Skip to main content

Pollen Tubes and Tip Growth: of Biophysics and Tipomics

  • Chapter
  • First Online:
Pollen Tip Growth

Abstract

Pollen is the male gametophyte of higher plants and is responsible for the successful transport of the sperm cells to the ovules. After landing on a stigma, pollen grains will germinate and grow a pollen tube through the stigma and style tissue towards the ovules, where fertilization takes place. In terms of cell biology, the elongation of the pollen tube is characterized by a dramatically polarized growth process, tip growth, which is common to root hairs, fungal hyphae and some developing neurites. Due to their simple morphology and function, growing pollen tubes became the most well-established model system to study tip growth. Both the editors of this book have been enthusiastic paladins of this trend, even since they first met in 1994 during the 13th International Congress on Sexual Plant Reproduction in Vienna. Our intellectual enthusiasm was first materialized in an essay in which a naive and simple yet forward theoretical model was set forth, implying a set of electrochemistry rules to be at the core of a minimal set of mechanism underlying cell polarity establishment and maintenance during pollen tube growth (Feijó et al. ). In short, subcellular biophysical processes, like ion transport, endogenous electrical fields and a tip-focussed Ca2+ gradient, would regulate the shape and growth rate in an essentially self-organizing process. Ever since then, the multitude of nuts and bolts and genes and pathways and their biological consequences have amounted to a vast literature in practically every aspect of the biology of pollen. And yet, some of the essential parts of this naive biophysical view of the pollen tube remained elusive, namely the existence and features of the channels responsible for the unique ion biology of pollen (Michard et al.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arrivault S, Guenther M, Florian A, Encke B, Feil R, Vosloh D, Lunn JE, Sulpice R, Fernie AR, Stitt M, Schulze WX (2014) Dissecting the subcellular compartmentation of proteins and metabolites in Arabidopsis leaves using non-aqueous fractionation. Mol Cell Proteomics 13:2246–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibikova TN, Assmann S, Gilroy S (2004) Ca2+ and pH as integrated signals in transport control. In: Blatt MR (ed) Membrane transport in plants, Annual plant reviews, vol 15. Blackwell, Oxford, pp 252–278

    Google Scholar 

  • Carvalho PC, Lima DB, Leprevost FV, Santos MDM, Fischer JSG, Aquino PF, Moresco JJ, Yates JR III, Barbosa VC (2016) Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0. Nat Protoc 11:102–117

    Article  CAS  PubMed  Google Scholar 

  • Certal AC, Almeida RB, Carvalho LM, Wong E, Moreno N, Michard E, Carneiro J, Rodriguez-Leon J, Wu H-M, Cheung AY, Feijo J (2008) Exclusion of a proton ATPase from the apical membrane is associated with cell polarity and tip growth in Nicotiana tabacum pollen tubes. Plant Cell 20:614–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christoforou A, Mulvey CM, Breckels LM, Geladaki A, Hurrell T, Hayward PC, Naake T, Gatto L, Viner R, Martinez Arias A, Lilley KS (2016) A draft map of the mouse pluripotent stem cell spatial proteome. Nat Commun 7. doi:10.1038/ncomms9992

  • Coruzzi GM, Gutiérrez RA (2009) Plant systems biology. In: Annual plant reviews, vol 35. Wiley-Blackwell, Oxford

    Google Scholar 

  • Dunkley TPJ, Hester S, Shadford IP, Runions J, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P, Lilley KS (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci USA 103:6518–6523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feijó JA, Moreno N (2004) Imaging plant cells by two-photon excitation. Protoplasma 223:1–32

    Article  PubMed  Google Scholar 

  • Feijó JA, Malhó R, Obermeyer G (1995) Ion dynamics and its possible role during in vitro pollen germination and tube growth. Protoplasma 187:155–167

    Article  Google Scholar 

  • Feijó JA, Sainhas J, Holdaway-Clarke T, Cordeiro S, Kunkel JG, Hepler PK (2001) Cellular oscillations and the regulation of growth: the pollen tube paradigm. Bioessays 23:86–94

    Article  PubMed  Google Scholar 

  • Hamers D, van Voorst VL, Borst JW, Goedhart J (2014) Development of FRET biosensors for mammalian and plant systems. Protoplasma 251:333–347

    Article  CAS  PubMed  Google Scholar 

  • Holdaway-Clarke T, Hepler PK (2003) Control of pollen tube growth: role of ion gradients and fluxes. New Phytol 159:539–563

    Article  CAS  Google Scholar 

  • Humphrey SJ, Azimifar SB, Mann M (2015) High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat Biotechnol 33:990–995

    Article  CAS  PubMed  Google Scholar 

  • Ingalls BP (2013) Mathematical modeling in systems biology. MIT Press, Cambridge

    Google Scholar 

  • Klipp E, Liebermeister W, Wierling C, Kowald A, Lehrach H, Herwig R (2009) Systems biology. A textbook. Wiley Blackwell, Weinheim

