The Cytoskeleton of Pollen Tubes and How It Determines the Physico-mechanical Properties of Cell Wall



The growth of pollen tubes is a complex process that requires the synchronized activity of many different factors. Pollen tubes grow by penetrating through relatively solid tissues of the pistil. In doing so, pollen tubes need a specialized shape consisting of a tubular axis culminating with a hemispherical dome. In order to maintain such a shape, pollen tubes must build a dynamic cell wall which is highly adapted to the cell’s penetrating activity. Therefore, the molecular mechanism controlling the pollen tube architecture is critical. In growing pollen tubes, the cytoskeleton controls the intracellular transport of organelles and vesicles. Movement of membrane-bounded structures is necessary for the apex-constrained growth of pollen tubes and for proper assembly of the cell wall. This process is strictly related to the fine-tuned deposition of specific proteins and polysaccharides, which contribute to local differentiation of cell wall texture and thus to the growth pattern of pollen tubes. This chapter will focus on the molecular relationships between cytoskeleton and cell wall deposition in pollen tubes in order to highlight how the cytoskeleton controls the shaping of pollen tubes.


Pollen tube Cytoskeleton Cell wall Directional growth Membrane trafficking 



Actin-depolymerizing factors


Arabinogalactan proteins


Calcium-dependent protein kinase


Green fluorescence protein


Inositol 1,4,5-trisphosphate


Microtubule-associated protein


Microtubule-associated cellulose synthase compartment


Pectin methyl esterase


Rho of plants


Reactive oxygen species


Small CESA compartment


  1. Abercrombie JM, O'Meara BC, Moffatt AR, Williams JH (2011) Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS) gene expression patterns. EvoDevo 2:14PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andeme-Onzighi C, Sivaguru M, Judy-March J, Baskin TI, Driouich A (2002) The reb1-1 mutation of Arabidopsis alters the morphology of trichoblasts, the expression of arabinogalactan-proteins and the organization of cortical microtubules. Planta 215:949–958PubMedCrossRefGoogle Scholar
  3. Aouar L, Chebli Y, Geitmann A (2010) Morphogenesis of complex plant cell shapes: the mechanical role of crystalline cellulose in growing pollen tubes. Sex Plant Reprod 23:15–27PubMedCrossRefGoogle Scholar
  4. Baroja-Fernandez E, Munoz FJ, Li J, Bahaji A, Almagro G, Montero M, Etxeberria E, Hidalgo M, Sesma MT, Pozueta-Romero J (2012) Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proc Natl Acad Sci USA 109:321–326PubMedCrossRefGoogle Scholar
  5. Barratt DHP, Derbyshire P, Findlay K, Pike M, Wellner N, Lunn J, Feil R, Simpson C, Maule AJ, Smith AM (2009) Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci USA 106:13124–13129PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barratt DHP, Kolling K, Graf A, Pike M, Calder G, Findlay K, Zeeman SC, Smith AM (2011) Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis. Plant Physiol 155:328–341PubMedCrossRefGoogle Scholar
  7. Benkert R, Obermeyer G, Bentrup FW (1997) The turgor pressure of growing lily pollen tubes. Protoplasma 198:1–8CrossRefGoogle Scholar
  8. Bosch M, Hepler PK (2005) Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 17:3219–3226PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bosch M, Hepler PK (2006) Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. Planta 223:736–745PubMedCrossRefGoogle Scholar
  10. Brandizzi F, Wasteneys GO (2013) Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubules. Plant J 75:339–349PubMedCrossRefGoogle Scholar
  11. Brill E, van Thournout M, White RG, Llewellyn D, Campbell PM, Engelen S, Ruan YL, Arioli T, Furbank RT (2011) A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber. Plant Physiol 157:40–54PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brownfield L, Wilson S, Newbigin E, Bacic A, Read S (2008) Molecular control of the glucan synthase-like protein NaGSL1 and callose synthesis during growth of Nicotiana alata pollen tubes. Biochem J 414:43–52PubMedCrossRefGoogle Scholar
