Directional Growth for Sperm Delivery



Flowering plants use a polarized projection of the pollen grain called a pollen tube, to precisely deliver two sperm cells to the female gametes, which are deeply buried in the female gametophyte of the ovules for fertilization. The pollen tubes navigate a long route from the stigma, through the transmitting tract over a considerable amount of time before targeting the individual ovules. How is this precise cellular targeting achieved by the pollen tube? A lot of progress has been made toward identifying the sources of guidance cues that the pollen tube receives and the molecules that act as such guidance cues during its journey toward the ovule. In this chapter, we discuss these pollen tube guidance cues and also the latest tools in bio-imaging and microfluidics that would enable us to gain a better understanding of this process of directional growth for sperm delivery.


Bio-imaging In vivo pollen tube growth Microfluidics 



Arabinogalactan protein


Calcium ion


Extracellular matrix


Green fluorescent protein




Two-photon excitation microscopy



This work was supported in part by the Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) program (JPMJER1004) and the Japan Society for the Promotion of Science KAKENHI (JP16H06465, JP16K21727, and 15F15388) to T.H. S.S is supported by JSPS Postdoctoral Fellowship for Overseas Researchers.


  1. Agudelo CG, Sanati A, Ghanbari M, Packirisamy M, Geitmann A (2012) A microfluidic platform for the investigation of elongation growth in pollen tubes. J Micromech Microeng 22:115009Google Scholar
  2. Amien S, Kliwer I, Marton ML, Debener T, Geiger D, Becker D, Dresselhaus T (2010) Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLoS Biol 8:e1000388CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beale KM, Leydon AR, Johnson MA (2012) Gamete fusion is required to block multiple pollen tubes from entering an Arabidopsis ovule. Curr Biol 22:1090–1094CrossRefPubMedPubMedCentralGoogle Scholar
  4. Busch W, Moore BT, Martsberger B, Mace DL, Twigg RW, Jung J, Pruteanu-Malinici I, Kennedy SJ, Fricke GK, Clark RL, Ohler U, Benfey PN (2012) A microfluidic device and computational platform for high-throughput live imaging of gene expression. Nat Methods 9:1101–1106CrossRefPubMedPubMedCentralGoogle Scholar
  5. Capron A, Gourgues M, Neiva LS, Faure JE, Berger F, Pagnussat G, Krishnan A, Alvarez-Mejia C, Vielle-Calzada JP, Lee YR, Liu B, Sundaresan V (2008) Maternal control of male-gamete delivery in Arabidopsis involves a putative GPI-anchored protein encoded by the LORELEI gene. Plant Cell 20:3038–3049CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chapman LA, Goring DR (2010) Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. J Exp Bot 61:1987–1999CrossRefPubMedGoogle Scholar
  7. Chen YH, Li HJ, Shi DQ, Yuan L, Liu J, Sreenivasan R, Baskar R, Grossniklaus U, Yang WC (2007) The central cell plays a critical role in pollen tube guidance in Arabidopsis. Plant Cell 19:3563–3577CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cheung AY, Wu HM (2001) Plant biology. Pollen tube guidance – right on target. Science 293:1441–1442CrossRefPubMedGoogle Scholar
  9. Cheung AY, Wang H, Wu HM (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82(3):83–393CrossRefGoogle Scholar
  10. Cheung AY, Boavida LC, Aggarwal M, Wu HM, Feijo JA (2010) The pollen tube journey in the pistil and imaging the in vivo process by two-photon microscopy. J Exp Bot 61:1907–1915CrossRefPubMedGoogle Scholar
  11. Choudhury D, van Noort D, Iliescu C, Zheng B, Poon KL, Korzh S, Korzh V, Yu H (2012) Fish and chips: a microfluidic perfusion platform for monitoring zebrafish development. Lab Chip 12:892–900CrossRefPubMedGoogle Scholar
  12. Crawford BC, Ditta G, Yanofsky MF (2007) The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana. Curr Biol 17:1101–1108CrossRefPubMedGoogle Scholar
