Pollen Tip Growth: Control of Cellular Morphogenesis Through Intracellular Trafficking



The control of cellular growth in pollen tubes occurs through the fine-tuning of intracellular transport and secretion processes. This does not only apply to the basic genesis of the cylindrical cell through polar expansion but also to the pollen tube’s specialized skills including its capacity to respond to directional guidance cues and its ability to perform invasive growth. The control of these specialized activities by intracellular trafficking occurs through the strategic deposition of cell wall material and cell wall modifying agents that soften or stiffen the wall with the aim to regulate the cell wall’s mechanical properties both in time and space. Directional and invasive growth of the pollen tube is crucial for successful sperm delivery and fertilization. The mechanisms underlying the regulation and logistics of the endomembrane trafficking in the pollen tube therefore have a direct impact on pollen tube elongation and male fertility. Here, we relate pollen tube morphogenesis and its biological functionality to the intracellular processes that control cellular growth behavior and allow the cell to respond to environmental cues.


Pollen tube Tip growth Cell wall mechanics Vesicle trafficking Exocytosis 



Callose synthases


Cellulose synthases A


Fluorescence recovery after photobleaching






Pectin methyl esterase


Pectin methyl esterase inhibitors


ROP-interacting partners


Rho family of GTPases


Soluble NSF attachment protein receptors


Syntaxin of plants


Trans-Golgi network


  1. Abenza JF, Couturier E, Dodgson J, Dickmann J, Chessel A, Dumais J, Salas RE (2015) Wall mechanics and exocytosis define the shape of growth domains in fission yeast. Nat Commun 6:8400PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abercrombie JM, O’Meara BC, Moffatt AR, Williams JH (2011) Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS) gene expression patterns. Evodevo 2:14PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agudelo CG, Sanati Nezhad A, Ghanbari M, Naghavi M, Packirisamy M, Geitmann A (2013) TipChip: a modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells. Plant J 73:1057–1068PubMedCrossRefGoogle Scholar
  4. Alabi AA, Tsien RW (2013) Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu Rev Physiol 75:393–422PubMedCrossRefGoogle Scholar
  5. Anderson JR, Barnes WS, Bedinger P (2002) 2,6-Dichlorobenzonitrile, a cellulose biosynthesis inhibitor, affects morphology and structural integrity of petunia and lily pollen tubes. J Plant Physiol 159:61–67CrossRefGoogle Scholar
  6. Aouar L, Chebli Y, Geitmann A (2010) Morphogenesis of complex plant cell shapes: the mechanical role of crystalline cellulose in growing pollen tubes. Sex Plant Reprod 23:15–27PubMedCrossRefGoogle Scholar
  7. Benkert R, Obermeyer G, Bentrup FW (1997) The turgor pressure of growing lily pollen tubes. Protoplasma 198:1–8CrossRefGoogle Scholar
  8. Bolduc JE, Lewis LJ, Aubin CE, Geitmann A (2006) Finite-element analysis of geometrical factors in micro-indentation of pollen tubes. Biomech Model Mechanobiol 5:227–236PubMedCrossRefGoogle Scholar
  9. Bosch M, Hepler PK (2005) Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 17:3219–3226PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bou Daher F, Geitmann A (2011) Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles. Traffic 12:1537–1551PubMedCrossRefGoogle Scholar
  12. Bove J, Vaillancourt B, Kroeger J, Hepler PK, Wiseman PW, Geitmann A (2008) Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching. Plant Physiol 147:1646–1658PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brownfield L, Ford K, Doblin MS, Newbigin E, Read S, Bacic A (2007) Proteomic and biochemical evidence links the callose synthase in Nicotiana alata pollen tubes to the product of the NaGSL1 gene. Plant J 52:147–156PubMedCrossRefGoogle Scholar