  13. Cai G (2011) How do microtubules affect deposition of cell wall polysaccharides in the pollen tube? Plant Signal Behav 6:732–735PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cai G, Cresti M (2010) Microtubule motors and pollen tube growth—still an open question. Protoplasma 247:131–143PubMedCrossRefGoogle Scholar
  15. Cai G, Faleri C, Del CC, Emons AM, Cresti M (2011) Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules. Plant Physiol 155:1169–1190PubMedCrossRefGoogle Scholar
  16. Cai G, Ovidi E, Romagnoli S, Vantard M, Cresti M, Tiezzi A (2005) Identification and characterization of plasma membrane proteins that bind to microtubules in pollen tubes and generative cells of tobacco. Plant Cell Physiol 46:563–578PubMedCrossRefGoogle Scholar
  17. Cardenas L, Lovy-Wheeler A, Kunkel JG, Hepler PK (2008) Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol 146:1611–1621PubMedPubMedCentralCrossRefGoogle Scholar
  18. Certal AC, Almeida RB, Carvalho LM, Wong E, Moreno N, Michard E, Carneiro J, Rodriguez-Leon J, Wu H, Cheung AY, Feijo JA (2008) Exclusion of a proton ATPase from the apical membrane is associated with cell polarity and tip growth in Nicotiana tabacum pollen tubes. Plant Cell 20:614–634PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chebli Y, Kaneda M, Zerzour R, Geitmann A (2012) The cell wall of the Arabidopsis pollen tube—spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol 160:1940–1955PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Wu H, Cheung AY (2002) The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14:2175–2190PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cheung AY, Niroomand S, Zou Y, Wu HM (2010) A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proc Natl Acad Sci USA 107:16390–16395PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cresti M, van Went JL (1976) Callose deposition and plug formation in Petunia pollen tubes in situ. Planta 133:35–40PubMedCrossRefGoogle Scholar
  23. Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof YD, Schumacher K, Gonneau M, Höfte H, Vernhettes S (2009) Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21:1141–1154PubMedPubMedCentralCrossRefGoogle Scholar
  24. Crowell EF, Gonneau M, Stierhof YD, Höfte H, Vernhettes S (2010) Regulated trafficking of cellulose synthases. Curr Opin Plant Biol 13:700–705PubMedCrossRefGoogle Scholar
  25. Derksen J, Janssen GJ, Wolters-Arts M, Lichtscheidl I, Adlassnig W, Ovecka M, Doris F, Steer M (2011) Wall architecture with high porosity is established at the tip and maintained in growing pollen tubes of Nicotiana tabacum. Plant J 68:495–506PubMedCrossRefGoogle Scholar
  26. Doblin MS, De ML, Newbigin E, Bacic A, Read SM (2001) Pollen tubes of Nicotiana alata express two genes from different beta-glucan synthase families. Plant Physiol 125:2040–2052PubMedPubMedCentralCrossRefGoogle Scholar
  27. Domozych DS, Sorensen I, Sacks C, Brechka H, Andreas A, Fangel JU, Rose JK, Willats WG, Popper ZA (2014) Disruption of the microtubule network alters cellulose deposition and causes major changes in pectin distribution in the cell wall of the green alga, Penium margaritaceum. J Exp Bot 65:465–479PubMedCrossRefGoogle Scholar
  28. Dong H, Pei W, Haiyun R (2012) Actin fringe is correlated with tip growth velocity of pollen tubes. Mol Plant 5:1160–1162PubMedCrossRefGoogle Scholar
  29. Dowd PE, Coursol S, Skirpan AL, Kao T, Gilroy S (2006) Petunia phospholipase C1 is involved in pollen tube growth. Plant Cell 18:1438–1453PubMedPubMedCentralCrossRefGoogle Scholar
  30. Duncan KA, Huber SC (2007) Sucrose synthase oligomerization and F-actin association are regulated by sucrose concentration and phosphorylation. Plant Cell Physiol 48:1612–1623PubMedCrossRefGoogle Scholar
  31. Ellinger D, Voigt CA (2014) Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann Bot 114:1349–1358PubMedPubMedCentralCrossRefGoogle Scholar