  13. Dong J, Kim ST, Lord EM (2005) Plantacyanin plays a role in reproduction in Arabidopsis. Plant Physiol 138:778–789CrossRefPubMedPubMedCentralGoogle Scholar
  14. Drews GN, Yadegari R (2002) Development and function of the angiosperm female gametophyte. Annu Rev Genet 36:99–124CrossRefPubMedGoogle Scholar
  15. Duncombe TA, Tentori AM, Herr AE (2015) Microfluidics: reframing biological enquiry. Nat Rev Mol Cell Biol 16:554–567CrossRefPubMedGoogle Scholar
  16. Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, Grossniklaus U (2007) The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317:656–660CrossRefPubMedGoogle Scholar
  17. Feijo JA, Moreno N (2004) Imaging plant cells by two-photon excitation. Protoplasma 223:1–32CrossRefPubMedGoogle Scholar
  18. Fricker MD, Meyer AJ (2001) Confocal imaging of metabolism in vivo: pitfalls and possibilities. J Exp Bot 52:631–640PubMedGoogle Scholar
  19. Gao QF, Gu LL, Wang HQ, Fei CF, Fang X, Hussain J, Sun SJ, Dong JY, Liu H, Wang YF (2016) Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. Proc Natl Acad Sci U S A 113:3096–3101CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gooh K, Ueda M, Aruga K, Park J, Arata H, Higashiyama T, Kurihara D (2015) Live-cell imaging and optical manipulation of Arabidopsis early embryogenesis. Dev Cell 34:242–251CrossRefPubMedGoogle Scholar
  21. Hamamura Y, Saito C, Awai C, Kurihara D, Miyawaki A, Nakagawa T, Kanaoka MM, Sasaki N, Nakano A, Berger F, Higashiyama T (2011) Live-cell imaging reveals the dynamics of two sperm cells during double fertilization in Arabidopsis thaliana. Curr Biol 21:497–502CrossRefPubMedGoogle Scholar
  22. Hamamura Y, Nishimaki M, Takeuchi H, Geitmann A, Kurihara D, Higashiyama T (2014) Live imaging of calcium spikes during double fertilization in Arabidopsis. Nat Commun 5:4722CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hepler PKG, Gunning BES (1998) Confocal fluorescence microscopy of plant cells. Protoplasma 201:121CrossRefGoogle Scholar
  24. Higashiyama T, Hamamura Y (2008) Gametophytic pollen tube guidance. Sex Plant Reprod 21:17–26CrossRefGoogle Scholar
  25. Higashiyama T, Takeuchi H (2015) The mechanism and key molecules involved in pollen tube guidance. Annu Rev Plant Biol 66:393–413CrossRefPubMedGoogle Scholar
  26. Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T (1998) Guidance in vitro of the pollen tube to the naked embryo sac of Torenia fournieri. Plant Cell 10:2019–2032CrossRefPubMedPubMedCentralGoogle Scholar
  27. Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S, Kuroiwa H, Kuroiwa T (2001) Pollen tube attraction by the synergid cell. Science 293:1480–1483CrossRefPubMedGoogle Scholar
  28. Higashiyama T, Inatsugi R, Sakamoto S, Sasaki N, Mori T, Kuroiwa H, Nakada T, Nozaki H, Kuroiwa T, Nakano A (2006) Species preferentiality of the pollen tube attractant derived from the synergid cell of Torenia fournieri. Plant Physiol 142:481–491CrossRefPubMedPubMedCentralGoogle Scholar
  29. Horade M, Kanaoka MM, Kuzuya M, Higashiyama T, Kaji N (2013) A microfluidic device for quantitative analysis of chemoattraction in plants. RSC Adv 3:22301–22307CrossRefGoogle Scholar
  30. Huang WJ, Liu HK, McCormick S, Tang WH (2014) Tomato pistil factor STIG1 promotes in vivo pollen tube growth by binding to phosphatidylinositol 3-phosphate and the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell 26:2505–2523CrossRefPubMedPubMedCentralGoogle Scholar
  31. Huck N, Moore JM, Federer M, Grossniklaus U (2003) The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130:2149–2159CrossRefPubMedGoogle Scholar
  32. Hulskamp M, Schneitz K, Pruitt RE (1995) Genetic evidence for a long-range activity that directs pollen tube guidance in Arabidopsis. Plant Cell 7:57–64CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ickowicz D, Finkelstein M, Breitbart H (2012) Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases. Asian J Androl 14:816–821CrossRefPubMedPubMedCentralGoogle Scholar
  34. Iwano M, Shiba H, Miwa T, Che FS, Takayama S, Nagai T, Miyawaki A, Isogai A (2004) Ca2+ dynamics in a pollen grain and papilla cell during pollination of Arabidopsis. Plant Physiol 136:3562–3571CrossRefPubMedPubMedCentralGoogle Scholar
  35. Iwano M, Igarashi M, Tarutani Y, Kaothien-Nakayama P, Nakayama H, Moriyama H, Yakabe R, Entani T, Shimosato-Asano H, Ueki M, Tamiya G, Takayama S (2014) A pollen coat-inducible autoinhibited Ca2+-ATPase expressed in stigmatic papilla cells is required for compatible pollination in the Brassicaceae. Plant Cell 26:636–649CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kanaoka MM, Kawano N, Matsubara Y, Susaki D, Okuda S, Sasaki N, Higashiyama T (2011) Identification and characterization of TcCRP1, a pollen tube attractant from Torenia concolor. Ann Bot 108:739–747CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kasahara RD, Portereiko MF, Sandaklie-Nikolova L, Rabiger DS, Drews GN (2005) MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17:2981–2992CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G, Panstruga R, Grossniklaus U (2010) Conserved molecular components for pollen tube reception and fungal invasion. Science 330:968–971CrossRefPubMedGoogle Scholar
  39. Kim S, Mollet JC, Dong J, Zhang K, Park SY, Lord EM (2003) Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism. Proc Natl Acad Sci U S A 100:16125–16130CrossRefPubMedPubMedCentralGoogle Scholar
  40. Knox RB (1984) Pollen-pistil interactions. In: Linskens H-F, Heslop-Harrison J (eds) Encyclopedia of plant physiology, vol 17. Springer, Heidelberg, pp 508–608Google Scholar
  41. Kurihara D, Hamamura Y, Higashiyama T (2013) Live-cell analysis of plant reproduction: live-cell imaging, optical manipulation, and advanced microscopy technologies. Dev Growth Differ 55:462–473CrossRefPubMedGoogle Scholar
  42. Kurihara D, Mizuta Y, Sato Y, Higashiyama T (2015) ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142:4168–4179CrossRefPubMedPubMedCentralGoogle Scholar
  43. Leydon AR, Tsukamoto T, Dunatunga D, Qin Y, Johnson MA, Palanivelu R (2015) Pollen tube discharge completes the process of synergid degeneration that is initiated by pollen tube-synergid interaction in Arabidopsis. Plant Physiol 169:485–496CrossRefPubMedPubMedCentralGoogle Scholar
  44. Li HJ, Xue Y, Jia DJ, Wang T, Hi DQ, Liu J, Cui F, Xie Q, Ye D, Yang WC (2011) POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. Plant Cell 23:3288–3302CrossRefPubMedPubMedCentralGoogle Scholar
  45. Li S, Ge FR, Xu M, Zhao XY, Huang GQ, Zhou LZ, Wang JG, Kombrink A, McCormick S, Zhang XS, Zhang Y (2013) Arabidopsis COBRA-LIKE 10, a GPI-anchored protein, mediates directional growth of pollen tubes. Plant J 74:486–497CrossRefPubMedGoogle Scholar
  46. Li C, Yeh FL, Cheung AY, Duan Q, Kita D, Liu MC, Maman J, Luu EJ, Wu BW, Gates L, Jalal M, Kwong A, Carpenter H, Wu HM (2015) Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. Elife 4. doi: 10.7554/eLife.06587
  47. Lindner H, Kessler SA, Muller LM, Shimosato-Asano H, Boisson-Dernier A, Grossniklaus U (2015) TURAN and EVAN mediate pollen tube reception in Arabidopsis synergids through protein glycosylation. PLoS Biol 13:e1002139CrossRefPubMedPubMedCentralGoogle Scholar
  48. Liu J, Zhong S, Guo X, Hao L, Wei X, Huang Q, Hou Y, Shi J, Wang C, Gu H, Qu LJ (2013) Membrane-bound RLCKs LIP1 and LIP2 are essential male factors controlling male-female attraction in Arabidopsis. Curr Biol 23:993–998CrossRefPubMedGoogle Scholar
  49. Lu Y, Chanroj S, Zulkifli L, Johnson MA, Uozumi N, Cheung A, Sze H (2011) Pollen tubes lacking a pair of K+ transporters fail to target ovules in Arabidopsis. Plant Cell 23:81–93CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lush WM, Grieser F, Wolters-Arts M (1998) Directional guidance of nicotiana alata pollen tubes in vitro and on the stigma. Plant Physiol 118:733–741CrossRefPubMedPubMedCentralGoogle Scholar
  51. Marton ML, Cordts S, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573–576CrossRefPubMedGoogle Scholar
  52. Marton ML, Fastner A, Uebler S, Dresselhaus T (2012) Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules. Curr Biol 22:1194–1198CrossRefPubMedGoogle Scholar
  53. Maruyama D, Volz R, Takeuchi H, Mori T, Igawa T, Kurihara D, Kawashima T, Ueda M, Ito M, Umeda M, Nishikawa S, Gross-Hardt R, Higashiyama T (2015) Rapid elimination of the persistent synergid through a cell fusion mechanism. Cell 161:907–918CrossRefPubMedGoogle Scholar
  54. Michard E, Lima PT, Borges F, Silva AC, Portes MT, Carvalho JE, Gilliham M, Liu LH, Obermeyer G, Feijo JA (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332:434–437CrossRefPubMedGoogle Scholar
  55. Mizukami AG, Inatsugi R, Jiao J, Kotake T, Kuwata K, Ootani K, Okuda S, Sankaranarayanan S, Sato Y, Maruyama D, Iwai H, Garenaux E, Sato C, Kitajima K, Tsumuraya Y, Mori H, Yamaguchi J, Itami K, Sasaki N, Higashiyama T (2016) The AMOR arabinogalactan sugar chain induces pollen tube competency to respond to ovular guidance. Curr Biol 26:1091–1097CrossRefPubMedGoogle Scholar
  56. Mizuta Y, Kurihara D, Higashiyama T (2015) Two-photon imaging with longer wavelength excitation in intact Arabidopsis tissues. Protoplasma 252:1231–1240CrossRefPubMedGoogle Scholar
  57. Nasrallah JB, Stein JC, Kandasamy MK, Nasrallah ME (1994) Signaling the arrest of pollen tube development in self-incompatible plants. Science 266:1505–1508CrossRefPubMedGoogle Scholar
  58. Nezhad AS, Naghavi M, Packirisamy M, Bhat R, Geitmann A (2013) Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling. Proc Natl Acad Sci U S A 110:8093–8098CrossRefGoogle Scholar
  59. Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Kasahara RD, Hamamura Y, Mizukami A, Susaki D, Kawano N, Sakakibara T, Namiki S, Itoh K, Otsuka K, Matsuzaki M, Nozaki H, Kuroiwa T, Nakano A, Kanaoka MM, Dresselhaus T, Sasaki N, Higashiyama T (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361CrossRefPubMedGoogle Scholar
  60. Okuda S, Suzuki T, Kanaoka MM, Mori H, Sasaki N, Higashiyama T (2013) Acquisition of LURE-binding activity at the pollen tube tip of Torenia fournieri. Mol Plant 6:1074–1090CrossRefPubMedGoogle Scholar
  61. Palanivelu R, Preuss D (2006) Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7CrossRefPubMedPubMedCentralGoogle Scholar
  62. Palanivelu R, Tsukamoto T (2012) Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization. Wiley Interdiscip Rev Dev Biol 1:96–113CrossRefPubMedGoogle Scholar
  63. Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59CrossRefPubMedGoogle Scholar
  64. Ray S, Park SS, Ray A (1997) Pollen tube guidance by the female gametophyte. Development 124:2489–2498PubMedGoogle Scholar
  65. Rotman N, Rozier F, Boavida L, Dumas C, Berger F, Faure JE (2003) Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr Biol 13:432–436CrossRefPubMedGoogle Scholar
  66. Rotman N, Gourgues M, Guitton AE, Faure JE, Berger F (2008) A dialogue between the SIRENE pathway in synergids and the fertilization independent seed pathway in the central cell controls male gamete release during double fertilization in Arabidopsis. Mol Plant 1(4):659–666CrossRefPubMedGoogle Scholar
  67. Safavian D, Zayed Y, Indriolo E, Chapman L, Ahmed A, Goring DR (2015) RNA silencing of exocyst genes in the stigma impairs the acceptance of compatible pollen in Arabidopsis. Plant Physiol 169:2526–2538PubMedPubMedCentralGoogle Scholar
  68. Samuel MA, Chong YT, Haasen KE, Aldea-Brydges MG, Stone SL, Goring DR (2009) Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell 21:2655–2671CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sandaklie-Nikolova L, Palanivelu R, King EJ, Copenhaver GP, Drews GN (2007) Synergid cell death in Arabidopsis is triggered following direct interaction with the pollen tube. Plant Physiol 144:1753–1762CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sankaranarayanan S, Jamshed M, Samuel MA (2015) Degradation of glyoxalase I in Brassica napus stigma leads to self-incompatibility response. Nat Plants 1:15185Google Scholar
  71. Sato Y, Sugimoto N, Higashiyama T, Arata H (2015) Quantification of pollen tube attraction in response to guidance by female gametophyte tissue using artificial microscale pathway. J Biosci Bioeng 120:697–700CrossRefPubMedGoogle Scholar
  72. Shimizu KK, Okada K (2000) Attractive and repulsive interactions between female and male gametophytes in Arabidopsis pollen tube guidance. Development 127:4511–4518PubMedGoogle Scholar
  73. Sivagnanam V, Gijs MA (2013) Exploring living multicellular organisms, organs, and tissues using microfluidic systems. Chem Rev 113:3214–3247CrossRefPubMedGoogle Scholar
  74. Takeuchi H, Higashiyama T (2012) A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biol 10:e1001449CrossRefPubMedPubMedCentralGoogle Scholar
  75. Takeuchi H, Higashiyama T (2016) Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531:245–248CrossRefPubMedGoogle Scholar
  76. Tang W, Kelley D, Ezcurra I, Cotter R, McCormick S (2004) LeSTIG1, an extracellular binding partner for the pollen receptor kinases LePRK1 and LePRK2, promotes pollen tube growth in vitro. Plant J 39:343–353CrossRefPubMedGoogle Scholar
  77. Tsukamoto T, Qin Y, Huang Y, Dunatunga D, Palanivelu R (2010) A role for LORELEI, a putative glycosylphosphatidylinositol-anchored protein, in Arabidopsis thaliana double fertilization and early seed development. Plant J 62:571–588CrossRefPubMedGoogle Scholar
  78. Twell D, Wing R, Yamaguchi J, McCormick S (1989) Isolation and expression of an anther-specific gene from tomato. Mol Gen Genet 217:240–245CrossRefPubMedGoogle Scholar
  79. Uebler S, Dresselhaus T, Marton ML (2013) Species-specific interaction of EA1 with the maize pollen tube apex. Plant Signal Behav 8:e25682CrossRefPubMedCentralGoogle Scholar
  80. Vanapalli SA, Duits MH, Mugele F (2009) Microfluidics as a functional tool for cell mechanics. Biomicrofluidics 3:12006CrossRefPubMedGoogle Scholar
  81. Volz R, Heydlauff J, Ripper D, von Lyncker L, Gross-Hardt R (2013) Ethylene signaling is required for synergid degeneration and the establishment of a pollen tube block. Dev Cell 25:310–316CrossRefPubMedGoogle Scholar
  82. Wang T, Liang L, Xue Y, Jia PF, Chen W, Zhang MX, Wang YC, Li HJ, Yang WC (2016) A receptor heteromer mediates the male perception of female attractants in plants. Nature 531:241–244CrossRefPubMedGoogle Scholar
  83. Wolters-Arts M, Lush WM, Mariani C (1998) Lipids are required for directional pollen tube growth. Nature 392:818–821CrossRefPubMedGoogle Scholar
  84. Wu HM, Wang H, Cheung AY (1995) A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell 82:395–403CrossRefPubMedGoogle Scholar
  85. Yadegari R, Drews GN (2004) Female gametophyte development. Plant Cell 16(Suppl):S133–S141CrossRefPubMedPubMedCentralGoogle Scholar
  86. Yetisen AK, Jiang L, Cooper JR, Qin Y, Palanivelu R, Zohar Y (2011) A microsystem-based assay for studying pollen tube guidance in plant reproduction. J Micromech Microeng 21:054018Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Transformative Bio-moleculesNagoya UniversityNagoyaJapan
  2. 2.Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
  3. 3.JST, ERATO, Higashiyama Live-Holonics ProjectNagoya UniversityNagoyaJapan

Personalised recommendations