  14. Brownfield L, Wilson S, Newbigin E, Bacic A, Read S (2008) Molecular control of the glucan synthase-like protein NaGSL1 and callose synthesis during growth of Nicotiana alata pollen tubes. Biochem J 414:43–52PubMedCrossRefGoogle Scholar
  15. Brux A, Liu TY, Krebs M, Stierhof YD, Lohmann JU, Miersch O, Wasternack C, Schumacher K (2008) Reduced V-ATPase activity in the trans-Golgi network causes oxylipin-dependent hypocotyl growth inhibition in Arabidopsis. Plant Cell 20:1088–1100PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cai G, Faleri C, Del Casino C, Emons AMC, Cresti M (2011) Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules. Plant Physiol 155:1169–1190PubMedCrossRefGoogle Scholar
  17. Chapman LA, Goring DR (2010) Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. J Exp Bot 61:1987–1999PubMedCrossRefGoogle Scholar
  18. Chebli YG, Geitmann A (2007) Mechanical principles governing pollen tube growth. Funct Plant Sci Biotechnol 1:232–245Google Scholar
  19. Chebli Y, Kaneda M, Zerzour R, Geitmann A (2012) The cell wall of the Arabidopsis pollen tube--spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol 160:1940–1955PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chebli Y, Pujol L, Shojaeifard A, Brouwer I, van Loon JJ, Geitmann A (2013a) Cell wall assembly and intracellular trafficking in plant cells are directly affected by changes in the magnitude of gravitational acceleration. PLoS One 8:e58246PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chebli Y, Kroeger J, Geitmann A (2013b) Transport logistics in pollen tubes. Mol Plant 6:1037–1052PubMedCrossRefGoogle Scholar
  22. Chen CY, Cheung AY, Wu HM (2003) Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. Plant Cell 15:237–249PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen KM, Wu GL, Wang YH, Tian CT, Samaj J, Baluska F, Lin JX (2008) The block of intracellular calcium release affects the pollen tube development of Picea wilsonii by changing the deposition of cell wall components. Protoplasma 233:39–49PubMedCrossRefGoogle Scholar
  24. Chen N, Qu X, Wu Y, Huang S (2009) Regulation of actin dynamics in pollen tubes: control of actin polymer level. J Integr Plant Biol 51:740–750PubMedCrossRefGoogle Scholar
  25. Cheung AY, Wu HM (1999) Arabinogalactan proteins in plant sexual reproduction. Protoplasma 208:87–98CrossRefGoogle Scholar
  26. Cheung AY, Wu HM (2007) Structural and functional compartmentalization in pollen tubes. J Exp Bot 58:75–82PubMedCrossRefGoogle Scholar
  27. Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572PubMedCrossRefGoogle Scholar
  28. Cheung AY, Duan QH, Costa SS, de Graaf BH, Di Stilio VS, Feijo J, Wu HM (2008) The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins. Mol Plant 1:686–702PubMedCrossRefGoogle Scholar
  29. Cole RA, Synek L, Zarsky V, Fowler JE (2005) SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol 138:2005–2018PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dardelle F, Lehner A, Ramdani Y, Bardor M, Lerouge P, Driouich A, Mollet JC (2010) Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall. Plant Physiol 153:1563–1576PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dearnaley JDW, Daggard GA (2001) Expression of a polygalacturonase enzyme in germinating pollen of Brassica napus. Sex Plant Reprod 13:265–271CrossRefGoogle Scholar
  32. Derksen J, Janssen GJ, Wolters-Arts M, Lichtscheidl I, Adlassnig W, Ovecka M, Doris F, Steer M (2011) Wall architecture with high porosity is established at the tip and maintained in growing pollen tubes of Nicotiana tabacum. Plant J 68:495–506PubMedCrossRefGoogle Scholar
  33. Dettmer J, Schubert D, Calvo-Weimar O, Stierhof YD, Schmidt R, Schumacher K (2005) Essential role of the V-ATPase in male gametophyte development. Plant J 41:117–124PubMedCrossRefGoogle Scholar
  34. Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–730PubMedPubMedCentralCrossRefGoogle Scholar
