate Texts in Mathematics, vol. 60 (Springer, New York, 1989)Google Scholar
  14. 14.
    H.F. Baker, Note on the foregoing paper “commutative ordinary differential operators” by J. L. Burchnall and J. W. Chaundy. Proc. R. Soc. Ser. A 118(780), 584–593 (1928)ADSCrossRefMATHGoogle Scholar
  15. 15.
    R.J. Baxter, Partition function of the eight-vertex lattice model. Ann. Phys. 70(1), 193–228 (1972)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    G. Berkeley, A.V. Mikhailov, P. Xenitidis, Darboux transformations with tetrahedral reduction group and related integrable systems. J. Math. Phys. 57(9), 092701 (2016)Google Scholar
  17. 17.
    D. Bilman, On long-time asymptotics for the Toda lattice and its Hamiltonian perturbations. Ph.D. thesis, University of Illinois at Chicago (2015)Google Scholar
  18. 18.
    D. Bilman, T. Trogdon, Numerical inverse scattering for the Toda lattice. Comm. Math. Phys. 352(2), 805–879 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    A.I. Bobenko, Yu.B. Suris, Integrable systems on quad-graphs. Int. Math. Res. Not. 2002(11), 573–611 (2002)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    V.M. Bukhshtaber, The Yang–Baxter transformation. Russ. Math. Surv. 53(6), 1343–1345 (1998)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    R. Bury, Automorphic Lie algebras, corresponding integrable systems and their soliton solutions. Ph.D. thesis, University of Leeds (2010)Google Scholar
  22. 22.
    R. Bury, A.V. Mikhailov. Automorphic Lie algebras and corresponding integrable systems (2009). Draft (unpublished)Google Scholar
  23. 23.
    K.F. Clancey, I. Gohberg, Factorization of Matrix Functions and Singular Integral Operators. Operator Theory: Advances and Applications, vol. 3 (Birkhäuser, Basel, 1981)Google Scholar
  24. 24.
    G. Darboux, Sur une proposition relative aux équations linéaires. C. R. Acad. Sci. 94, 1456–1459 (1882)MATHGoogle Scholar
  25. 25.
    E. Date, M. Jimbo, T. Miwa, Method for generating discrete soliton equations. I. J. Phys. Soc. Jpn. 51(12), 4116–4124 (1982)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    E. Date, M. Jimbo, T. Miwa, Method for generating discrete soliton equations. II. J. Phys. Soc. Jpn. 51(12), 4125–4131 (1982)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    E. Date, M. Jimbo, T. Miwa, Method for generating discrete soliton equations. III. J. Phys. Soc. Jpn. 52(2), 388–393 (1983)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    E. Date, M. Jimbo, T. Miwa, Method for generating discrete soliton equations. IV. J. Phys. Soc. Jpn. 52(3), 761–765 (1983)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    E. Date, M. Jimbo, T. Miwa, Method for generating discrete soliton equations. V. J. Phys. Soc. Jpn. 52(3), 766–771 (1983)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    E. Date, S. Tanaka, Analogue of inverse scattering theory for the discrete Hill’s equation and exact solutions for the periodic Toda lattice. Prog. Theor. Phys. 55(2), 457–465 (1976)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    T. Dauxois, M. Peyrard, S. Ruffo, The Fermi–Pasta–Ulam ‘numerical experiment’: history and pedagogical perspectives. Eur. J. Phys. 26(5), S3–S11 (2005)MathSciNetCrossRefGoogle Scholar
  32. 32.
    P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes in Mathematics, vol. 3 (American Mathematical Society, Providence, 1999)Google Scholar
  33. 33.
    P. Deift, K.T.-R. McLaughlin, A continuum limit of the Toda lattice. Mem. Am. Math. Soc. 131(624) (1998)Google Scholar
  34. 34.
    P. Deift, X. Zhou, A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. (2) 137(2), 295–368 (1993)Google Scholar
  35. 35.
