Skip to main content

Polar Protein Exocytosis: Lessons from Plant Pollen Tube

  • Chapter
  • First Online:
Book cover Pollen Tip Growth
  • 855 Accesses

Abstract

Exocytosis is a highly regulated outward secretion process which participates in multiple cellular events including membrane modeling, cell polarization, cell wall formation, and cell signaling. Pollen tube is regarded as an ideal model plant cell system to study the machinery and regulation of exocytosis. Vigorous exocytic vesicle fusion with the apical plasma membrane supports the rapid and polarized pollen tube growth. However, the molecular identities and regulations of these exocytic vesicles still remain largely unexplored. Recent discoveries of various exocytic markers and regulatory proteins of exocytic pathway have advanced this research field rapidly. Here, we review and summarize the recent development and progress of protein exocytic trafficking and regulation in pollen tube, with emphasize on the pertinent questions for future understanding the functional roles of exocytosis in cell polarization and polar cell wall formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCP:

Clathrin coated pits

EXPO:

Exocyst-positive organelle

FRAP:

Fluorescence recovery after photobleaching

GDSV:

Golgi-derived secretory vesicles

HPF:

High-pressure freezing and substitution

PCV:

Pre-vacuolar compartment

PM:

Plasma membrane

PME:

Pectin methylesterase

RLK:

Receptor-like kinase

ROP:

GTPase termed Rho of plant

SCAMP:

Secretory carrier membrane protein

STORM:

Stochastic optical reconstruction microscopy

TEM:

Transmission electron microscopy

TGN:

trans-Golgi network

UPS:

Unconventional protein secretion

VAEM:

Variable-angle epifluorescence microscopy

References

  • Altartouri B, Geitmann A (2015) Understanding plant cell morphogenesis requires real-time monitoring of cell wall polymers. Curr Opin Plant Biol 23:76–82

    Article  CAS  PubMed  Google Scholar 

  • Bedinger PA, Hardeman KJ, Loukides CA (1994) Travelling in style: the cell biology of pollen. Trends Cell Biol 4:132–138

    Article  CAS  PubMed  Google Scholar 

  • Boruc J, Van Damme D (2015) Endomembrane trafficking overarching cell plate formation. Curr Opin Plant Biol 28:92–98

    Article  CAS  PubMed  Google Scholar 

  • Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutte Y, Jonsson K, McFarlane HE, Johnson E, Gendre D, Swarup R, Friml J, Samuels L, Robert S, Bhalerao RP (2013) ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation. Proc Natl Acad Sci USA 110:16259–16264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bove J, Vaillancourt B, Kroeger J, Hepler PK, Wiseman PW, Geitmann A (2008) Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching. Plant Physiol 147:1646–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess TL, Kelly RB (1987) Constitutive and regulated secretion of proteins. Annu Rev Cell Biol 3:243–293

    Article  CAS  PubMed  Google Scholar 

  • Cai G, Cresti M (2009) Organelle motility in the pollen tube: a tale of 20 years. J Exp Bot 60:495–508

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Jia TR, Lam SK, Ding Y, Gao CJ, San MWY, Pimpl P, Jiang LW (2011) Multiple cytosolic and transmembrane determinants are required for the trafficking of SCAMP1 via an ER-Golgi-TGN-PM pathway. Plant J 65:882–896

    Article  CAS  PubMed  Google Scholar 

  • Chebli Y, Kaneda M, Zerzour R, Geitmann A (2012) The cell wall of the Arabidopsis pollen tube spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol 160:1940–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chebli Y, Kroeger J, Geitmann A (2013) Transport logistics in pollen tubes. Mol Plant 6:1037–1052

    Article  CAS  PubMed  Google Scholar 

  • Chen CYH, Cheung AY, Wu HM (2003) Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. Plant Cell 15:237–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung AY, Duan QH, Costa SS, de Graaf BHJ, Di Stilio VS, Feijo J, Wu HM (2008) The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins. Mol Plant 1:686–702

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Niroomand S, Zou YJ, Wu HM (2010) A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proc Natl Acad Sci USA 107:16390–16395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow CM, Neto H, Foucart C, Moore I (2008) Rab-A2 and Rab-A3 GTPases define a trans-Golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20:101–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof YD, Schumacher K, Gonneau M, Hofte H, Vernhettes S (2009) Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21:1141–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Shen JB, Gao CJ, Zhuang XH, Wang JQ, Jiang LW (2016) Biogenesis of plant prevacuolar multivesicular bodies. Mol Plant 9:774–786