  35. Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420PubMedCrossRefGoogle Scholar
  36. Doyle SM, Haeger A, Vain T, Rigal A, Viotti C, Langowska M, Ma Q, Friml J, Raikhel NV, Hicks GR, Robert S (2015) An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana. Proc Natl Acad Sci U S A 112:806–815CrossRefGoogle Scholar
  37. Driouich A, Follet-Gueye ML, Bernard S, Kousar S, Chevalier L, Vicre-Gibouin M, Lerouxel O (2012) Golgi-mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants. Front Plant Sci 3:79. doi: 10.3389/fpls.2012.00079 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Enami K, Ichikawa M, Uemura T, Kutsuna N, Hasezawa S, Nakagawa T, Nakano A, Sato MH (2009) Differential expression control and polarized distribution of plasma membrane-resident SYP1 SNAREs in Arabidopsis thaliana. Plant Cell Physiol 50:280–289PubMedCrossRefGoogle Scholar
  39. Fayant P, Girlanda O, Chebli Y, Aubin CE, Villemure I, Geitmann A (2010) Finite element model of polar growth in pollen tubes. Plant Cell 22:2579–2593PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ferguson C, Teeri TT, Siika-aho M, Read SM, Bacic A (1998) Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum. Planta 206:452–460CrossRefGoogle Scholar
  41. Geitmann A (1999) The rheological properties of the pollen tube cell wall. In: Sexual plant reproduction and biotechnological applications. Springer, pp 283–302Google Scholar
  42. Geitmann A (2010) How to shape a cylinder: pollen tube as a model system for the generation of complex cellular geometry. Sex Plant Reprod 23:63–71PubMedCrossRefGoogle Scholar
  43. Geitmann A, Dumais J (2009) Not-so-tip-growth. Plant Signal Behav 4:136–138PubMedPubMedCentralCrossRefGoogle Scholar
  44. Geitmann A, Emons AM (2000) The cytoskeleton in plant and fungal cell tip growth. J Microsc 198:218–245PubMedCrossRefGoogle Scholar
  45. Geitmann A, Nebenführ A (2015) Navigating the plant cell: intracellular transport logistics in the green kingdom. Mol Biol Cell 26:3373–3378PubMedPubMedCentralCrossRefGoogle Scholar
  46. Geitmann A, Ortega JK (2009) Mechanics and modeling of plant cell growth. Trends Plant Sci 14:467–478PubMedCrossRefGoogle Scholar
  47. Geitmann A, Steer MW (2006) The architecture and properties of the pollen tube cell wall. The pollen tube: a cellular and molecular perspective. Plant Cell Monogr 3:177–200CrossRefGoogle Scholar
  48. Gendre D, McFarlane HE, Johnson E, Mouille G, Sjodin A, Oh J, Levesque-Tremblay G, Watanabe Y, Samuels L, Bhalerao RP (2013) Trans-Golgi network localized ECHIDNA/Ypt interacting protein complex is required for the secretion of cell wall polysaccharides in Arabidopsis. Plant Cell 25:2633–2646PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gossot O, Geitmann A (2007) Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton. Planta 226:405–416PubMedCrossRefGoogle Scholar
  50. de Graaf BH, Cheung AY, Andreyeva T, Levasseur K, Kieliszewski M, Wu HM (2005) Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell 17:2564–2579PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z (2005) A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol 169:127–138PubMedPubMedCentralCrossRefGoogle Scholar
  52. Guan Y, Guo J, Yang Z (2013) Signaling in pollen tube growth: crosstalk, feedback, and missing links. Mol Plant 6:1053–1064PubMedPubMedCentralCrossRefGoogle Scholar
  53. Guerriero G, Hausman JF, Cai G (2014) No stress! Relax! Mechanisms governing growth and shape in plant cells. Int J Mol Sci 15:5094–5114PubMedPubMedCentralCrossRefGoogle Scholar