    P. Deift, X. Zhou, Asymptotics for the Painlevé II equation. Commun. Pure Appl. Math. 48(3), 277–337 (1995)CrossRefMATHGoogle Scholar
  36. 36.
    P. Deift, S. Venakides, X. Zhou, The collisionless shock region for the long-time behavior of solutions of the KdV equation. Commun. Pure Appl. Math. 47(2), 199–206 (1994)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    V.G. Drinfel’d, On some unsolved problems in quantum group theory, in Quantum Groups (Springer, Berlin, 1992), pp. 1–8MATHGoogle Scholar
  38. 38.
    B.A. Dubrovin, The inverse scattering problem for periodic short-range potentials. Funct. Anal. Appl. 9(1), 61–62 (1975)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    B.A. Dubrovin, Theta functions and non-linear equations. Russ. Math. Surv. 36(2), 11–92 (1981)CrossRefMATHGoogle Scholar
  40. 40.
    B.A. Dubrovin, S.P. Novikov, A periodic problem for the Korteweg–de Vries and Sturm–Liouville equations. Their connection with algebraic geometry. Sov. Math. Dokl. 15(6), 1597–1601 (1974)MATHGoogle Scholar
  41. 41.
    B.A. Dubrovin, V.B. Matveev, S.P. Novikov, Nonlinear equations of Korteweg–de Vries type, finite-band linear operators and Abelian varieties. Uspehi Mat. Nauk 31(187), 55–136 (1976). In RussianMathSciNetMATHGoogle Scholar
  42. 42.
    L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons. Classics in Mathematics (Springer, Berlin, 2007)Google Scholar
  43. 43.
    H. Flaschka, On the Toda lattice. II. Inverse-scattering solution. Prog. Theor. Phys. 51, 703–716 (1974)ADSMathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    H. Flaschka, The Toda lattice. I. Existence of integrals. Phys. Rev. B 9(3), 1924–1925 (1974)MathSciNetMATHGoogle Scholar
  45. 45.
    H. Flaschka, D.W. McLaughlin, Canonically conjugate variables for the Korteweg–de Vries equation and the Toda lattice with periodic boundary conditions. Prog. Theor. Phys. 55(2), 438–456 (1976)ADSMathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    J. Ford, The Fermi–Pasta–Ulam problem: paradox turns discovery. Phys. Rep. 213(5), 271–310 (1992)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    A.P. Fordy, Periodic cluster mutations and related integrable maps. J. Phys. A 47(47), 474003 (2014)Google Scholar
  48. 48.
    C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Method for solving the Korteweg–de Vries equation. Phys. Rev. Lett. 19(19), 1095–1097 (1967)ADSCrossRefMATHGoogle Scholar
  49. 49.
    F. Gesztesy, H. Holden, J. Michor, G. Teschl, Soliton Equations and Their Algebro-Geometric Solutions, vol. II. Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 2008)Google Scholar
  50. 50.
    G.G. Grahovski, A.V. Mikhailov, Integrable discretisations for a class of nonlinear Schrödinger equations on Grassmann algebras. Phys. Lett. A 377(45–48), 3254–3259 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    G.G. Grahovski, K.-S. Rizos, A. Mikhailov, Grassmann extensions of Yang–Baxter maps. J. Phys. A 49(14), 145202 (2016)Google Scholar
  52. 52.
    B. Grammaticos, A. Ramani, V.G. Papageorgiou, Do integrable mappings have the Painlevé property? Phys. Rev. Lett. 67(14), 1825–1828 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    B. Grammaticos, K.-Y. Schwarzbach, T. Tamizhmani (eds.), Discrete Integrable Systems. Lecture Notes in Physics (Springer, Berlin, 2004)Google Scholar
  54. 54.
    C. Gu, H. Hu, Z. Zhou, Darboux Transformations in Integrable Systems. Mathematical Physics Studies (Springer, New York, 2005)CrossRefMATHGoogle Scholar
  55. 55.