    Google Scholar 

  • Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua N-H (1999) Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145:317–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krueger S, Giavalisco P, Krall L, Steinhauser M-C, Büssis D, Usadel B, Flügge U-I, Fernie AR, Willmitzer L, Steinhauser D (2011) A topological map of the compartmentalized Arabidopsis thaliana leaf metabolome. PLoS One 6:e17806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Wu Y, Christensen R, Chandris P, Gandler W, McCreedy E, Bokinsky A, Colón-Ramos DA, Bao Z, McAuliffe M, Rondeau G, Shroff H (2014) Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nat Protoc 9:2555–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkel JG, Cordeiro S, Xu Y, Shipley AM, Feijó JA (2006) Use of non-invasive ion-selective microelectrode techniques for the study of plant development. In: Volkov AG (ed) Plant electrophysiology. Theory and methods. Springer, Berlin, pp 110–137

    Google Scholar 

  • Liu F, Rijkers DTS, Post H, Heck AJR (2015) Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nat Methods. doi:10.1038/NMETH.3603

    Google Scholar 

  • Maizel A, von Wangenheim D, Federici F, Haseloff J, Stelzer EHK (2011) High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J 68:377–385

    Article  CAS  PubMed  Google Scholar 

  • Michalski A, Damoc E, Hauschild J-P, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S (2011) Mass spectrometry-based proteomics using Q exactive, a high-performance benchtop quadrupole orbitrap mass spectrometer. Mol Cell Proteomics 10. doi:10.1074/mcp.M111.011015-1

  • Michalski A, Damoc E, Lange O, Denisov E, Nolting D, Müller M, Viner R, Schwartz J, Remes P, Belford M, Dunyach J-J, Cox J, Horning S, Mann M, Makarov A (2012) Ultra high resolution linear ion trap orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Mol Cell Proteomics 11. doi:10.1074/mcp.O111.013698–1

  • Michard E, Dias P, Feijo JA (2008) Tobacco pollen tubes as cellular models for ion dynamics: improved spatial and temporal resolution of extracellular flux and free cytosolic concentration of calcium and protons using pHluorin and YC3.1 CaMeleon. Sex Plant Reprod 21:169–181

    Article  CAS  Google Scholar 

  • Michard E, Simon AA, Tavares B, Wudick MM, Feijo JA (2017) Signaling with ions: the keystone for apical cell growth and morphogenesis in pollen tubes. Plant Physiol 173:91–111

    Article  CAS  PubMed  Google Scholar 

  • Monteiro D, Liu Q, Lisboa S, Scherer GEF, Quader H, Malhó R (2005) Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion. J Exp Bot 56:1665–1674

    Article  CAS  PubMed  Google Scholar 

  • Ntranos V, Kamath GM, Zhang JM, Pachter L, Tse DN (2016) Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts. Genome Biol 17:112. doi:10.1186/s13059-016-0970-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Okumoto S, Jones A, Frommer WB (2012) Quantitative imaging with fluorescent biosensors. Annu Rev Plant Biol 63:663–706

    Article  CAS  PubMed  Google Scholar 

  • Pertl H, Himly M, Gehwolf R, Kriechbaumer R, Strasser D, Michalke W, Richter K, Ferreira F, Obermeyer G (2001) Molecular and physiological characterisation of a 14-3-3 protein from lily pollen grains regulating the activity of the plasma membrane H+ ATPase during pollen grain germination and tube growth. Planta 213:132–141

    Article  CAS  PubMed  Google Scholar 

  • Pertl-Obermeyer H, Wu XN, Schrodt J, Müdsam C, Obermeyer G, Schulze WX (2016) Identification of cargo for adaptor protein complexes AP-3 and AP-4 by sucrose gradient profiling. Mol Cell Proteomics 15. doi:10.1074/mcp.M116.060129

  • Potocky M, Elias M, Profotova B, Novotna Z, Valentova O, Zarsky V (2003) Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta 217:122–130

    CAS  PubMed  Google Scholar 

  • Schleifenbaum F, Elgass K, Sackrow M, Caesar K, Berendzen K, Meixner AJ, Harter K (2009) Fluorescence intensity decay shape analysis microscopy (FIDSAM) for quantitative and sensitive live-cell imaging: a novel technique for fluorescence microscopy of endogenously expressed fusion proteins. Mol Plant 3:555–562

    Article  PubMed  Google Scholar 

  • Steinhorst L, Mähs A, Ischebeck T, Zhang C, TZhang X, Arendt S, Schültke S, Heilmann I, Kudla J (2015) Vacuolar CBL-CIPK12 Ca2+-sensor-kinase complexes are required for polarized pollen tube growth. Curr Biol 25:475–482

    Article  Google Scholar 

  • Swanson SJ, Choi W-G, Chanoca A, Gilroy S (2011) In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants. Annu Rev Plant Biol 62:273–297

    Article  CAS  PubMed  Google Scholar 

  • Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. doi:10.1038/nmeth.3901

    PubMed  Google Scholar 

  • Wang H, Zhuang X, Wang X, Law AHY, Zhao T, Du S, Loy MMT, Jiang L (2016) A distinct pathway for polar exocytosis in plant cell wall formation. Plant Physiol 172:1003–1018

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Obermeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Obermeyer, G., Feijó, J. (2017). Pollen Tubes and Tip Growth: of Biophysics and Tipomics. In: Obermeyer, G., Feijó, J. (eds) Pollen Tip Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-56645-0_1

Download citation

Publish with us

Policies and ethics