Skip to main content

Microfluidic- and Microelectromechanical System (MEMS)-Based Platforms for Experimental Analysis of Pollen Tube Growth Behavior and Quantification of Cell Mechanical Properties

  • Chapter
  • First Online:
Book cover Pollen Tip Growth

Abstract

Experimentation on pollen tubes has benefited greatly from recent technological developments in the fields of microfluidics and microelectromechanical systems (MEMS). Various design strategies have been developed to expose in vitro growing pollen tubes to a range of experimental assays with the aim to study their behavior and their mechanical properties. The devices allow exposing the cells to chemical gradients, microstructural features, integrated biosensors, or directional triggers, and they are compatible with Nomarski optics and fluorescence microscopy. Microfluidic technology has opened new avenues for both more efficient experimentation and large-scale phenotyping of tip-growing cells under precisely controlled, reproducible conditions. The chapter provides an overview of the different design strategies used and the type of data acquired over the past 5 years since the technique was first adopted by the pollen community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

LoC:

Lab-on-a-chip

MEMS:

Microelectromechanical systems

References

  • Agudelo C, Sanati Nezhad A, Ghanbari M, Packirisamy M, Geitmann A (2012) A microfluidic platform for the investigation of elongation growth in pollen tubes. J Micromech Microeng 22:115009

    Article  Google Scholar 

  • Agudelo C, Packirisamy M, Geitmann A (2013a) Lab-on-a-chip for studying growing pollen tubes. In: Žárský V, Cvrčková F (eds) Plant cell morphogenesis: methods and protocols, vol 1080. Methods in molecular biology. Springer, New York

    Google Scholar 

  • Agudelo CG, Sanati Nezhad A, Ghanbari M, Naghavi M, Packirisamy M, Geitmann A (2013b) TipChip: a modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells. Plant J 73:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Agudelo CG, Packirisamy M, Geitmann A (2016) Influence of electric fields and conductivity on pollen tube growth assessed via electrical lab-on-chip. Sci Rep 6:19812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibikova TN, Zhigilei A, Gilroy S (1997) Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta 203:495–505

    Article  CAS  PubMed  Google Scholar 

  • Bou Daher F, Geitmann A (2011) Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles. Traffic 12:1537–1551

    Article  PubMed  Google Scholar 

  • Bou Daher F, Chebli Y, Geitmann A (2008) Optimization of conditions for germination of cold-stored Arabidopsis thaliana pollen. Plant Cell Rep 28:347–357

    Article  PubMed  Google Scholar 

  • Brand A, Gow NAR (2009) Mechanisms of hypha orientation of fungi. Curr Opin Microbiol 12:350–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chebli Y, Kaneda M, Zerzour R, Geitmann A (2012) The cell wall of the Arabidopsis thaliana pollen tube – spatial distribution, recycling and network formation of polysaccharides. Plant Physiol 4:1940–1955

    Article  Google Scholar 

  • Cheung K, Renaud P (2006) BioMEMS for medicine: on-chip cell characterization and implantable microelectrodes. Solid State Electron 50:551–557

    Article  CAS  Google Scholar 

  • Cheung AY, Wu H-m (2007) Structural and functional compartmentalization in pollen tubes. J Exp Bot 58:75–82

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Wu H-m (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572

    Article  CAS  PubMed  Google Scholar 

  • Fayant P, Girlanda O, Chebli Y, Aubin CE, Villemure I, Geitmann A (2010) Finite element model of polar growth in pollen tubes. Plant Cell 22:2579–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feijó JA, Malhó R, Obermeyer G (1995) Ion dynamics and its possible role during in vitro pollen germination and tube growth. Protoplasma 187:155–167

    Article  Google Scholar 

  • Feijó JA, Sainhas J, Holdaway-Clarke TL, Cordeiro MS, Kunkel JG, Hepler PK (2001) Cellular oscillations and the regulation of growth: the pollen tube paradigm. Bioessays 23(1):86–94