  54. Guo F, McCubbin AG (2012) The pollen-specific R-SNARE/longin PiVAMP726 mediates fusion of endo- and exocytic compartments in pollen tube tip growth. J Exp Bot 63:3083–3095PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hala M, Cole R, Synek L, Drdova E, Pecenkova T, Nordheim A, Lamkemeyer T, Madlung J, Hochholdinger F, Fowler JE, Žárský V (2008) An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell 20:1330–1345PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hao H, Chen T, Fan L, Li R, Wang X (2013) 2, 6-Dichlorobenzonitrile causes multiple effects on pollen tube growth beyond altering cellulose synthesis in Pinus bungeana Zucc. PLoS One 8:e76660PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hill AE, Shachar-Hill B, Skepper JN, Powell J, Shachar-Hill Y (2012) An osmotic model of the growing pollen tube. PLoS One 7:e36585PubMedPubMedCentralCrossRefGoogle Scholar
  58. Holdaway-Clarke TL, Feijo JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9:1999–2010PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hwang JU, Gu Y, Lee YJ, Yang Z (2005) Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol Biol Cell 16:5385–5399PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hwang JU, Vernoud V, Szumlanski A, Nielsen E, Yang Z (2008) A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr Biol 18:1907–1916PubMedPubMedCentralCrossRefGoogle Scholar
  61. Idilli AI, Morandini P, Onelli E, Rodighiero S, Caccianiga M, Moscatelli A (2013) Microtubule depolymerization affects endocytosis and exocytosis in the tip and influences endosome movement in tobacco pollen tubes. Mol Plant 6:1109–1130PubMedCrossRefGoogle Scholar
  62. Ischebeck T, Stenzel I, Hempel F, Jin X, Mosblech A, Heilmann I (2011) Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. Plant J 65:453–468PubMedCrossRefGoogle Scholar
  63. Jamin A, Yang Z (2011) Interactions between calcium and ROP signaling regulate pollen tube tip growth. In: Sheng L (ed) Coding and decoding of calcium signals in plants. Springer, Berlin, pp 25–39CrossRefGoogle Scholar
  64. Kang BH, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA (2011) Electron tomography of RabA4b- and PI-4Kbeta1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12:313–329PubMedCrossRefGoogle Scholar
  65. Kato N, He H, Steger AP (2010) A systems model of vesicle trafficking in Arabidopsis pollen tubes. Plant Physiol 152:590–601PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kim SJ, Brandizzi F (2014) The plant secretory pathway: an essential factory for building the plant cell wall. Plant Cell Physiol 55:687–693PubMedCrossRefGoogle Scholar
  67. Kitakura S, Vanneste S, Robert S, Lofke C, Teichmann T, Tanaka H, Friml J (2011) Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell 23:1920–1931PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kroeger JH, Geitmann A (2013) Pollen tubes with more viscous cell walls oscillate at lower frequencies. MMNP 8:25–34Google Scholar
  69. Kroeger JH, Geitmann A, Grant M (2008) Model for calcium dependent oscillatory growth in pollen tubes. J Theor Biol 253:363–374PubMedCrossRefGoogle Scholar
  70. Kroeger JH, Daher FB, Grant M, Geitmann A (2009) Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes. Biophys J 97:1822–1831PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kroeger JH, Zerzour R, Geitmann A (2011) Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth. PLoS One 6:e18549PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lazzaro MD (1996) The actin microfilament network within elongating pollen tubes of the gymnosperm Picea abies (Norway spruce). Protoplasma 194:186–194CrossRefGoogle Scholar
  73. Lazzaro MD, Donohue JM, Soodavar FM (2003) Disruption of cellulose synthesis by isoxaben causes tip swelling and disorganizes cortical microtubules in elongating conifer pollen tubes. Protoplasma 220:201–207PubMedCrossRefGoogle Scholar
  74. Lee JY, Lu H (2011) Plasmodesmata: the battleground against intruders. Trends Plant Sci 16:201–210PubMedCrossRefGoogle Scholar