  32. Feijò JA, Sainhas J, Hackett GR, Kunkel JG, Hepler PK (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol 144:483–496PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fink J, Jeblick W, Blaschek W, Kauss H (1987) Calcium ions and polyamines activate the plasma membrane-located 1,3-beta-glucan synthase. Planta 171:130–135PubMedCrossRefGoogle Scholar
  34. Fu Y (2015) The cytoskeleton in the pollen tube. Curr Opin Plant Biol 28:111–119PubMedCrossRefGoogle Scholar
  35. Geitmann A, Parre E (2004) The local cytomechanical properties of growing pollen tubes correspond to the axial distribution of structural cellular elements. Sex Plant Reprod 17:9–16CrossRefGoogle Scholar
  36. Geitmann A, Steer M (2006) The architecture and properties of the pollen tube cell wall. In: Malhó R (ed) The pollen tube. Springer, Heidelberg, pp 177–200CrossRefGoogle Scholar
  37. Goubet F, Misrahi A, Park SK, Zhang Z, Twell D, Dupree P (2003) AtCSLA7, a cellulose synthase-like putative glycosyltransferase, is important for pollen tube growth and embryogenesis in Arabidopsis. Plant Physiol 131:547–557PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gu F, Nielsen E (2013) Targeting and regulation of cell wall synthesis during tip growth in plants. J Integr Plant Biol 55:835–846PubMedCrossRefGoogle Scholar
  39. Gutierrez R, Lindeboom JJ, Paredez AR, Emons AM, Ehrhardt DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol 11:797–806PubMedCrossRefGoogle Scholar
  40. Hamada T (2007) Microtubule-associated proteins in higher plants. J Plant Res 120:79–98PubMedCrossRefGoogle Scholar
  41. Hao HQ, Chen T, Fan LS, Li RL, Wang XH (2013) 2, 6-dichlorobenzonitrile causes multiple effects on pollen tube growth beyond altering cellulose synthesis in Pinus bungeana Zucc. PLoS One 8:e76660PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hong Z, Zhang Z, Olson JM, Verma DP (2001) A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate. Plant Cell 13:769–780PubMedPubMedCentralCrossRefGoogle Scholar
  43. Huang S, Jin L, Du J, Li H, Zhao Q, Ou G, Ao G, Yuan M (2007) SB401, a pollen-specific protein from Solanum berthaultii, binds to and bundles microtubules and F-actin. Plant J 51:406–418PubMedCrossRefGoogle Scholar
  44. Idilli AI, Morandini P, Onelli E, Rodighiero S, Caccianiga M, Moscatelli A (2013) Microtubule depolymerization affects endocytosis and exocytosis in the tip and influences endosome movement in tobacco pollen tubes. Mol Plant 6:1109–1130PubMedCrossRefGoogle Scholar
  45. Kleczkowski LA, Kunz S, Wilczynska M (2010) Mechanisms of UDP-glucose synthesis in plants. Crit Rev Plant Sci 29:191–203CrossRefGoogle Scholar
  46. Kong Z, Ioki M, Braybrook S, Li S, Ye ZH, Julie Lee YR, Hotta T, Chang A, Tian J, Wang G, Liu B (2015) Kinesin-4 functions in vesicular transport on cortical microtubules and regulates cell wall mechanics during cell elongation in plants. Mol Plant 8:1011–1023PubMedCrossRefGoogle Scholar
  47. Konishi T, Ohmiya Y, Hayashi T (2004) Evidence that sucrose loaded into the phloem of a poplar leaf is used directly by sucrose synthase associated with various beta-glucan synthases in the stem. Plant Physiol 134:1146–1152PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kroeger JH, Daher FB, Grant M, Geitmann A (2009) Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes. Biophys J 97:1822–1831PubMedPubMedCentralCrossRefGoogle Scholar
  49. Laitiainen E, Nieminen KM, Vihinen H, Raudaskoski M (2002) Movement of generative cell and vegetative nucleus in tobacco pollen tubes is dependent on microtubule cytoskeleton but independent of the synthesis of callose plugs. Sex Plant Reprod 15:195–204CrossRefGoogle Scholar
  50. Lassig R, Gutermuth T, Bey TD, Konrad KR, Romeis T (2014) Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J 78:94–106PubMedCrossRefGoogle Scholar
  51. Lei L, Li S, Gu Y (2012) Cellulose synthase complexes: composition and regulation. Front Plant Sci 3. doi: 10.3389/fpls.2012.00075
  52. Li H, Bacic A, Read SM (1999) Role of a callose synthase zymogen in regulating wall deposition in pollen tubes of Nicotiana alata Link et Otto. Planta 208:528–538CrossRefGoogle Scholar