    Article  PubMed  Google Scholar 

  • Geitmann A, Palanivelu R (2007) Fertilization requires communication: signal generation and perception during pollen tube guidance. Floric Ornament Biotechnol 1:77–89

    Google Scholar 

  • Geitmann A, Parre E (2004) The local cytomechanical properties of growing pollen tubes correspond to the axial distribution of structural cellular elements. Sex Plant Reprod 17:9–16

    Article  Google Scholar 

  • Geitmann A, McConnaughey W, Lang-Pauluzzi I, Franklin-Tong VE, Emons AMC (2004) Cytomechanical properties of Papaver pollen tubes are altered after self-incompatibility challenge. Biophys J 86:3314–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanbari M, Sanati Nezhad A, Agudelo C, Packirisamy M, Bhat R, Geitmann A (2014) Microfluidic positioning of pollen grains in lab-on-a-chip for single cell analysis. J Biosci Bioeng 117:504–511

    Article  CAS  PubMed  Google Scholar 

  • Giouroudi I, Kosel J, Scheffer C (2008) BioMEMS in diagnostics: a review and recent developments. Recent Patents Eng 2:114–121

    Article  CAS  Google Scholar 

  • Gossot O, Geitmann A (2007) Pollen tube growth – coping with mechanical obstacles involves the cytoskeleton. Planta 226:405–416

    Article  CAS  PubMed  Google Scholar 

  • Held M, Edwards C, Nicolau D (2011) Probing the growth dynamics of Neurospora crassa with microfluidic structures. Fungal Biol 115:493–505

    Article  PubMed  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    Article  CAS  PubMed  Google Scholar 

  • Higashiyama T, Hamamura Y (2008) Gametophytic pollen tube guidance. Sex Plant Reprod 21:17–26

    Article  Google Scholar 

  • Horade M, Yanagisawa N, Mizuta Y, Higashiyama T, Arata H (2014) Growth assay of individual pollen tubes arrayed by microchannel device. Microelectron Eng 118:25–28

    Google Scholar 

  • Jaffe L, Nuccitelli R (1977) Electrical controls of development. Annu Rev Biophys Bioeng 6:445–476

    Article  CAS  PubMed  Google Scholar 

  • Kanaoka MM, Higashiyama T (2015) Peptide signaling in pollen tube guidance. Curr Opin Plant Biol 28:127–136

    Article  CAS  PubMed  Google Scholar 

  • Kristen U, Kappler R (1995) The pollen tube growth test. In: O’Hare S, Atterwill CK (eds) In vitro toxicity testing protocols, Methods in molecular biology, vol 43. Humana, New York, pp 189–198

    Chapter  Google Scholar 

  • Lord EM (2003) Adhesion and guidance in compatible pollination. J Exp Bot 54:47–54

    Article  CAS  PubMed  Google Scholar 

  • Malhó R (2006) The pollen tube: a cellular and molecular perspective, Plant cell monographs, vol 3. Springer, Berlin

    Book  Google Scholar 

  • Malhó R, Feijó JA, Pais MSS (1992) Effect of electrical fields and external ionic currents on pollen tube orientation. Sex Plant Reprod:57–63

    Google Scholar 

  • Márton M, Dresselhaus T (2010) Female gametophyte-controlled pollen tube guidance. Biochem Soc Trans 38:627–630

    Article  PubMed  Google Scholar 

  • Messerli M, Robinson KR (1997) Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum. J Cell Sci 110:1269–1278

    CAS  PubMed  Google Scholar 

  • Messerli M, Robinson KR (1998) Cytoplasmic acidification and current influx follow growth pulses of Lilium longiflorum pollen tubes. Plant J 16:87–91

    Article  CAS  Google Scholar 

  • Messerli MA, Robinson KR (2003) Ionic and osmotic disruption of the lily pollen tube oscillator: testing proposed models. Planta 217:147–157

    CAS  PubMed  Google Scholar 

  • Money NP (2001) Biomechanics of invasive hyphal growth. In: Howard RJ, Gow NAR (eds) The Mycota: biology of the fungal cell, vol 8. Springer, New York, pp 3–17