  75. Lee YJ, Yang Z (2008) Tip growth: signaling in the apical dome. Curr Opin Plant Biol 11:662–671PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lee YJ, Szumlanski A, Nielsen E, Yang Z (2008) Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol 181:1155–1168PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lehner A, Dardelle F, Soret-Morvan O, Lerouge P, Driouich A, Mollet JC (2010) Pectins in the cell wall of Arabidopsis thaliana pollen tube and pistil. Plant Signal Behav 5:1282–1285PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lenartowska M, Michalska A (2008) Actin filament organization and polarity in pollen tubes revealed by myosin II subfragment 1 decoration. Planta 228:891–896PubMedCrossRefGoogle Scholar
  79. Lennon KA, Lord EM (2000) In vivo pollen tube cell of Arabidopsis thaliana I. Tube cell cytoplasm and wall. Protoplasma 214:45–56CrossRefGoogle Scholar
  80. Lennon KA, Roy S, Hepler PK, Lord EM (1998) The structure of the transmitting tissue of Arabidopsis thaliana (L.) and the path of pollen tube growth. Sex Plant Reprod 11:49–59CrossRefGoogle Scholar
  81. Leroux C, Bouton S, Kiefer-Meyer MC, Fabrice TN, Mareck A, Guenin S, Fournet F, Ringli C, Pelloux J, Driouich A, Lerouge P, Lehner A, Mollet JC (2015) PECTIN METHYLESTERASE48 is involved in Arabidopsis pollen grain germination. Plant Physiol 167:367–380PubMedCrossRefGoogle Scholar
  82. Li YQ, Faleri C, Geitmann A, Zhang HQ, Cresti M (1995) Immunogold localization of arabinogalactan proteins, unesterified and esterified pectins in pollen grains and pollen tubes of Nicotiana tabacum L. Protoplasma 189:26–36CrossRefGoogle Scholar
  83. Liu J, Hussey PJ (2014) Dissecting the regulation of pollen tube growth by modeling the interplay of hydrodynamics, cell wall and ion dynamics. Front Plant Sci 5:392PubMedPubMedCentralGoogle Scholar
  84. Lord E (2000) Adhesion and cell movement during pollination: cherchez la femme. Trends Plant Sci 5:368–373PubMedCrossRefGoogle Scholar
  85. Lord EM, Russell SD (2002) The mechanisms of pollination and fertilization in plants. Annu Rev Cell Dev Biol 18:81–105PubMedCrossRefGoogle Scholar
  86. McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vidali L, Winship LJ, Hepler PK (2009) Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell 21:3026–3040PubMedPubMedCentralCrossRefGoogle Scholar
  87. Messerli MA, Creton R, Jaffe LF, Robinson KR (2000) Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth. Dev Biol 222:84–98PubMedCrossRefGoogle Scholar
  88. Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419PubMedCrossRefGoogle Scholar
  89. Miyake T, Kuroiwa H, Kuroiwa T (1995) Differential mechanisms of movement between a generative cell and a vegetative nucleus in pollen tubes of Nicotiana tabacum as revealed by additions of colchicine and nonanoic acid. Sex Plant Reprod 8:228–230CrossRefGoogle Scholar
  90. Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J 20:2779–2788PubMedPubMedCentralCrossRefGoogle Scholar
  91. Mollet JC, Leroux C, Dardelle F, Lehner A (2013) Cell wall composition, biosynthesis and remodeling during pollen tube growth. Plants (Basel) 2:107–147Google Scholar
  92. Moscatelli A, Idilli AI (2009) Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways. J Integr Plant Biol 51:727–739PubMedCrossRefGoogle Scholar
  93. Moscatelli A, Idilli AI, Rodighiero S, Caccianiga M (2012) Inhibition of actin polymerisation by low concentration Latrunculin B affects endocytosis and alters exocytosis in shank and tip of tobacco pollen tubes. Plant Biol 14:770–782PubMedCrossRefGoogle Scholar
  94. Nguema-Ona E, Coimbra S, Vicre-Gibouin M, Mollet JC, Driouich A (2012) Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects. Ann Bot 110:383–404PubMedPubMedCentralCrossRefGoogle Scholar
  95. Onelli E, Moscatelli A (2013) Endocytic pathways and recycling in growing pollen tubes. Plants 2:211–229PubMedPubMedCentralCrossRefGoogle Scholar
  96. Palin R, Geitmann A (2012) The role of pectin in plant morphogenesis. Biosystems 109:397–402PubMedCrossRefGoogle Scholar