  53. Li Y-Q, Chen F, Linskens HF, Cresti M (1994) Distribution of unesterified and esterified pectins in cell walls of pollen tubes of flowering plants. Sex Plant Reprod 7:145–152Google Scholar
  54. Li Y-Q, Faleri C, Geitmann A, Zhang HQ, Cresti M (1995b) Immunogold localization of arabinogalactan proteins, unesterified and esterified pectins in pollen grains and pollen tubes of Nicotiana tabacum L. Protoplasma 189:26–36CrossRefGoogle Scholar
  55. Li YQ, Fang C, Faleri C, Ciampolini F, Linskens HF, Cresti M (1995a) Presumed phylogenetic basis of the correlation of pectin deposition pattern in pollen tube walls and the stylar structure of angiosperms. Proc Kon Ned Akad v Wetensch 98:39–44Google Scholar
  56. Li Y-Q, Zhang H-Q, Pierson ES, Huang F-Y, Linskens HF, Hepler PK, Cresti M (1996) Enforced growth-rate fluctuation causes pectin ring formation in the cell wall of Lilium longiflorum pollen tubes. Planta 200:41–49CrossRefGoogle Scholar
  57. Lovy-Wheeler A, Cardenas L, Kunkel JG, Hepler PK (2007) Differential organelle movement on the actin cytoskeleton in lily pollen tubes. Cell Motil Cytoskeleton 64:217–232PubMedCrossRefGoogle Scholar
  58. Madison SL, Buchanan ML, Glass JD, McClain TF, Park E, Nebenfuhr A (2015) Class XI myosins move specific organelles in pollen tubes and are required for normal fertility and pollen tube growth in Arabidopsis. Plant Physiol 169:1946–1960Google Scholar
  59. Matic S, Akerlund HE, Everitt E, Widell S (2004) Sucrose synthase isoforms in cultured tobacco cells. Plant Physiol Biochem 42:299–306PubMedCrossRefGoogle Scholar
  60. McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vidali L, Winship LJ, Hepler PK (2009) Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell 21:3026–3040PubMedPubMedCentralCrossRefGoogle Scholar
  61. Meikle PJ, Bonig I, Hoogenraad NJ, Clarke AE, Stone BA (1991) The location of (1-3)-β-glucans in the walls of pollen tubes of Nicotiana alata using a (1-3)-β-glucan-specific monoclonal antibody. Planta 185:1–8PubMedCrossRefGoogle Scholar
  62. Meng D, Gu Z, Yuan H, Wang A, Li W, Yang Q, Zhu Y, Li T (2014) The microtubule cytoskeleton and pollen tube Golgi-vesicle system are required for in vitro S-RNase internalization and gametic self incompatibility in apple. Plant Cell Physiol 55:977–989PubMedCrossRefGoogle Scholar
  63. Messiaen J, Nerinckx F, Van CP (1995) Callose synthesis in spirostanol treated carrot cells is not triggered by cytosolic calcium, cytosolic pH or membrane potential changes. Plant Cell Physiol 36:1213–1220PubMedGoogle Scholar
  64. Mollet JC, Kim S, Jauh GY, Lord EM (2002) Arabinogalactan proteins, pollen tube growth, and the reversible effects of Yariv phenylglycoside. Protoplasma 219:89–98PubMedCrossRefGoogle Scholar
  65. Mollet JC, Leroux C, Dardelle F, Lehner A (2013) Cell wall composition, biosynthesis and remodeling during pollen tube growth. Plants 2:107–147PubMedPubMedCentralCrossRefGoogle Scholar
  66. Nakai T, Tonouchi N, Konishi T, Kojima Y, Tsuchida T, Yoshinaga F, Sakai F, Hayashi T (1999) Enhancement of cellulose production by expression of sucrose synthase in Acetobacter xylinum. Proc Natl Acad Sci USA 96:14–18PubMedPubMedCentralCrossRefGoogle Scholar
  67. Nguema-Ona E, Bannigan A, Chevalier L, Baskin TI, Driouich A (2007) Disruption of arabinogalactan proteins disorganizes cortical microtubules in the root of Arabidopsis thaliana. Plant J 52:240–251PubMedCrossRefGoogle Scholar
  68. Nguema-Ona E, Coimbra S, Vicré-Gibouin M, Mollet JC, Driouich A (2012) Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects. Ann Bot 110:383–404PubMedPubMedCentralCrossRefGoogle Scholar
  69. Onelli E, Idilli AI, Moscatelli A (2015) Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues. Front Plant Sci 6:51. doi: 10.3389/fpls.2015.00051 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Paliyath G, Poovaiah BW (1988) Promotion of beta-glucan synthase activity in corn microsomal membranes by calcium and protein phosphorylation. Plant Cell Physiol 29:67–73PubMedGoogle Scholar
  71. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495PubMedCrossRefGoogle Scholar