    M. Hénon, Integrals of the toda lattice. Phys. Rev. B (3) 9(4), 1921–1923 (1974)Google Scholar
  56. 56.
    J. Hietarinta, C. Viallet, Integrable lattice equations with vertex and bond variables. J. Phys. A 44(38), 385201 (2011)Google Scholar
  57. 57.
    J. Hietarinta, N. Joshi, F.W. Nijhoff, Discrete Systems and Integrability. Cambridge Texts in Applied Mathematics, vol. 54 (Cambridge University Press, Cambridge, 2016)Google Scholar
  58. 58.
    R. Hirota, Nonlinear partial difference equations. I. A difference analogue of the Korteweg–de Vries equation. J. Phys. Soc. Jpn. 43(4), 1424–1433 (1977)MATHGoogle Scholar
  59. 59.
    R. Hirota, Nonlinear partial difference equations. II. Discrete-time Toda equation. J. Phys. Soc. Jpn. 43(6), 2074–2078 (1977)ADSMATHGoogle Scholar
  60. 60.
    R. Hirota, Nonlinear partial difference equations. III. Discrete sine-Gordon equation. J. Phys. Soc. Jpn. 43(6), 2079–2086 (1977)MATHGoogle Scholar
  61. 61.
    R. Hirota, Nonlinear partial difference equations. IV. Bäcklund transformations for the discrete-time Toda equation. J. Phys. Soc. Jpn. 45(1), 321–332 (1978)MATHGoogle Scholar
  62. 62.
    A.R. Its, V.B. Matveev, Hill’s operator with finitely many gaps. Funct. Anal. Appl. 9(1), 65–66 (1975)CrossRefMATHGoogle Scholar
  63. 63.
    A.R. Its, V.B. Matveev, Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg–de Vries equation. Theor. Math. Phys. 23(1), 343–355 (1975)CrossRefGoogle Scholar
  64. 64.
    S. Kamvissis, On the long time behavior of the doubly infinite Toda lattice under initial data decaying at infinity. Commun. Math. Phys. 153(3), 479–519 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    D.J. Kaup, A.C. Newell, An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19(4), 798–801 (1978)ADSCrossRefMATHGoogle Scholar
  66. 66.
    F. Klein, Ueber binäre formen mit linearen transformationen in sich selbst. Math. Ann. 9(2), 183–208 (1875)MathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    S. Konstantinou-Rizos, Darboux transformations, discrete integrable systems and related Yang–Baxter maps. Ph.D. thesis, University of Leeds (2014)Google Scholar
  68. 68.
    S. Konstantinou-Rizos, A.V. Mikhailov, Darboux transformations, finite reduction groups and related Yang–Baxter maps. J. Phys. A 46(42), 425201 (2013)Google Scholar
  69. 69.
    S. Konstantinou-Rizos, A.V. Mikhailov, Anticommutative extension of the Adler map. J. Phys. A 49(30), 30LT3 (2016)Google Scholar
  70. 70.
    S. Konstantinou-Rizos, A.V. Mikhailov, P. Xenitidis, Reduction groups and related integrable difference systems of nonlinear Schrödinger type. J. Math. Phys. 56(8), 082701 (2015)Google Scholar
  71. 71.
    T.E. Kouloukas, V.G. Papageorgiou, Yang–Baxter maps with first-degree-polynomial 2 × 2 Lax matrices. J. Phys. A 42(40), 404012 (2009)Google Scholar
  72. 72.
    T.E. Kouloukas, V.G. Papageorgiou, Poisson Yang–Baxter maps with binomial Lax matrices. J. Math. Phys. 52(7), 073502 (2011)Google Scholar
  73. 73.
    I.M. Krichever, Integration of nonlinear equations by the methods of algebraic geometry. Funct. Anal. Appl. 11(1), 12–26 (1977)MathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    I.M. Krichever, Algebraic curves and non-linear difference equations. Russ. Math. Surv. 334), 255–256 (1978)Google Scholar
  75. 75.