  97. Park SY, Jauh GY, Mollet JC, Eckard KJ, Nothnagel EA, Walling LL, Lord EM (2000) A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:151–164PubMedPubMedCentralCrossRefGoogle Scholar
  98. Parre E, Geitmann A (2005) More than a leak sealant. The mechanical properties of callose in pollen tubes. Plant Physiol 137:274–286PubMedPubMedCentralCrossRefGoogle Scholar
  99. Parton RM, Fischer-Parton S, Watahiki MK, Trewavas AJ (2001) Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes. J Cell Sci 114:2685–2695PubMedGoogle Scholar
  100. Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville CR (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA 104:15566–15571PubMedPubMedCentralCrossRefGoogle Scholar
  101. Pierson ES, Miller DD, Callaham DA, van Aken J, Hackett G, Hepler PK (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol 174:160–173PubMedCrossRefGoogle Scholar
  102. Qin Y, Yang Z (2011) Rapid tip growth: insights from pollen tubes. Semin Cell Dev Biol 22:816–824PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ren H, Xiang Y (2007) The function of actin-binding proteins in pollen tube growth. Protoplasma 230:171–182PubMedCrossRefGoogle Scholar
  104. Richter S, Muller LM, Stierhof YD, Mayer U, Takada N, Kost B, Vieten A, Geldner N, Koncz C, Jurgens G (2012) Polarized cell growth in Arabidopsis requires endosomal recycling mediated by GBF1-related ARF exchange factors. Nat Cell Biol 14:80–86CrossRefGoogle Scholar
  105. Röckel N, Wolf S, Kost B, Rausch T, Greiner S (2008) Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J 53:133–143PubMedCrossRefGoogle Scholar
  106. Roy S, Eckard KJ, Lancelle S, Hepler PK, Lord EM (1997) High-pressure freezing improves the ultrastructural preservation of in vivo grown lily pollen tubes. Protoplasma 200:87–98CrossRefGoogle Scholar
  107. Sager R, Lee JY (2014) Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses. J Exp Bot 65:6337–6358PubMedPubMedCentralCrossRefGoogle Scholar
  108. Saito C, Ueda T (2009) Functions of RAB and SNARE proteins in plant life. Int Rev Cell Mol Biol 274:183–233PubMedCrossRefGoogle Scholar
  109. Sanati Nezhad A, Geitmann A (2013) The cellular mechanics of an invasive lifestyle. J Exp Bot 64:4709–4728PubMedCrossRefGoogle Scholar
  110. Sanati Nezhad A, Naghavi M, Packirisamy M, Bhat R, Geitmann A (2013a) Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling. Proc Natl Acad Sci USA 110:8093–8098PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sanati Nezhad A, Naghavi M, Packirisamy M, Bhat R, Geitmann A (2013b) Quantification of the Young’s modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC). Lab Chip 13:2599–2608CrossRefGoogle Scholar
  112. Sanati Nezhad A, Packirisamy M, Geitmann A (2014) Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. Plant J 80:185–195PubMedCrossRefGoogle Scholar
  113. Sanderfoot AA, Raikhel NV (1999) The specificity of vesicle trafficking: coat proteins and SNAREs. Plant Cell 11:629–642PubMedPubMedCentralCrossRefGoogle Scholar
  114. Schlüpmann H, Bacic A, Read SM (1994) Uridine diphosphate glucose metabolism and callose synthesis in cultured pollen tubes of Nicotiana alata Link et Otto. Plant Physiol 105:659–670PubMedPubMedCentralCrossRefGoogle Scholar
  115. Silva PA, Ul-Rehman R, Rato C, Di Sansebastiano GP, Malho R (2010) Asymmetric localization of Arabidopsis SYP124 syntaxin at the pollen tube apical and sub-apical zones is involved in tip growth. BMC Plant Biol 10:179PubMedPubMedCentralCrossRefGoogle Scholar
  116. Sprunck S, Rademacher S, Vogler F, Gheyselinck J, Grossniklaus U, Dresselhaus T (2012) Egg cell-secreted EC1 triggers sperm cell activation during double fertilization. Science 338:1093–1097PubMedCrossRefGoogle Scholar
  117. Staiger CJ, Poulter NS, Henty JL, Franklin-Tong VE, Blanchoin L (2010) Regulation of actin dynamics by actin-binding proteins in pollen. J Exp Bot 61:1969–1986PubMedCrossRefGoogle Scholar
