Introduction to Linear and Nonlinear Integrable Theories in Discrete Complex Analysis

  • Ulrike Bücking
Part of the CRM Series in Mathematical Physics book series (CRM)


The field of discrete differential geometry lies on the border of classical differential geometry and discrete geometry. Its aim is to develop discrete geometric theories which respect fundamental aspects of the corresponding smooth ones. Also, these discretizations often clarify structures of the smooth theory.

In our presentation, we focus on the area of discrete complex analysis. In particular, we introduce several concepts of discrete holomorphic functions based on a linear approach and on nonlinear theories concerning cross-ratio systems, circle patterns and discrete conformal equivalence. These examples are used to illustrate some characteristic features in discrete differential geometry like integrability as consistency and Bäcklund–Darboux transformations.



The author is supported by the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics.”

Furthermore, I am grateful to Nikolay Dimitrov for discussions on integrability in the context of discrete differential geometry, in particular concerning cross-ratio systems and conformally equivalent triangulations. Many thanks also to the referee for his careful reading and advice.


  1. 1.
    V.E. Adler, A.I. Bobenko, Yu.B. Suris, Classification of integrable equations on quad-graphs. The consistency approach. Commun. Math. Phys. 233(3), 513–543 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    S.I. Agafonov, A.I. Bobenko, Discrete z γ and Painlevé equations. Int. Math. Res. Not. 2000(4), 165–193 (2000)CrossRefMATHGoogle Scholar
  3. 3.
    L.V. Ahlfors, Complex Analysis. International Series in Pure and Applied Mathematics, 3rd edn. (McGraw-Hill, New York, 1978)Google Scholar
  4. 4.
    A.F. Beardon, T. Dubejko, K. Stephenson, Spiral hexagonal circle packings in the plane. Geom. Dedicata 49(1), 39–70 (1994)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    D. Beliaev, S. Smirnov, Random conformal snowflakes. Ann. Math. (2) 172(1), 597–615 (2010)Google Scholar
  6. 6.
    L. Bianchi, Lezioni di geometria differenziale, 3rd edn. (Enrico Spoerri, Pisa, 1923)MATHGoogle Scholar
  7. 7.
    A.I. Bobenko, Discrete conformal maps and surfaces, in Symmetries and Integrability of Difference Equations, ed. by P.A. Clarkson, F.W. Nijhoff. London Mathematical Society Lecture Note Series, vol. 255 (Cambridge University Press, Cambridge, 1999), pp. 97–108Google Scholar
  8. 8.
    A.I. Bobenko, F. Günther, Discrete complex analysis on planar quad-graphs, in Advances in Discrete Differential Geometry, ed. by A.I. Bobenko (Springer, Berlin, 2016), pp. 57–132CrossRefGoogle Scholar
  9. 9.
    A.I. Bobenko, T. Hoffmann, Conformally symmetric circle packings. A generalization of Doyle spirals. Exp. Math. 10, 141–150 (2001)CrossRefMATHGoogle Scholar
  10. 10.
    A.I. Bobenko, T. Hoffmann, Hexagonal circle patterns and integrable systems: patterns with constant angles. Duke Math. J. 116, 525–566 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    A.I. Bobenko, U. Pinkall, Discrete isothermic surfaces. J. Reine Angew. Math. 475, 187–208 (1996)MathSciNetMATHGoogle Scholar
  12. 12.
    A.I. Bobenko, U. Pinkall, Discretization of surfaces and integrable systems, in Discrete Integrable Geometry and Physics, ed. by A.I. Bobenko, R. Seiler. Oxford Lecture Series in Mathematics and Its Applications, vol. 16 (Clarendon Press, New York, 1999), pp. 3–58Google Scholar
  13. 13.
    A.I. Bobenko, B.A. Springborn, Variational principles for circle patterns and Koebe’s theorem. Trans. Am. Math. Soc. 356, 659–689 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    A.I. Bobenko, Yu.B. Suris, Integrable systems on quad-graphs. Int. Math. Res. Not. 11, 573–611 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    A.I. Bobenko, Yu.B. Suris, Discrete Differential Geometry. Integrable Structure. Graduate Studies in Mathematics, vol. 98 (American Mathematical Society, Providence, 2008)Google Scholar
  16. 16.
    A.I. Bobenko, T. Hoffmann, Yu.B. Suris, Hexagonal circle patterns and integrable systems: patterns with the multi-ratio property and Lax equations on the regular triangular lattice. Int. Math. Res. Not. 3, 111–164 (2002)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    A.I. Bobenko, C. Mercat, Yu.B. Suris, Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green’s function. J. Reine Angew. Math. 583, 117–161 (2005)CrossRefMATHGoogle Scholar
  18. 18.