    Chapter  Google Scholar 

  • Money NP, Davis CM, Ravishankar JP (2004) Biomechanical evidence for convergent evolution of the invasive growth process among fungi and oomycete water molds. Fungal Genet Biol 41:872–876

    Article  PubMed  Google Scholar 

  • Nuxoll E, Siegel R (2009) BioMEMS devices for drug delivery. IEEE Eng Med Biol Mag 28:31–39

    Article  PubMed  Google Scholar 

  • Palanivelu R, Preuss D (2000) Pollen tube targetting and axon guidance: parallels in tip growth mechanisms. Trends Cell Biol 10:517–524

    Article  CAS  PubMed  Google Scholar 

  • Palanivelu R, Tsukamoto T (2011) Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization. WIREs Dev Biol 1:96–113

    Google Scholar 

  • Parre E, Geitmann A (2005a) More than a leak sealant – the physical properties of callose in pollen tubes. Plant Physiol 137:274–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parre E, Geitmann A (2005b) Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220:582–592

    Google Scholar 

  • Qin Y, Yang Z (2011) Rapid tip growth: insights from pollen tubes. Semin Cell Dev Biol 22:816–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanati Nezhad A, Geitmann A (2013) The cellular mechanics of an invasive life style. J Exp Bot 64:4709–4728

    Article  CAS  PubMed  Google Scholar 

  • Sanati Nezhad A, Naghavi M, Packirisamy M, Bhat R, Geitmann A (2013a) Quantification of cellular penetrative forces using Lab-on-a-chip technology and finite element modeling. Proc Natl Acad Sci U S A 110:8093–8098

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanati Nezhad A, Naghavi M, Packirisamy M, Bhat R, Geitmann A (2013b) Quantification of the Young's modulus of the primary plant cell wall using bending-lab-on-chip (BLoC). Lab Chip 13:2599–2608

    Article  Google Scholar 

  • Sanati Nezhad A, Ghanbari M, Agudelo C, Naghavi M, Packirisamy M, Bhat R, Geitmann A (2014a) Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis. Biomed Microdevices 16:23–33

    Article  PubMed  Google Scholar 

  • Sanati Nezhad A, Packirisamy M, Geitmann A (2014b) Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. Plant J 80:185–195

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Sugimoto N, Higashiyama T, Arata H (2015) Quantification of pollen tube attraction in response to guidance by female gametophyte tissue using artificial microscale pathway. J Biosci Bioeng 120:697–700

    Google Scholar 

  • Sawidis T, Reiss H-D (1995) Effects of heavy metals on pollen tube growth and ultrastructure. Protoplasma 185:113–122

    Article  CAS  Google Scholar 

  • Vogler H, Draeger C, Weber A, Felekis D, Eichenberger C, Routier-Kierzkowska A-L, Boisson-Dernier A, Ringli C, Nelson BJ, Smith RS, Grossniklaus U (2013) The pollen tube: a soft shell with a hard core. Plant J 73:617–627

    Article  CAS  PubMed  Google Scholar 

  • Yetisen A, Jiang L, Cooper J, Qin Y, Palanivelu R, Zohar Y (2011) A microsystem-based assay for studying pollen tube guidance in plant reproduction. J Micromech Microeng 21:e054018

    Article  Google Scholar 

  • Yu H, Meyvantsson I, Shkel I, Beebe D (2005) Diffusion dependent cell behavior in microenvironments. Lab Chip 5:1089–1095

    Article  CAS  PubMed  Google Scholar 

  • Zerzour R, Kroeger JH, Geitmann A (2009) Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev Biol 334:437–446

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Geitmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Geitmann, A. (2017). Microfluidic- and Microelectromechanical System (MEMS)-Based Platforms for Experimental Analysis of Pollen Tube Growth Behavior and Quantification of Cell Mechanical Properties. In: Obermeyer, G., Feijó, J. (eds) Pollen Tip Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-56645-0_5

Download citation

Publish with us

Policies and ethics