    I.M. Krichever, Nonlinear equation and elliptic curves, in Current Problems in Mathematics, vol. 23. Itogi Nauki i Tekhniki (Akad. Nauk SSSR, VINITI, Moscow, 1983), pp. 79–136. In RussianGoogle Scholar
  76. 76.
    I.M. Krichever, Algebraic-geometrical methods in the theory of integrable equations and their perturbations. Acta Appl. Math. 39, 93–125 (1995)MathSciNetCrossRefMATHGoogle Scholar
  77. 77.
    H. Krüger, G. Teschl, Long-time asymptotics for the Toda lattice in the soliton region. Math. Z. 262(3), 585–602 (2009)MathSciNetCrossRefMATHGoogle Scholar
  78. 78.
    H. Krüger, G. Teschl, Long-time asymptotics of the Toda lattice for decaying initial data revisited. Rev. Math. Phys. 21(1), 61–109 (2009)MathSciNetCrossRefMATHGoogle Scholar
  79. 79.
    P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)MathSciNetCrossRefMATHGoogle Scholar
  80. 80.
    D. Levi, Nonlinear differential-difference equations as Bäcklund transformations. J. Phys. A 14(5), 1083–1098 (1981)ADSMathSciNetCrossRefMATHGoogle Scholar
  81. 81.
    D. Levi, R. Benguria, Bäcklund transformations and nonlinear differential difference equations. Proc. Natl. Acad. Sci. USA 77(9), 5025–5027 (1980)ADSCrossRefMATHGoogle Scholar
  82. 82.
    S.V. Manakov, Complete integrability and stochastization of discrete dynamical systems. Sov. Phys. JETP 40(2), 269–274 (1974)ADSMathSciNetGoogle Scholar
  83. 83.
    J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry, 2nd edn. Texts in Applied Mathematics, vol. 17 (Springer, New York, 1999)Google Scholar
  84. 84.
    V.B. Matveev, 30 years of finite-gap integration theory. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366(1867), 837–875 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  85. 85.
    V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons. Springer Series in Nonlinear Dynamics (Springer, Berlin, 1991)Google Scholar
  86. 86.
    H.P. McKean Jr., P. van Moerbecke, The spectrum of Hill’s equation. Invent. Math. 30(3), 217–274 (1975)ADSMathSciNetCrossRefMATHGoogle Scholar
  87. 87.
    A.V. Mikhailov, Formal diagonalisation of Lax–Darboux schemes. Model. Anal. Inf. Sist. 22(6), 795–817 (2015)MathSciNetCrossRefGoogle Scholar
  88. 88.
    A.V. Mikhailov, A.B. Shabat, R.I. Yamilov, Extension of the module of invertible transformations. Classification of integrable systems. Commun. Math. Phys. 115(1), 1–19 (1988)ADSMathSciNetCrossRefMATHGoogle Scholar
  89. 89.
    A.V. Mikhailov, G. Papamikos, J.P. Wang, Darboux transformation with dihedral reduction group. J. Math. Phys. 55(11), 113507 (2014)Google Scholar
  90. 90.
    P.D. Miller, Topics in pde: integrable systems and Riemann–Hilbert problems. Lecture Notes, University of Michigan (2015)Google Scholar
  91. 91.
    J. Moser, Finitely many mass points on the line under the influence of an exponential potential—an integrable system, in Dynamical Systems, Theory and Applications. Lecture Notes in Physics (Springer, Berlin, 1975)Google Scholar
  92. 92.
    F.W. Nijhoff, Discrete systems and integrability. Lecture Notes, University of Leeds (2006)Google Scholar
  93. 93.
    F.W. Nijhoff, H.W. Capel, The discrete Korteweg–de Vries equation. Acta Appl. Math. 39(1–3), 133–158 (1995)MathSciNetCrossRefMATHGoogle Scholar
  94. 94.