    A.I. Bobenko, U. Pinkall, B. Springborn, Discrete conformal maps and ideal hyperbolic polyhedra. Geom. Topol. 19(4), 2155–2215 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    C. Bohle, F. Pedit, U. Pinkall, Discrete holomorphic geometry I. Darboux transformations and spectral curves. J. Reine Angew. Math. 637, 99–139 (2009)MATHGoogle Scholar
  20. 20.
    S. Born, U. Bücking,, B.A. Springborn, Quasiconformal distortion of projective transformations and discrete conformal maps. Discrete Comput. Geom. 57, 305–317 (2017)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    G.R. Brightwell, E.R. Scheinerman, Representations of planar graphs. SIAM J. Discrete Math. 6(2), 214–229 (1993)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    U. Bücking, Approximation of conformal mappings by circle patterns. Geom. Dedicata 137, 163–197 (2008)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    U. Bücking, Rigidity of quasicrystallic and z γ-circle patterns. Discrete Comput. Geom. 46(2), 223–251 (2011)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    U. Bücking, Approximation of conformal mappings on triangular lattices, in Advances in Discrete Differential Geometry, ed. by A.I. Bobenko (Springer, Berlin, 2016), pp. 133–149CrossRefGoogle Scholar
  25. 25.
    D. Chelkak, Robust discrete complex analysis: a toolbox. Ann. Probab. 44(1), 628–683 (2016)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    D. Chelkak, S. Smirnov, Universality in the 2D ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515–580 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    J. Cieśliński, A. Doliwa, P.M. Santini, The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices. Phys. Lett. A 235(5), 480–488 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    R. Courant, K. Friedrichs, H. Lewy, Über die partiellen Differentialgleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    G. Darboux, Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, 2nd edn. (Gauthies-Villars, Paris, 1910)MATHGoogle Scholar
  30. 30.
    G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, vols. I–IV, 2nd edn. (Gauthies-Villars, Paris, 1914–1927)Google Scholar
  31. 31.
    T. Dubejko, K. Stephenson, Circle packing: experiments in discrete analytic function theory. Exp. Math. 4, 307–348 (1995)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    R.J. Duffin, Basic properties of discrete analytic functions. Duke Math. J. 23, 335–363 (1956)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    R.J. Duffin, Potential theory on a rhombic lattice. J. Comb. Theory 5, 258–272 (1968)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    I.A. Dynnikov, S.P. Novikov, Geometry of the triangle equation on two-manifolds. Mosc. Math. J. 3(2), 419–438 (2003)MathSciNetMATHGoogle Scholar
  35. 35.
    J. Ferrand, Fonctions préharmoniques et fonctions préholomorphes. Bull. Sci. Math. (2) 68, 152–180 (1944)Google Scholar
  36. 36.
    E. Freitag, R. Busam, Complex Analysis, 2nd edn. (Springer, Berlin, 2009)MATHGoogle Scholar
  37. 37.
    P.G. Grinevich, S.P. Novikov, The Cauchy kernel for the Dynnikov–Novikov DN-discrete complex analysis in triangular lattices. Russ. Math. Surv. 62(4), 799–801 (2007)CrossRefMATHGoogle Scholar
  38. 38.
    B. Grünbaum, Convex Polytopes. Pure and Applied Mathematics, vol. 16 (Wiley, New York, 1967)Google Scholar
  39. 39.
    X. Gu, R. Guo, F. Luo, J. Sun, T. Wu, A discrete uniformization theorem for polyhedral surfaces. II. arXiv:1401.4594Google Scholar
  40. 40.
    X. Gu, F. Luo, J. Sun, T. Wu, A discrete uniformization theorem for polyhedral surfaces. arXiv:1309.4175Google Scholar
  41. 41.
    F. Günther, Discrete Riemann surfaces and integrable systems. Ph.D. thesis, TU Berlin (2014)Google Scholar
  42. 42.
    Z. -X. He, Rigidity of infinite disk patterns. Ann. Math. 149, 1–33 (1999)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Z. -X. He, O. Schramm, On the convergence of circle packings to the Riemann map. Invent. Math. 125(2), 285–305 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Z. -X. He, O. Schramm, The C -convergence of hexagonal disk packings to the Riemann map. Acta Math. 180(2), 219–245 (1998)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    U. Hertrich-Jeromin, T. Hoffmann, U. Pinkall, A discrete version of the Darboux transformation for isothermic surfaces, in Discrete Integrable Geometry and Physics, ed. by A.I. Bobenko, R. Seiler, Oxford Lecture Series in Mathematics and Its Applications, vol. 16 (Clarendon Press, New York, 1999), pp. 59–81Google Scholar
  46. 46.
    R. Hirota, Nonlinear partial difference equations. III. Discrete sine-Gordon equation. J. Phys. Soc. Jpn. 43, 2079–2086 (1977)MATHGoogle Scholar
  47. 47.