    Article  CAS  PubMed  Google Scholar 

  • Daher FB, Geitmann A (2011) Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles. Traffic 12:1537–1551

    Article  CAS  Google Scholar 

  • Dardelle F, Lehner A, Ramdani Y, Bardor M, Lerouge P, Driouich A, Mollet JC (2010) Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall. Plant Physiol 153:1563–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Caroli M, Lenucci MS, Di Sansebastiano GP, Dalessandro G, De Lorenzo G, Piro G (2011) Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco. Plant J 65:295–308

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Baluska F, Schlicht M, Hlavacka A, Samaj J, Friml J, Gadella TWJ (2006) Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10:137–150

    Article  CAS  PubMed  Google Scholar 

  • Di Matteo A, Giovane A, Raiola A, Camardella L, Bonivento D, De Lorenzo G, Cervone F, Bellincampi D, Tsernoglou D (2005) Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell 17:849–858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding Y, Wang J, Wang JQ, Stierhof YD, Robinson DG, Jiang LW (2012) Unconventional protein secretion. Trends Plant Sci 17:606–615

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Robinson DG, Jiang L (2014) Unconventional protein secretion (UPS) pathways in plants. Curr Opin Cell Biol 29:107–115

    Article  CAS  PubMed  Google Scholar 

  • Dumont M, Lehner A, Bouton S, Kiefer-Meyer MC, Voxeur A, Pelloux J, Lerouge P, Mollet JC (2014) The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein. Ann Bot 114:1177–1188

    Article  PubMed  PubMed Central  Google Scholar 

  • Feijo JA, Sainhas J, Holdaway-Clarke T, Cordeiro MS, Kunkel JG, Hepler PK (2001) Cellular oscillations and the regulation of growth: the pollen tube paradigm. Bioessays 23:86–94

    Article  CAS  PubMed  Google Scholar 

  • Ferguson C, Teeri TT, Siika-aho M, Read SM, Bacic A (1998) Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum. Planta 206:452–460

    Article  CAS  Google Scholar 

  • Fu Y (2010) The actin cytoskeleton and signaling network during pollen tube tip growth. J Integr Plant Biol 52:131–137

    Article  CAS  PubMed  Google Scholar 

  • Fu Y (2015) The cytoskeleton in the pollen tube. Curr Opin Plant Biol 28:111–119

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Xu T, Zhu L, Wen M, Yang Z (2009) A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol 19:1827–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebert M, Dresselhaus T, Sprunck S (2008) F-actin organization and pollen tube tip growth in Arabidopsis are dependent on the gametophyte-specific Armadillo repeat protein ARO1. Plant Cell 20:2798–2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleeson PA, Lock JG, Luke MR, Stow JL (2004) Domains of the TGN: coats, tethers and G proteins. Traffic 5:315–326

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Vernoud V, Fu Y, Yang ZB (2003) ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot 54:93–101

    Article  CAS  PubMed  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    Article  CAS  PubMed  Google Scholar 

  • Hepler PK, Kunkel JG, Rounds CM, Winship LJ (2012) Calcium entry into pollen tubes. Trends Plant Sci 17:32–38

    Article  CAS  PubMed  Google Scholar 

  • Hepler PK, Rounds CM, Winship LJ (2013) Control of cell wall extensibility during pollen tube growth. Mol Plant 6:998–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill AE, Shachar-Hill B, Skepper JN, Powell J, Shachar-Hill Y (2012) An osmotic model of the growing pollen tube. PLoS One 7:e36585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang JU, Gu Y, Lee YJ, Yang ZB (2005) Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol Biol Cell 16:5385–5399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang LX, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurgens G, Geldner N (2002) Protein secretion in plants: from the trans-Golgi network to the outer space. Traffic 3:605–613

    Article  CAS  PubMed  Google Scholar 

  • Jurgens G, Park M, Richter S, Touihri S, Krause C, El Kasmi F, Mayer U (2015) Plant cytokinesis: a tale of membrane traffic and fusion. Biochem Soc Trans 43:73–78

    Article  PubMed  CAS  Google Scholar 

  • Keller P, Simons K (1997) Post-Golgi biosynthetic trafficking. J Cell Sci 110:3001–3009