  72. Parre E, Geitmann A (2005) More than a leak sealant. The mechanical properties of callose in pollen tubes. Plant Physiol 137:274–286PubMedPubMedCentralCrossRefGoogle Scholar
  73. Pelloux J, Rusterucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277PubMedCrossRefGoogle Scholar
  74. Peng L, Zhang L, Cheng X, Fan LS, Hao HQ (2013) Disruption of cellulose synthesis by 2,6-dichlorobenzonitrile affects the structure of the cytoskeleton and cell wall construction in Arabidopsis. Plant Biol 15:405–414PubMedCrossRefGoogle Scholar
  75. Peremyslov VV, Mockler TC, Filichkin SA, Fox SE, Jaiswal P, Makarova KS, Koonin EV, Dolja VV (2011) Expression, splicing, and evolution of the myosin gene family in plants. Plant Physiol 155:1191–1204PubMedPubMedCentralCrossRefGoogle Scholar
  76. Persia D, Cai G, Del Casino C, Faleri C, Willemse MTM, Cresti M (2008) Sucrose synthase is associated with the cell wall of tobacco pollen tubes. Plant Physiol 147:1603–1618PubMedPubMedCentralCrossRefGoogle Scholar
  77. Qin Y, Chen D, Zhao J (2007) Localization of arabinogalactan proteins in anther, pollen, and pollen tube of Nicotiana tabacum L. Protoplasma 231:43–53PubMedCrossRefGoogle Scholar
  78. Qin P, Ting D, Shieh A, McCormick S (2012) Callose plug deposition patterns vary in pollen tubes of Arabidopsis thaliana ecotypes and tomato species. BMC Plant Biol 12:178PubMedPubMedCentralCrossRefGoogle Scholar
  79. Qu X, Jiang Y, Chang M, Liu X, Zhang R, Huang S (2015) Organization and regulation of the actin cytoskeleton in the pollen tube. Front Plant Sci 5:786. doi: 10.3389/fpls.2014.00786 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Qu X, Zhang H, Xie Y, Wang J, Chen N, Huang S (2013) Arabidopsis villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. Plant Cell 25:1803–1817PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ren H, Xiang Y (2007) The function of actin-binding proteins in pollen tube growth. Protoplasma 230:171–182PubMedCrossRefGoogle Scholar
  82. Rockel N, Wolf S, Kost B, Rausch T, Greiner S (2008) Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J 53:133–143PubMedCrossRefGoogle Scholar
  83. Rounds CM, Hepler PK, Winship LJ (2014) The apical actin fringe contributes to localized cell wall deposition and polarized growth in the lily pollen tube. Plant Physiol 166:139–151PubMedPubMedCentralCrossRefGoogle Scholar
  84. Salnikov VV, Grimson MJ, Delmer DP, Haigler CH (2001) Sucrose synthase localizes to cellulose synthesis sites in tracheary elements. Phytochemistry 57:823–833PubMedCrossRefGoogle Scholar
  85. Salnikov VV, Grimson MJ, Seagull RW, Haigler CH (2003) Localization of sucrose synthase and callose in freeze-substituted secondary-wall-stage cotton fibers. Protoplasma 221:175–184PubMedGoogle Scholar
  86. Sardar HS, Yang J, Showalter AM (2006) Molecular interactions of arabinogalactan proteins with cortical microtubules and F-actin in Bright Yellow-2 tobacco cultured cells. Plant Physiol 142:1469–1479PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sheng XY, ZH H, HF L, Wang XH, Baluska F, Samaj J, Lin JX (2006) Roles of the ubiquitin/proteasome pathway in pollen tube growth with emphasis on MG132-induced alterations in ultrastructure, cytoskeleton, and cell wall components. Plant Physiol 141:1578–1590PubMedPubMedCentralCrossRefGoogle Scholar
  88. Shi X, Sun X, Zhang Z, Feng D, Zhang Q, Han L, Wu J, Lu T (2015) Glucan synthase-like 5 (GSL5) plays an essential role in male fertility by regulating callose metabolism during microsporogenesis in rice. Plant Cell Physiol 56:497–509PubMedCrossRefGoogle Scholar
  89. Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417PubMedCrossRefGoogle Scholar
  90. Staiger CJ, Poulter NS, Henty JL, Franklin-Tong VE, Blanchoin L (2010) Regulation of actin dynamics by actin-binding proteins in pollen. J Exp Bot 61:1969–1986PubMedCrossRefGoogle Scholar
  91. Su H, Zhu J, Cai C, Pei W, Wang J, Dong H, Ren H (2012) FIMBRIN1 is involved in lily pollen tube growth by stabilizing the actin fringe. Plant Cell 24:4539–4554PubMedPubMedCentralCrossRefGoogle Scholar
  92. Tan L, Showalter AM, Egelund J, Hernandez-Sanchez A, Doblin MS, Bacic A (2012) Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans. Front Plant Sci 3:140. doi: 10.3389/fpls.2012.00140 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Tominaga M (2012) Plant-specific myosin XI, a molecular perspective. Front Plant Sci 3:161CrossRefGoogle Scholar
  94. Wang HJ, Wan AR, Jauh GY (2008) An actin-binding protein, LlLIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes. Plant Physiol 147:1619–1636PubMedPubMedCentralCrossRefGoogle Scholar
  95. Wang W, Wang L, Chen C, Xiong G, Tan XY, Yang KZ, Wang ZC, Zhou Y, Ye D, Chen LQ (2011) Arabidopsis CSLD1 and CSLD4 are required for cellulose deposition and normal growth of pollen tubes. J Exp Bot 62:5161–5177PubMedPubMedCentralCrossRefGoogle Scholar
  96. Wei Z, Qu Z, Zhang L, Zhao S, Bi Z, Ji X, Wang X, Wei H (2015) Overexpression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height. PLoS One 10:e0120669PubMedPubMedCentralCrossRefGoogle Scholar
  97. Williams JH (2008) Novelties of the flowering plant pollen tube underlie diversification of a key life history stage. Proc Natl Acad Sci USA 105:11259–11263PubMedPubMedCentralCrossRefGoogle Scholar
  98. Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2010) Under pressure, cell walls set the pace. Trends Plant Sci 15:363–369PubMedPubMedCentralCrossRefGoogle Scholar
  99. Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2011) Pollen tubes and the physical world. Trends Plant Sci 16:353–355PubMedCrossRefGoogle Scholar
  100. Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Biochem Mol Biol 35:253–289PubMedCrossRefGoogle Scholar
  101. Winter H, Huber JL, Huber SC (1998) Identification of sucrose synthase as an actin-binding protein. FEBS Lett 430:205–208PubMedCrossRefGoogle Scholar
  102. Worden N, Park E, Drakakaki G (2012) Trans-golgi network—An intersection of trafficking cell wall components. J Integr Plant Biol 54:875–886PubMedGoogle Scholar
  103. Xie B, Deng Y, Kanaoka MM, Okada K, Hong Z (2012) Expression of Arabidopsis callose synthase 5 results in callose accumulation and cell wall permeability alteration. Plant Sci 183:1–8PubMedCrossRefGoogle Scholar
  104. Yokota E, Muto S, Shimmen T (1999) Inhibitory regulation of higher-plant myosin by Ca2+ ions. Plant Physiol 119:231–240PubMedPubMedCentralCrossRefGoogle Scholar
  105. Yoneda A, Ito T, Higaki T, Kutsuna N, Saito T, Ishimizu T, Osada H, Hasezawa S, Matsui M, Demura T (2010) Cobtorin target analysis reveals that pectin functions in deposition of cellulose microfibrils parallel to cortical microtubules in a manner dependent on the methylesterification ratio of pectin and its distribution. Plant J 64:657–667PubMedCrossRefGoogle Scholar
  106. Zerzour R, Kroeger J, Geitmann A (2009) Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev Biol 334:437–446PubMedCrossRefGoogle Scholar
  107. Zhang G, Feng J, Wu J, Wang X (2010) BoPMEI1, a pollen-specific pectin methylesterase inhibitor, has an essential role in pollen tube growth. Planta 231:1323–1334PubMedCrossRefGoogle Scholar
  108. Zhao H, Ren H (2006) Rop1Ps promote actin cytoskeleton dynamics and control the tip growth of lily pollen tube. Sex Plant Reprod 19:83–91CrossRefGoogle Scholar
  109. Zhu C, Ganguly A, Baskin TI, McClosky DD, Anderson CT, Foster C, Meunier KA, Okamoto R, Berg H, Dixit R (2015) The fragile Fiber1 kinesin contributes to cortical microtubule-mediated trafficking of cell wall components. Plant Physiol 167:780–792PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zonia L, Munnik T (2011) Understanding pollen tube growth: the hydrodynamic model versus the cell wall model. Trends Plant Sci 16:347–352PubMedCrossRefGoogle Scholar
  111. Zou Y, Aggarwal M, Zheng WG, Hm W, Cheung AY (2011) Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil. AoB Plants:plr017. doi: 10.1093/aobpla/plr017

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienze della VitaUniversity of SienaSienaItaly
  2. 2.Dipartimento di Scienze BiologicheGeologiche e AmbientaliBolognaItaly

Personalised recommendations