    R.P. Isaacs, A finite difference function theory. Univ. Nac. Tucumán Revista A 2, 177–201 (1941)MathSciNetMATHGoogle Scholar
  48. 48.
    R. Kenyon, Conformal invariance of domino tiling. Ann. Probab. 28(2), 759–795 (2000)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    R. Kenyon, The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150(2), 409–439 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    R. Kenyon, J. -M. Schlenker, Rhombic embeddings of planar quad-graphs. Trans. Am. Math. Soc. 357(9), 3443–3458 (2005)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    P. Koebe, Kontaktprobleme der konformen Abbildung. Abh. Sächs. Akad. Wiss. Leipzig Math.-Natur. Kl. 88, 141–164 (1936)MATHGoogle Scholar
  52. 52.
    B.G. Konopelchenko, W.K. Schief, Menelaus’ theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy. J. Phys. A 35(29), 6125–6144 (2002)MATHGoogle Scholar
  53. 53.
    B.G. Konopelchenko, W.K. Schief, Reciprocal figures, graphical statics, and inversive geometry of the Schwarzian BKP hierarchy. Stud. Appl. Math. 109(1), 89–124 (2002)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    W.Y. Lam, U. Pinkall, Holomorphic vector fields and quadratic differentials on planar triangular meshes, in Advances in Discrete Differential Geometry, ed. by A.I. Bobenko (Springer, Berlin, 2016), pp. 241–265CrossRefGoogle Scholar
  55. 55.
    S.-Y. Lan, D.-Q. Dai, The C -convergence of SG circle patterns to the Riemann mapping. J. Math. Anal. Appl. 332(2), 1351–1364 (2007)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    F. Luo, Combinatorial Yamabe flow on surfaces. Commun. Contemp. Math. 6(5), 765–780 (2004)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    D. Matthes, Convergence in discrete Cauchy problems and applications to circle patterns. Conform. Geom. Dyn. 9, 1–23 (2005)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    C. Mercat, Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218, 177–216 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    T. Miwa, On Hirota’s difference equations. Proc. Jpn. Acad. Ser. A Math. Sci. 58, 9–12 (1982)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    J.J.C. Nimmo, W.K. Schief, Superposition principles associated with the Moutard transformation: an integrable discretization of a (2 + 1)-dimensional sine-Gordon system. Proc. Math. Phys. Eng. Sci. 453(1957), 255–279 (1997)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    S.P. Novikov, New discretization of complex analysis: the Euclidean and hyperbolic planes. Proc. Steklov Inst. Math. 273(1), 238–251 (2011)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    I. Rivin, Euclidean structures on simplicial surfaces and hyperbolic volume. Ann. Math. (2) 139(3), 553–580 (1994)Google Scholar
  63. 63.
    B. Rodin, D. Sullivan, The convergence of circle packings to the Riemann mapping. J. Differ. Geom. 26(2), 349–360 (1987)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    O. Schramm, How to cage an egg. Invent. Math. 107(3), 543–560 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    O. Schramm, Circle patterns with the combinatorics of the square grid. Duke Math. J. 86, 347–389 (1997)MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    O. Schramm, S. Sheffield, Harmonic explorer and its convergence to SLE4. Ann. Probab. 33(6), 2127–2148 (2005)MathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    S. Smirnov, H. Duminil-Copin, Conformal invariance of lattice models, in Probability and Statistical Physics in Two and More Dimensions, ed. by D. Ellwood, C. Newman, V. Sidoravicius, W. Werner. Clay Mathematics Proceedings, vol. 15 (American Mathematical Society, Providence, 2012), pp. 213–276Google Scholar
  68. 68.
    B. Springborn, P. Schröder, U. Pinkall, Conformal equivalence of triangle meshes. ACM Trans. Graph. 27(3), 77 (2008)Google Scholar
  69. 69.
    K. Stephenson, Introduction to Circle Packing (Cambridge University Press, Cambridge, 2005)MATHGoogle Scholar
  70. 70.
    W.P. Thurston, The finite Riemann mapping theorem. Invited address at the International Symposium in Celebration of the Proof of the Bieberbach Conjecture, Purdue University (1985)Google Scholar
  71. 71.
    T. Wu, D. Gu, J. Sun, Rigidity of infinite hexagonal triangulation of the plane. Trans. Am. Math. Soc. 367(9), 6539–6555 (2015)MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    G.M. Ziegler, Convex polytopes: extremal constructions and f-vector shapes, in Geometric Combinatorics, ed. by E. Miller, V. Reiner, B. Sturmfels. IAS/Park City Mathematics Series, vol. 13 (American Mathematical Society, Providence, 2007), pp. 617–692Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations