Advertisement

Polar Protein Exocytosis: Lessons from Plant Pollen Tube

Chapter
  • 643 Downloads

Abstract

Exocytosis is a highly regulated outward secretion process which participates in multiple cellular events including membrane modeling, cell polarization, cell wall formation, and cell signaling. Pollen tube is regarded as an ideal model plant cell system to study the machinery and regulation of exocytosis. Vigorous exocytic vesicle fusion with the apical plasma membrane supports the rapid and polarized pollen tube growth. However, the molecular identities and regulations of these exocytic vesicles still remain largely unexplored. Recent discoveries of various exocytic markers and regulatory proteins of exocytic pathway have advanced this research field rapidly. Here, we review and summarize the recent development and progress of protein exocytic trafficking and regulation in pollen tube, with emphasize on the pertinent questions for future understanding the functional roles of exocytosis in cell polarization and polar cell wall formation.

Keywords

Tip growth Polar exocytosis Cell polarity Cell wall trans-Golgi network Golgi-derived vesicle 

Abbreviations

CCP

Clathrin coated pits

EXPO

Exocyst-positive organelle

FRAP

Fluorescence recovery after photobleaching

GDSV

Golgi-derived secretory vesicles

HPF

High-pressure freezing and substitution

PCV

Pre-vacuolar compartment

PM

Plasma membrane

PME

Pectin methylesterase

RLK

Receptor-like kinase

ROP

GTPase termed Rho of plant

SCAMP

Secretory carrier membrane protein

STORM

Stochastic optical reconstruction microscopy

TEM

Transmission electron microscopy

TGN

trans-Golgi network

UPS

Unconventional protein secretion

VAEM

Variable-angle epifluorescence microscopy

Notes

Acknowledgments

Faqiang Li (South China Agricultural University) is acknowledged for helpful discussions. This work was supported by grants from Natural Science Foundation of China (NSFC, 31570001) and Natural Science Foundation of Guangdong Province, China (2016A030313401), to H.W. This work was also supported by grants from the Research Grants Council of Hong Kong (CUHK466011, 465112, 466613, CUHK2/CRF/11G, C4011-14R, HKUST10/CRF/12R, and AoE/M-05/12), NSFC/RGC (N_CUHK406/12), NSFC (31470294), and Croucher-CAS Joint Lab and Shenzhen Peacock Project (KQTD201101) to L.J.