    F.W. Nijhoff, A.J. Walker, The discrete and continuous Painlevé VI hierarchy and the Garnier systems. Glasg. Math. J. 43(A), 109–123 (2001)CrossRefMATHGoogle Scholar
  95. 95.
    F.W. Nijhoff, H.W. Capel, G.L. Wiersma, Integrable lattice systems in two and three dimensions. in Geometric Aspects of the Einstein Equations and Integrable Systems, ed. by R. Martini. Lecture Notes in Physics, vol. 239 (Springer, Berlin, 1984), pp. 263–302Google Scholar
  96. 96.
    S.P. Novikov, A periodic problem for the Korteweg–de Vries equation. Funct. Anal. Appl. 8(3), 236–246 (1974)MathSciNetCrossRefMATHGoogle Scholar
  97. 97.
    S. Olver, Numerical solution of Riemann–Hilbert problems: Painlevé II. Found. Comput. Math. 11(2), 153–179 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  98. 98.
    S. Olver, A general framework for solving Riemann–Hilbert problems numerically. Numer. Math. 122(2), 305–340 (2012)MathSciNetCrossRefMATHGoogle Scholar
  99. 99.
    S. Olver, T. Trogdon, Nonlinear steepest descent and the numerical solution of Riemann–Hilbert problems. Commun. Pure Appl. Math. 67(8), 1353–1389 (2014)MathSciNetCrossRefMATHGoogle Scholar
  100. 100.
    V.G. Papageorgiou, A.G. Tongas, Yang–Baxter maps and multi-field integrable lattice equations. J. Phys. A 40(42), 12677–12690 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  101. 101.
    V.G. Papageorgiou, F.W. Nijhoff, H.W. Capel, Integrable mappings and nonlinear integrable lattice equations. Phys. Lett. A 147(2–3), 106–114 (1990)ADSMathSciNetCrossRefGoogle Scholar
  102. 102.
    V.G. Papageorgiou, A.G. Tongas, A.P. Veselov, Yang–Baxter maps and symmetries of integrable equations on quad-graphs. J. Math. Phys. 47(8), 083502 (2006)Google Scholar
  103. 103.
    V.G. Papageorgiou, S.B. Suris, A.G. Tongas, A.P. Veselov, On quadrirational Yang–Baxter maps. SIGMA 6, 033 (2010)MathSciNetMATHGoogle Scholar
  104. 104.
    G.R.W. Quispel, F.W. Nijhoff, H.W. Capel, J. van der Linden, Linear integral equations and nonlinear difference-difference equations. Phys. A 125(2–3), 344–380 (1984)MathSciNetCrossRefMATHGoogle Scholar
  105. 105.
    C. Rogers, W.K. Schief, Bäcklund and Darboux Transformations. Cambridge Texts in Applied Mathematics, vol. 30 (Cambridge University Press, Cambridge, 2016)Google Scholar
  106. 106.
    B. Simon, Sturm oscillation and comparison theorems, in Sturm–Liouville Theory, ed. by W.O. Amrein, A.M. Hinz, D.P. Pearson (Birkhäuser, Basel, 2005)Google Scholar
  107. 107.
    E.K. Sklyanin, Classical limits of the \(\mathop{\mathrm{SU}}\nolimits (2)\)-invariant solutions of the Yang–Baxter equation. J. Sov. Math. 40(1), 93–107 (1988)MathSciNetCrossRefMATHGoogle Scholar
  108. 108.
    Yu.B. Suris, Bi-Hamiltonian structure of the qd algorithm and new discretizations of the Toda lattice. Phys. Lett. A 206(3–4), 153–161 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  109. 109.
    Yu.B. Suris, A.P. Veselov, Lax matrices for Yang–Baxter maps. J. Nonlinear Math. Phys. 10(2), 223–230 (2003)MathSciNetCrossRefMATHGoogle Scholar
  110. 110.
    W.W. Symes, Hamiltonian group actions and integrable systems. Phys. D 1(4), 339–374 (1980)MathSciNetCrossRefMATHGoogle Scholar
  111. 111.