    CAS  PubMed  Google Scholar 

  • Klahre U, Kost B (2006) Tobacco RhoGTPase ACTIVATING PROTEIN1 spatially restricts signaling of RAC/Rop to the apex of pollen tubes. Plant Cell 18:3033–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kost B (2008) Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol 18:119–127

    Article  CAS  PubMed  Google Scholar 

  • Kroeger J, Geitmann A (2012) The pollen tube paradigm revisited. Curr Opin Plant Biol 15:618–624

    Article  PubMed  Google Scholar 

  • Kroeger JH, Daher FB, Grant M, Gieitmann A (2009) Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes. Biophys J 97:1822–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam SK, Siu CL, Hillmer S, Jang S, An G, Robinson DG, Jiang L (2007a) Rice SCAMP1 defines clathrin-coated, trans-golgi-located tubular-vesicular structures as an early endosome in tobacco BY-2 cells. Plant Cell 19:296–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam SK, Tse YC, Robinson DG, Jiang L (2007b) Tracking down the elusive early endosome. Trends Plant Sci 12:497–505

    Article  CAS  PubMed  Google Scholar 

  • Lam SK, Cai Y, Hillmer S, Robinson DG, Jiang L (2008) SCAMPs highlight the developing cell plate during cytokinesis in tobacco BY-2 cells. Plant Physiol 147:1637–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancelle SA, Hepler PK (1992) Ultrastructure of freeze-substituted pollen tubes of Lilium longiflorum. Protoplasma 167:215–230

    Article  Google Scholar 

  • Lee YJ, Szumlanski A, Nielsen E, Yang Z (2008) Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol 181:1155–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YQ, Mareck A, Faleri C, Moscatelli A, Liu Q, Cresti M (2002) Detection and localization of pectin methylesterase isoforms in pollen tubes of Nicotiana tabacum L. Planta 214:734–740

    Article  CAS  PubMed  Google Scholar 

  • Li H, Friml J, Grunewald W (2012) Cell polarity: stretching prevents developmental cramps. Curr Biol 22:R635–R637

    Article  CAS  PubMed  Google Scholar 

  • Lionetti V, Raiola A, Camardella L, Giovane A, Obel N, Pauly M, Favaron F, Cervone F, Bellincampi D (2007) Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol 143:1871–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XN, Qu XL, Jiang YX, Chang M, Zhang RH, Wu YJ, Fu Y, Huang SJ (2015) Profilin regulates apical actin polymerization to control polarized pollen tube growth. Mol Plant 8:1694–1709

    Article  CAS  PubMed  Google Scholar 

  • Malhotra V (2013) Unconventional protein secretion: an evolving mechanism. EMBO J 32:1660–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFarlane HE, Watanabe Y, Gendre D, Carruthers K, Levesque-Tremblay G, Haughn GW, Bhalerao RP, Samuels L (2013) Cell wall polysaccharides are mislocalized to the vacuole in echidna mutants. Plant Cell Physiol 54:1867–1880

    Article  CAS  PubMed  Google Scholar 

  • McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vidali L, Winship LJ, Hepler PK (2009) Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell 21:3026–3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki KN, Yang ZB (2014) Extracellular signals and receptor-like kinases regulating ROP GTPases in plants. Front Plant Sci 5:449

    Article  PubMed  PubMed Central  Google Scholar 

  • Naramoto S, Otegui MS, Kutsuna N, de Rycke R, Dainobu T, Karampelias M, Fujimoto M, Feraru E, Miki D, Fukuda H, Nakano A, Friml J (2014) Insights into the localization and function of the membrane trafficking regulator GNOME ARF-GEF at the Golgi apparatus in Arabidopsis. Plant Cell 26:3062–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nibau C, Wu HM, Cheung AY (2006) RAC/ROP GTPases: ‘hubs’ for signal integration and diversification in plants. Trends Plant Sci 11:309–315

    Article  CAS  PubMed  Google Scholar 

  • Nickel W, Rabouille C (2009) Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10:234–234

    Article  CAS  Google Scholar 

  • Nishihama R, Soyano T, Ishikawa M, Araki S, Tanaka H, Asada T, Irie K, Ito M, Terada M, Banno H, Yamazaki Y, Machida Y (2002) Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109:87–99

    Article  CAS  PubMed  Google Scholar 

  • Parre E, Geitmann A (2005) Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220:582–592