References

  1. Altartouri B, Geitmann A (2015) Understanding plant cell morphogenesis requires real-time monitoring of cell wall polymers. Curr Opin Plant Biol 23:76–82PubMedCrossRefGoogle Scholar
  2. Bedinger PA, Hardeman KJ, Loukides CA (1994) Travelling in style: the cell biology of pollen. Trends Cell Biol 4:132–138PubMedCrossRefGoogle Scholar
  3. Boruc J, Van Damme D (2015) Endomembrane trafficking overarching cell plate formation. Curr Opin Plant Biol 28:92–98PubMedCrossRefGoogle Scholar
  4. Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346PubMedPubMedCentralCrossRefGoogle Scholar
  5. Boutte Y, Jonsson K, McFarlane HE, Johnson E, Gendre D, Swarup R, Friml J, Samuels L, Robert S, Bhalerao RP (2013) ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation. Proc Natl Acad Sci USA 110:16259–16264PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bove J, Vaillancourt B, Kroeger J, Hepler PK, Wiseman PW, Geitmann A (2008) Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching. Plant Physiol 147:1646–1658PubMedPubMedCentralCrossRefGoogle Scholar
  7. Burgess TL, Kelly RB (1987) Constitutive and regulated secretion of proteins. Annu Rev Cell Biol 3:243–293PubMedCrossRefGoogle Scholar
  8. Cai G, Cresti M (2009) Organelle motility in the pollen tube: a tale of 20 years. J Exp Bot 60:495–508PubMedCrossRefGoogle Scholar
  9. Cai Y, Jia TR, Lam SK, Ding Y, Gao CJ, San MWY, Pimpl P, Jiang LW (2011) Multiple cytosolic and transmembrane determinants are required for the trafficking of SCAMP1 via an ER-Golgi-TGN-PM pathway. Plant J 65:882–896PubMedCrossRefGoogle Scholar
  10. Chebli Y, Kaneda M, Zerzour R, Geitmann A (2012) The cell wall of the Arabidopsis pollen tube spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol 160:1940–1955PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chebli Y, Kroeger J, Geitmann A (2013) Transport logistics in pollen tubes. Mol Plant 6:1037–1052PubMedCrossRefGoogle Scholar
  12. Chen CYH, Cheung AY, Wu HM (2003) Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. Plant Cell 15:237–249PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cheung AY, Duan QH, Costa SS, de Graaf BHJ, Di Stilio VS, Feijo J, Wu HM (2008) The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins. Mol Plant 1:686–702PubMedCrossRefGoogle Scholar
  14. Cheung AY, Niroomand S, Zou YJ, Wu HM (2010) A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proc Natl Acad Sci USA 107:16390–16395PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chow CM, Neto H, Foucart C, Moore I (2008) Rab-A2 and Rab-A3 GTPases define a trans-Golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20:101–123PubMedPubMedCentralCrossRefGoogle Scholar
  16. Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof YD, Schumacher K, Gonneau M, Hofte H, Vernhettes S (2009) Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21:1141–1154PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cui Y, Shen JB, Gao CJ, Zhuang XH, Wang JQ, Jiang LW (2016) Biogenesis of plant prevacuolar multivesicular bodies. Mol Plant 9:774–786PubMedCrossRefGoogle Scholar
  18. Daher FB, Geitmann A (2011) Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles. Traffic 12:1537–1551CrossRefGoogle Scholar
  19. Dardelle F, Lehner A, Ramdani Y, Bardor M, Lerouge P, Driouich A, Mollet JC (2010) Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall. Plant Physiol 153:1563–1576PubMedPubMedCentralCrossRefGoogle Scholar
  20. De Caroli M, Lenucci MS, Di Sansebastiano GP, Dalessandro G, De Lorenzo G, Piro G (2011) Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco. Plant J 65:295–308PubMedCrossRefGoogle Scholar
  21. Dhonukshe P, Baluska F, Schlicht M, Hlavacka A, Samaj J, Friml J, Gadella TWJ (2006) Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10:137–150PubMedCrossRefGoogle Scholar
  22. Di Matteo A, Giovane A, Raiola A, Camardella L, Bonivento D, De Lorenzo G, Cervone F, Bellincampi D, Tsernoglou D (2005) Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell 17:849–858PubMedPubMedCentralCrossRefGoogle Scholar
  23. Ding Y, Wang J, Wang JQ, Stierhof YD, Robinson DG, Jiang LW (2012) Unconventional protein secretion. Trends Plant Sci 17:606–615PubMedCrossRefGoogle Scholar
  24. Ding Y, Robinson DG, Jiang L (2014) Unconventional protein secretion (UPS) pathways in plants. Curr Opin Cell Biol 29:107–115PubMedCrossRefGoogle Scholar
  25. Dumont M, Lehner A, Bouton S, Kiefer-Meyer MC, Voxeur A, Pelloux J, Lerouge P, Mollet JC (2014) The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein. Ann Bot 114:1177–1188PubMedPubMedCentralCrossRefGoogle Scholar
  26. Feijo JA, Sainhas J, Holdaway-Clarke T, Cordeiro MS, Kunkel JG, Hepler PK (2001) Cellular oscillations and the regulation of growth: the pollen tube paradigm. Bioessays 23:86–94PubMedCrossRefGoogle Scholar
  27. Ferguson C, Teeri TT, Siika-aho M, Read SM, Bacic A (1998) Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum. Planta 206:452–460CrossRefGoogle Scholar
  28. Fu Y (2010) The actin cytoskeleton and signaling network during pollen tube tip growth. J Integr Plant Biol 52:131–137PubMedCrossRefGoogle Scholar
  29. Fu Y (2015) The cytoskeleton in the pollen tube. Curr Opin Plant Biol 28:111–119PubMedCrossRefGoogle Scholar
  30. Fu Y, Xu T, Zhu L, Wen M, Yang Z (2009) A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol 19:1827–1832PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gebert M, Dresselhaus T, Sprunck S (2008) F-actin organization and pollen tube tip growth in Arabidopsis are dependent on the gametophyte-specific Armadillo repeat protein ARO1. Plant Cell 20:2798–2814PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gleeson PA, Lock JG, Luke MR, Stow JL (2004) Domains of the TGN: coats, tethers and G proteins. Traffic 5:315–326PubMedCrossRefGoogle Scholar
  33. Gu Y, Vernoud V, Fu Y, Yang ZB (2003) ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot 54:93–101PubMedCrossRefGoogle Scholar
  34. Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187PubMedCrossRefGoogle Scholar
  35. Hepler PK, Kunkel JG, Rounds CM, Winship LJ (2012) Calcium entry into pollen tubes. Trends Plant Sci 17:32–38PubMedCrossRefGoogle Scholar
  36. Hepler PK, Rounds CM, Winship LJ (2013) Control of cell wall extensibility during pollen tube growth. Mol Plant 6:998–1017PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hill AE, Shachar-Hill B, Skepper JN, Powell J, Shachar-Hill Y (2012) An osmotic model of the growing pollen tube. PLoS One 7:e36585PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hwang JU, Gu Y, Lee YJ, Yang ZB (2005) Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol Biol Cell 16:5385–5399PubMedPubMedCentralCrossRefGoogle Scholar
  39. Jiang LX, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596PubMedPubMedCentralCrossRefGoogle Scholar
  40. Jurgens G, Geldner N (2002) Protein secretion in plants: from the trans-Golgi network to the outer space. Traffic 3:605–613PubMedCrossRefGoogle Scholar
  41. Jurgens G, Park M, Richter S, Touihri S, Krause C, El Kasmi F, Mayer U (2015) Plant cytokinesis: a tale of membrane traffic and fusion. Biochem Soc Trans 43:73–78PubMedCrossRefGoogle Scholar
  42. Keller P, Simons K (1997) Post-Golgi biosynthetic trafficking. J Cell Sci 110:3001–3009PubMedGoogle Scholar
  43. Klahre U, Kost B (2006) Tobacco RhoGTPase ACTIVATING PROTEIN1 spatially restricts signaling of RAC/Rop to the apex of pollen tubes. Plant Cell 18:3033–3046PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kost B (2008) Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol 18:119–127PubMedCrossRefGoogle Scholar
  45. Kroeger J, Geitmann A (2012) The pollen tube paradigm revisited. Curr Opin Plant Biol 15:618–624PubMedCrossRefGoogle Scholar
  46. Kroeger JH, Daher FB, Grant M, Gieitmann A (2009) Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes. Biophys J 97:1822–1831PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lam SK, Siu CL, Hillmer S, Jang S, An G, Robinson DG, Jiang L (2007a) Rice SCAMP1 defines clathrin-coated, trans-golgi-located tubular-vesicular structures as an early endosome in tobacco BY-2 cells. Plant Cell 19:296–319PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lam SK, Tse YC, Robinson DG, Jiang L (2007b) Tracking down the elusive early endosome. Trends Plant Sci 12:497–505PubMedCrossRefGoogle Scholar
  49. Lam SK, Cai Y, Hillmer S, Robinson DG, Jiang L (2008) SCAMPs highlight the developing cell plate during cytokinesis in tobacco BY-2 cells. Plant Physiol 147:1637–1645PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lancelle SA, Hepler PK (1992) Ultrastructure of freeze-substituted pollen tubes of Lilium longiflorum. Protoplasma 167:215–230CrossRefGoogle Scholar
  51. Lee YJ, Szumlanski A, Nielsen E, Yang Z (2008) Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol 181:1155–1168PubMedPubMedCentralCrossRefGoogle Scholar
  52. Li YQ, Mareck A, Faleri C, Moscatelli A, Liu Q, Cresti M (2002) Detection and localization of pectin methylesterase isoforms in pollen tubes of Nicotiana tabacum L. Planta 214:734–740PubMedCrossRefGoogle Scholar
  53. Li H, Friml J, Grunewald W (2012) Cell polarity: stretching prevents developmental cramps. Curr Biol 22:R635–R637PubMedCrossRefGoogle Scholar
  54. Lionetti V, Raiola A, Camardella L, Giovane A, Obel N, Pauly M, Favaron F, Cervone F, Bellincampi D (2007) Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol 143:1871–1880PubMedPubMedCentralCrossRefGoogle Scholar
  55. Liu XN, Qu XL, Jiang YX, Chang M, Zhang RH, Wu YJ, Fu Y, Huang SJ (2015) Profilin regulates apical actin polymerization to control polarized pollen tube growth. Mol Plant 8:1694–1709PubMedCrossRefGoogle Scholar
  56. Malhotra V (2013) Unconventional protein secretion: an evolving mechanism. EMBO J 32:1660–1664PubMedPubMedCentralCrossRefGoogle Scholar
  57. McFarlane HE, Watanabe Y, Gendre D, Carruthers K, Levesque-Tremblay G, Haughn GW, Bhalerao RP, Samuels L (2013) Cell wall polysaccharides are mislocalized to the vacuole in echidna mutants. Plant Cell Physiol 54:1867–1880PubMedCrossRefGoogle Scholar
  58. McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vidali L, Winship LJ, Hepler PK (2009) Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell 21:3026–3040PubMedPubMedCentralCrossRefGoogle Scholar
  59. Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419PubMedCrossRefGoogle Scholar
  60. Miyawaki KN, Yang ZB (2014) Extracellular signals and receptor-like kinases regulating ROP GTPases in plants. Front Plant Sci 5:449PubMedPubMedCentralCrossRefGoogle Scholar
  61. Naramoto S, Otegui MS, Kutsuna N, de Rycke R, Dainobu T, Karampelias M, Fujimoto M, Feraru E, Miki D, Fukuda H, Nakano A, Friml J (2014) Insights into the localization and function of the membrane trafficking regulator GNOME ARF-GEF at the Golgi apparatus in Arabidopsis. Plant Cell 26:3062–3076PubMedPubMedCentralCrossRefGoogle Scholar
  62. Nibau C, Wu HM, Cheung AY (2006) RAC/ROP GTPases: ‘hubs’ for signal integration and diversification in plants. Trends Plant Sci 11:309–315PubMedCrossRefGoogle Scholar
  63. Nickel W, Rabouille C (2009) Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10:234–234CrossRefGoogle Scholar
  64. Nishihama R, Soyano T, Ishikawa M, Araki S, Tanaka H, Asada T, Irie K, Ito M, Terada M, Banno H, Yamazaki Y, Machida Y (2002) Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109:87–99PubMedCrossRefGoogle Scholar
  65. Parre E, Geitmann A (2005) Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220:582–592PubMedCrossRefGoogle Scholar
  66. Pelloux J, Rusterucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277PubMedCrossRefGoogle Scholar
  67. Poulsen CP, Dilokpimol A, Mouille G, Burow M, Geshi N (2014) Arabinogalactan glycosyltransferases target to a unique subcellular compartment that may function in unconventional secretion in plants. Traffic 15:1219–1234PubMedPubMedCentralCrossRefGoogle Scholar
  68. Qin Y, Yang ZBA (2011) Rapid tip growth: insights from pollen tubes. Semin Cell Dev Biol 22:816–824PubMedPubMedCentralCrossRefGoogle Scholar
  69. Qu XL, Zhang H, Xie YR, Wang J, Chen NZ, Huang SJ (2013) Arabidopsis villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. Plant Cell 25:1803–1817PubMedPubMedCentralCrossRefGoogle Scholar
  70. Qu XL, Jiang YX, Chang M, Liu XN, Zhang RH, Huang SJ (2015) Organization and regulation of the actin cytoskeleton in the pollen tube. Front Plant Sci 5:786PubMedPubMedCentralCrossRefGoogle Scholar
  71. Rabouille C, Malhotra V, Nickel W (2012) Diversity in unconventional protein secretion. J Cell Sci 125:5251–5255PubMedCrossRefGoogle Scholar
  72. Reichardt L, Stierhof YD, Mayer U, Richter S, Schwarz H, Schumacher K, Jurgens G (2007) Plant cytokinesis requires de novo secretory trafficking but not endocytosis. Curr Biol 17:2047–2053PubMedCrossRefGoogle Scholar
  73. Ren HY, Xiang Y (2007) The function of actin-binding proteins in pollen tube growth. Protoplasma 230:171–182PubMedCrossRefGoogle Scholar
  74. Robinson D, Ding Y, Jiang LW (2016) Unconventional protein secretion in plants: a critical assessment. Protoplasma 253:31–43PubMedCrossRefGoogle Scholar
  75. Rockel N, Wolf S, Kost B, Rausch T, Greiner S (2008) Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J 53:133–143PubMedCrossRefGoogle Scholar
  76. Rojas ER, Hotton S, Dumais J (2011) Chemically mediated mechanical expansion of the pollen tube cell wall. Biophys J 101:1844–1853PubMedPubMedCentralCrossRefGoogle Scholar
  77. Rounds CM, Hepler PK, Winship LJ (2014) The apical actin fringe contributes to localized cell wall deposition and polarized growth in the lily pollen tube. Plant Physiol 166:139–151PubMedPubMedCentralCrossRefGoogle Scholar
  78. Saez-Aguayo S, Ralet MC, Berger A, Botran L, Ropartz D, Marion-Poll A, North HM (2013) PECTIN METHYLESTERASE INHIBITOR6 promotes Arabidopsis mucilage release by limiting methylesterification of homogalacturonan in seed coat epidermal cells. Plant Cell 25:308–323PubMedPubMedCentralCrossRefGoogle Scholar
  79. Sanati Nezhad A, Packirisamy M, Geitmann A (2014) Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. Plant J 80:185–195PubMedCrossRefGoogle Scholar
  80. Steer M, Steer J (1989) Pollen tube tip growth. New Phytol 111:323–358CrossRefGoogle Scholar
  81. Su H, Zhu JS, Cai C, Pei WK, Wang JJ, Dong HJ, Ren HY (2012) FIMBRIN1 is involved in lily pollen tube growth by stabilizing the actin fringe. Plant Cell 24:4539–4554PubMedPubMedCentralCrossRefGoogle Scholar
  82. Sun J, Eklund DM, Montes-Rodriguez A, Kost B (2015) In vivo Rac/Rop localization as well as interaction with RhoGAP and RhoGDI in tobacco pollen tubes: analysis by low-level expression of fluorescent fusion proteins and bimolecular fluorescence complementation. Plant J 84:83–98PubMedCrossRefGoogle Scholar
  83. Szumlanski AL, Nielsen E (2009) The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21:526–544PubMedPubMedCentralCrossRefGoogle Scholar
  84. Tahara H, Igarashi H, Yokota E, Yao M, Hashimoto T, Shimmen T (2005) Role of clathrin in cell plate formation of plant cell. Plant Cell Physiol 46:155–S155Google Scholar
  85. Takeuchi H, Higashiyama T (2016) Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531:245–248PubMedCrossRefGoogle Scholar
  86. Teh OK, Shimono Y, Shirakawa M, Fukao Y, Tamura K, Shimada T, Hara-Nishimura I (2013) The AP-1 mu adaptin is required for KNOLLE localization at the cell plate to mediate cytokinesis in Arabidopsis. Plant Cell Physiol 54:838–847PubMedCrossRefGoogle Scholar
  87. Touihri S, Knoll C, Stierhof YD, Muller I, Mayer U, Jurgens G (2011) Functional anatomy of the Arabidopsis cytokinesis-specific syntaxin KNOLLE. Plant J 68:755–764PubMedCrossRefGoogle Scholar
  88. Tse YC, Mo BX, Hillmer S, Zhao M, Lo SW, Robinson DG, Jiang LW (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16:672–693PubMedPubMedCentralCrossRefGoogle Scholar
  89. Viotti C, Bubeck J, Stierhof YD, Krebs M, Langhans M, van den Berg W, van Dongen W, Richter S, Geldner N, Takano J, Jurgens G, de Vries SC, Robinson DG, Schumacher K (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22:1344–1357PubMedPubMedCentralCrossRefGoogle Scholar
  90. Wang H (2016) Visualizing plant cells in a brand new way. Mol Plant 9:633–635PubMedCrossRefGoogle Scholar
  91. Wang H, Jiang L (2011) Transient expression and analysis of fluorescent reporter proteins in plant pollen tubes. Nat Protoc 6:419–426PubMedCrossRefGoogle Scholar
  92. Wang H, Tse YC, Law AH, Sun SS, Sun YB, Xu ZF, Hillmer S, Robinson DG, Jiang L (2010a) Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. Plant J 61:826–838PubMedCrossRefGoogle Scholar
  93. Wang J, Ding Y, Wang JQ, Hillmer S, Miao YS, Lo SW, Wang XF, Robinson DG, Jiang LW (2010b) EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 22:4009–4030PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wang H, Rogers JC, Jiang LW (2011a) Plant RMR proteins: unique vacuolar sorting receptors that couple ligand sorting with membrane internalization. FEBS J 278:59–68PubMedCrossRefGoogle Scholar
  95. Wang H, Zhuang XH, Hillmer S, Robinson DG, Jiang LW (2011b) Vacuolar sorting receptor (VSR) proteins reach the plasma membrane in germinating pollen tubes. Mol Plant 4:845–853PubMedCrossRefGoogle Scholar
  96. Wang H, Zhuang XH, Cai Y, Cheung AY, Jiang LW (2013) Apical F-actin-regulated exocytic targeting of NtPPME1 is essential for construction and rigidity of the pollen tube cell wall. Plant J 76:367–379PubMedCrossRefGoogle Scholar
  97. Wang H, Zhuang X, Wang X, Law H, Zhao T, Du S, Loy M, Jiang L (2016a) Demonstration of a distinct pathway for polar exocytosis for plant cell wall formation. Plant Physiol 172:1003–1018PubMedPubMedCentralGoogle Scholar
  98. Wang T, Liang L, Xue Y, Jia PF, Chen W, Zhang MX, Wang YC, Li HJ, Yang WC (2016b) A receptor heteromer mediates the male perception of female attractants in plants. Nature 531:241–244PubMedCrossRefGoogle Scholar
  99. Weber M, Deinlein U, Fischer S, Rogowski M, Geimer S, Tenhaken R, Clemens S (2013) A mutation in the Arabidopsis thaliana cell wall biosynthesis gene pectin methylesterase 3 as well as its aberrant expression cause hypersensitivity specifically to Zn. Plant J 76:151–164PubMedGoogle Scholar
  100. Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2011) Pollen tubes and the physical world. Trends Plant Sci 16:353–355PubMedCrossRefGoogle Scholar
  101. Wu YJ, Yan J, Zhang RH, Qu XL, Ren SL, Chen NZ, Huang SJ (2010) Arabidopsis FIMBRIN5, an actin bundling factor, is required for pollen germination and pollen tube growth. Plant Cell 22:3745–3763PubMedPubMedCentralCrossRefGoogle Scholar
  102. Zhang M, Schekman R (2013) Unconventional secretion, unconventional solutions. Science 340:559–561PubMedCrossRefGoogle Scholar
  103. Zhou ZZ, Shi HF, Chen BQ, Zhang RH, Huang SJ, Fu Y (2015) Arabidopsis RIC1 severs actin filaments at the apex to regulate pollen tube growth. Plant Cell 27:1140–1161PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zonia L, Munnik T (2009) Uncovering hidden treasures in pollen tube growth mechanics. Trends Plant Sci 14:318–327PubMedCrossRefGoogle Scholar
  105. Zonia L, Munnik T (2011) Understanding pollen tube growth: the hydrodynamic model versus the cell wall model. Trends Plant Sci 16:347–352PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
  2. 2.School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong Kong, ShatinHong KongChina
  3. 3.CUHK Shenzhen Research InstituteThe Chinese University of Hong KongShenzhenChina

Personalised recommendations