  118. Steinhorst L, Kudla J (2013) Calcium - a central regulator of pollen germination and tube growth. Biochim Biophys Acta 1833:1573–1581PubMedCrossRefGoogle Scholar
  119. Szumlanski AL, Nielsen E (2009) The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21:526–544PubMedPubMedCentralCrossRefGoogle Scholar
  120. Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48:461–491PubMedCrossRefGoogle Scholar
  121. Toyooka K, Goto Y, Asatsuma S, Koizumi M, Mitsui T, Matsuoka K (2009) A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. Plant Cell 21:1212–1229PubMedPubMedCentralCrossRefGoogle Scholar
  122. Viotti C, Bubeck J, Stierhof YD, Krebs M, Langhans M, van den Berg W, van Dongen W, Richter S, Geldner N, Takano J, Jurgens G, de Vries SC, Robinson DG, Schumacher K (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22:1344–1357PubMedPubMedCentralCrossRefGoogle Scholar
  123. Vogler H, Draeger C, Weber A, Felekis D, Eichenberger C, Routier-Kierzkowska AL, Boisson-Dernier A, Ringli C, Nelson BJ, Smith RS, Grossniklaus U (2013) The pollen tube: a soft shell with a hard core. Plant J 73:617–627PubMedCrossRefGoogle Scholar
  124. Voigt CA (2014) Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Front Plant Sci 5:168. doi: 10.3389/fpls.2014.00168 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wang Q, Kong L, Hao H, Wang X, Lin J, Samaj J, Baluska F (2005) Effects of brefeldin A on pollen germination and tube growth. Antagonistic effects on endocytosis and secretion. Plant Physiol 139:1692–1703PubMedPubMedCentralCrossRefGoogle Scholar
  126. Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2010) Under pressure, cell walls set the pace. Trends Plant Sci 15:363–369PubMedPubMedCentralCrossRefGoogle Scholar
  127. Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2011) Pollen tubes and the physical world. Trends Plant Sci 16:353–355PubMedCrossRefGoogle Scholar
  128. Yan A, Xu G, Yang ZB (2009) Calcium participates in feedback regulation of the oscillating ROP1 Rho GTPase in pollen tubes. Proc Natl Acad Sci USA 106:22002–22007PubMedPubMedCentralCrossRefGoogle Scholar
  129. Young RE, McFarlane HE, Hahn MG, Western TL, Haughn GW, Samuels AL (2008) Analysis of the Golgi apparatus in Arabidopsis seed coat cells during polarized secretion of pectin-rich mucilage. Plant Cell 20:1623–1638PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zerzour R, Kroeger J, Geitmann A (2009) Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev Biol 334:437–446PubMedCrossRefGoogle Scholar
  131. Zhang Y, He J, Lee D, McCormick S (2010a) Interdependence of endomembrane trafficking and actin dynamics during polarized growth of Arabidopsis pollen tubes. Plant Physiol 152:2200–2210PubMedPubMedCentralCrossRefGoogle Scholar
  132. Zhang GY, Feng J, Wu J, Wang XW (2010b) BoPMEI1, a pollen-specific pectin methylesterase inhibitor, has an essential role in pollen tube growth. Planta 231:1323–1334PubMedCrossRefGoogle Scholar
  133. Zhu L, Zhang Y, Kang E, Xu Q, Wang M, Rui Y, Liu B, Yuan M, Fu Y (2013) MAP18 regulates the direction of pollen tube growth in Arabidopsis by modulating F-actin organization. Plant Cell 25:851–867PubMedPubMedCentralCrossRefGoogle Scholar
  134. Zinkl GM, Zwiebel BI, Grier DG, Preuss D (1999) Pollen-stigma adhesion in Arabidopsis: a species-specific interaction mediated by lipophilic molecules in the pollen exine. Development 126:5431–5440PubMedGoogle Scholar
  135. Zonia L (2010) Spatial and temporal integration of signalling networks regulating pollen tube growth. J Exp Bot 61:1939–1957PubMedCrossRefGoogle Scholar
  136. Zonia L, Munnik T (2008) Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes. J Exp Bot 59:861–873PubMedCrossRefGoogle Scholar
  137. Zonia L, Munnik T (2009) Uncovering hidden treasures in pollen tube growth mechanics. Trends Plant Sci 14:318–327PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Plant ScienceMcGill UniversityMontrealCanada

Personalised recommendations