    Article  CAS  PubMed  Google Scholar 

  • Pelloux J, Rusterucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277

    Article  CAS  PubMed  Google Scholar 

  • Poulsen CP, Dilokpimol A, Mouille G, Burow M, Geshi N (2014) Arabinogalactan glycosyltransferases target to a unique subcellular compartment that may function in unconventional secretion in plants. Traffic 15:1219–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Yang ZBA (2011) Rapid tip growth: insights from pollen tubes. Semin Cell Dev Biol 22:816–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu XL, Zhang H, Xie YR, Wang J, Chen NZ, Huang SJ (2013) Arabidopsis villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. Plant Cell 25:1803–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu XL, Jiang YX, Chang M, Liu XN, Zhang RH, Huang SJ (2015) Organization and regulation of the actin cytoskeleton in the pollen tube. Front Plant Sci 5:786

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabouille C, Malhotra V, Nickel W (2012) Diversity in unconventional protein secretion. J Cell Sci 125:5251–5255

    Article  CAS  PubMed  Google Scholar 

  • Reichardt L, Stierhof YD, Mayer U, Richter S, Schwarz H, Schumacher K, Jurgens G (2007) Plant cytokinesis requires de novo secretory trafficking but not endocytosis. Curr Biol 17:2047–2053

    Article  CAS  PubMed  Google Scholar 

  • Ren HY, Xiang Y (2007) The function of actin-binding proteins in pollen tube growth. Protoplasma 230:171–182

    Article  CAS  PubMed  Google Scholar 

  • Robinson D, Ding Y, Jiang LW (2016) Unconventional protein secretion in plants: a critical assessment. Protoplasma 253:31–43

    Article  CAS  PubMed  Google Scholar 

  • Rockel N, Wolf S, Kost B, Rausch T, Greiner S (2008) Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J 53:133–143

    Article  PubMed  CAS  Google Scholar 

  • Rojas ER, Hotton S, Dumais J (2011) Chemically mediated mechanical expansion of the pollen tube cell wall. Biophys J 101:1844–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rounds CM, Hepler PK, Winship LJ (2014) The apical actin fringe contributes to localized cell wall deposition and polarized growth in the lily pollen tube. Plant Physiol 166:139–151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saez-Aguayo S, Ralet MC, Berger A, Botran L, Ropartz D, Marion-Poll A, North HM (2013) PECTIN METHYLESTERASE INHIBITOR6 promotes Arabidopsis mucilage release by limiting methylesterification of homogalacturonan in seed coat epidermal cells. Plant Cell 25:308–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanati Nezhad A, Packirisamy M, Geitmann A (2014) Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. Plant J 80:185–195

    Article  CAS  PubMed  Google Scholar 

  • Steer M, Steer J (1989) Pollen tube tip growth. New Phytol 111:323–358

    Article  Google Scholar 

  • Su H, Zhu JS, Cai C, Pei WK, Wang JJ, Dong HJ, Ren HY (2012) FIMBRIN1 is involved in lily pollen tube growth by stabilizing the actin fringe. Plant Cell 24:4539–4554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Eklund DM, Montes-Rodriguez A, Kost B (2015) In vivo Rac/Rop localization as well as interaction with RhoGAP and RhoGDI in tobacco pollen tubes: analysis by low-level expression of fluorescent fusion proteins and bimolecular fluorescence complementation. Plant J 84:83–98

    Article  CAS  PubMed  Google Scholar 

  • Szumlanski AL, Nielsen E (2009) The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21:526–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahara H, Igarashi H, Yokota E, Yao M, Hashimoto T, Shimmen T (2005) Role of clathrin in cell plate formation of plant cell. Plant Cell Physiol 46:155–S155

    Google Scholar 

  • Takeuchi H, Higashiyama T (2016) Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531:245–248

    Article  CAS  PubMed  Google Scholar 

  • Teh OK, Shimono Y, Shirakawa M, Fukao Y, Tamura K, Shimada T, Hara-Nishimura I (2013) The AP-1 mu adaptin is required for KNOLLE localization at the cell plate to mediate cytokinesis in Arabidopsis. Plant Cell Physiol 54:838–847

    Article  CAS  PubMed  Google Scholar 

  • Touihri S, Knoll C, Stierhof YD, Muller I, Mayer U, Jurgens G (2011) Functional anatomy of the Arabidopsis cytokinesis-specific syntaxin KNOLLE. Plant J 68:755–764