    W.W. Symes, The qr algorithm and scattering for the finite nonperiodic toda lattice. Phys. D 4(2), 275–280 (1981/82)Google Scholar
  112. 112.
    G. Szegő, Orthogonal Polynomials, 4th edn. American Mathematical Society Colloquium-Publications, vol. 23 (American Mathematical Society, Providence, 1975)Google Scholar
  113. 113.
    T.R. Taha, M.J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. I. Analytical. J. Comput. Phys. 55(2), 192–202 (1984)ADSMathSciNetCrossRefMATHGoogle Scholar
  114. 114.
    T.R. Taha, M.J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation. J. Comput. Phys. 55(2), 203–230 (1984)Google Scholar
  115. 115.
    T.R. Taha, M.J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical, Korteweg-de Vries equation. J. Comput. Phys. 55(2), 231–253 (1984)Google Scholar
  116. 116.
    G. Teschl, Oscillation theory and renormalized oscillation theory for Jacobi operators. J. Differ. Equ. 129(2), 532–558 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  117. 117.
    G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices. Mathematical Surveys and Monographs, vol. 72 (American Mathematical Society, Providence, 2000)Google Scholar
  118. 118.
    T. Trogdon, S. Olver, Numerical inverse scattering for the focusing and defocusing nonlinear Schrödinger equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469(2149), 20120330 (2013)Google Scholar
  119. 119.
    T. Trogdon, S. Olver, Riemann–Hilbert Problems, Their Numerical Solution and the Computation of Nonlinear Special Functions (SIAM, Philadelphia, 2016)MATHGoogle Scholar
  120. 120.
    T. Trogdon, S. Olver, B. Deconinck, Numerical inverse scattering for the Korteweg–de Vries and modified Korteweg–de Vries equations. Phys. D 241(11), 1003–1025 (2012)MathSciNetCrossRefMATHGoogle Scholar
  121. 121.
    P. van Moerbeke, The spectrum of Jacobi matrices. Invent. Math. 37(1), 45–81 (1976)ADSMathSciNetCrossRefMATHGoogle Scholar
  122. 122.
    A.P. Veselov, Integrable maps. Russ. Math. Surv. 46(5), 1–51 (1991)CrossRefMATHGoogle Scholar
  123. 123.
    A.P. Veselov, Yang–Baxter maps and integrable dynamics. Phys. Lett. A 314(3), 214–221 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  124. 124.
    A.P. Veselov, Yang–Baxter maps: dynamical point of view, in Combinatorial Aspect of Integrable Systems. MSJ Memoirs, vol. 17, pp. 145–167 (Mathematical Society of Japan, Tokyo, 2007)Google Scholar
  125. 125.
    H.D. Wahlquist, F.B. Estabrook, Bäcklund transformation for solutions of the Korteweg–de Vries equation. Phys. Rev. Lett. 31(23), 1386–1390 (1973)ADSMathSciNetCrossRefGoogle Scholar
  126. 126.
    C.N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19(23), 1312–1315 (1967)ADSMathSciNetCrossRefMATHGoogle Scholar
  127. 127.
    N.J. Zabusky, M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240–243 (1963)ADSCrossRefMATHGoogle Scholar
  128. 128.
    V.E. Zakharov (ed.), What Is Integrability? Springer Series in Nonlinear Dynamics (Springer, Berlin, 1991)Google Scholar
  129. 129.
    V.E. Zakharov, L.D. Faddeev, Korteweg–de Vries equation: a completely integrable Hamiltonian system. Funct. Anal. Appl. 5(4), 280–287 (1971)CrossRefMATHGoogle Scholar
  130. 130.
    V.E. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 61(1), 62–69 (1972)ADSMathSciNetGoogle Scholar
  131. 131.
    V.E. Zakharov, A.B. Shabat, A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Funct. Anal. Appl. 8(3), 226–235 (1974)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Institute of Mathematical Physics & SeismodynamicsGroznyRussia

Personalised recommendations