    Article  CAS  PubMed  Google Scholar 

  • Tse YC, Mo BX, Hillmer S, Zhao M, Lo SW, Robinson DG, Jiang LW (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16:672–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viotti C, Bubeck J, Stierhof YD, Krebs M, Langhans M, van den Berg W, van Dongen W, Richter S, Geldner N, Takano J, Jurgens G, de Vries SC, Robinson DG, Schumacher K (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22:1344–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H (2016) Visualizing plant cells in a brand new way. Mol Plant 9:633–635

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Jiang L (2011) Transient expression and analysis of fluorescent reporter proteins in plant pollen tubes. Nat Protoc 6:419–426

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Tse YC, Law AH, Sun SS, Sun YB, Xu ZF, Hillmer S, Robinson DG, Jiang L (2010a) Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. Plant J 61:826–838

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ding Y, Wang JQ, Hillmer S, Miao YS, Lo SW, Wang XF, Robinson DG, Jiang LW (2010b) EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 22:4009–4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Rogers JC, Jiang LW (2011a) Plant RMR proteins: unique vacuolar sorting receptors that couple ligand sorting with membrane internalization. FEBS J 278:59–68

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhuang XH, Hillmer S, Robinson DG, Jiang LW (2011b) Vacuolar sorting receptor (VSR) proteins reach the plasma membrane in germinating pollen tubes. Mol Plant 4:845–853

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhuang XH, Cai Y, Cheung AY, Jiang LW (2013) Apical F-actin-regulated exocytic targeting of NtPPME1 is essential for construction and rigidity of the pollen tube cell wall. Plant J 76:367–379

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhuang X, Wang X, Law H, Zhao T, Du S, Loy M, Jiang L (2016a) Demonstration of a distinct pathway for polar exocytosis for plant cell wall formation. Plant Physiol 172:1003–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Liang L, Xue Y, Jia PF, Chen W, Zhang MX, Wang YC, Li HJ, Yang WC (2016b) A receptor heteromer mediates the male perception of female attractants in plants. Nature 531:241–244

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Deinlein U, Fischer S, Rogowski M, Geimer S, Tenhaken R, Clemens S (2013) A mutation in the Arabidopsis thaliana cell wall biosynthesis gene pectin methylesterase 3 as well as its aberrant expression cause hypersensitivity specifically to Zn. Plant J 76:151–164

    CAS  PubMed  Google Scholar 

  • Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2011) Pollen tubes and the physical world. Trends Plant Sci 16:353–355

    Article  CAS  PubMed  Google Scholar 

  • Wu YJ, Yan J, Zhang RH, Qu XL, Ren SL, Chen NZ, Huang SJ (2010) Arabidopsis FIMBRIN5, an actin bundling factor, is required for pollen germination and pollen tube growth. Plant Cell 22:3745–3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Schekman R (2013) Unconventional secretion, unconventional solutions. Science 340:559–561

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZZ, Shi HF, Chen BQ, Zhang RH, Huang SJ, Fu Y (2015) Arabidopsis RIC1 severs actin filaments at the apex to regulate pollen tube growth. Plant Cell 27:1140–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zonia L, Munnik T (2009) Uncovering hidden treasures in pollen tube growth mechanics. Trends Plant Sci 14:318–327

    Article  CAS  PubMed  Google Scholar 

  • Zonia L, Munnik T (2011) Understanding pollen tube growth: the hydrodynamic model versus the cell wall model. Trends Plant Sci 16:347–352

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Faqiang Li (South China Agricultural University) is acknowledged for helpful discussions. This work was supported by grants from Natural Science Foundation of China (NSFC, 31570001) and Natural Science Foundation of Guangdong Province, China (2016A030313401), to H.W. This work was also supported by grants from the Research Grants Council of Hong Kong (CUHK466011, 465112, 466613, CUHK2/CRF/11G, C4011-14R, HKUST10/CRF/12R, and AoE/M-05/12), NSFC/RGC (N_CUHK406/12), NSFC (31470294), and Croucher-CAS Joint Lab and Shenzhen Peacock Project (KQTD201101) to L.J.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Wang or Liwen Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, H., Jiang, L. (2017). Polar Protein Exocytosis: Lessons from Plant Pollen Tube. In: Obermeyer, G., Feijó, J. (eds) Pollen Tip Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-56645-0_6

Download citation

Publish with us

Policies and ethics