Advertisement

One Thousand and One Oscillators at the Pollen Tube Tip: The Quest for a Central Pacemaker Revisited

Chapter

Abstract

Pollen tube growth and oscillations constitute a prime system to study polarized cell growth, warranting the expansion of mathematical models in recent years. Although it is unlikely to have a myriad of distinct independent oscillators at the pollen tube tip, the tendency to describe as many new oscillators as there are objects of study is likely to continue. The same process has happened for over 60 years of studies in circadian rhythms and, similarly, in other biological phenomena displaying oscillatory behavior. Here, we take the opportunity to revise pollen tube oscillator models with cautionary tales learned in other systems. Currently the nature of the core negative feedback loop generating the oscillations, as well as the role and regulation of Ca2+ and growth, seems elusive. The vast majority of mathematical models assume that intracellular Ca2+ is primarily controlled by stretch-activated channels and, thus, relies on membrane tension and growth. Counterpoints to these canonical assumptions will be given as to evidence the gaps in achieving a comprehensive view of pollen tube oscillations. Finally, inspiration stemming from systems involving intracellular polarity and chemotaxis motivates a proposal for the existence of two putatively coupled and yet distinct oscillatory systems involved in pollen tube growth: a signaling-based oscillator at the tip and a motion-based oscillator at the shank, which could be coupled by intracellular signals as Ca2+ waves. This proposition may account for the oscillations observed in nongrowing tubes, as both oscillators could be uncoupled in certain regimes, resolving the conundrum entailed by current model.

Keywords

Apical growth Chemotropism Ion dynamics Regulatory motifs Negative feedback Biochemical and biophysical oscillations Mathematical models 

Notes

Acknowledgments

This work was supported by the National Science Foundation (MCB 1616437/2016) and the University of Maryland.

References

  1. Abraham U, Granada AE, Westermark PO, Heine M, Kramer A, Herzel H (2010) Coupling governs entrainment range of circadian clocks. Mol Syst Biol 6:438CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–556CrossRefPubMedPubMedCentralGoogle Scholar
  3. Benkert R, Obermeyer G, Bentrup F-W (1997) The turgor pressure of growing lily pollen tubes. Protoplasma 198:1–8CrossRefGoogle Scholar
  4. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21CrossRefPubMedGoogle Scholar
  5. Bjørnstad ON, Grenfell BT (2001) Noisy clockwork: time series analysis of population fluctuations in animals. Science 293(5530):638–643Google Scholar
  6. Blasius B, Huppert A, Stone L (1999) Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399:354–359CrossRefPubMedGoogle Scholar
  7. Boavida LC, Vieira AM, Becker JD, Feijó JA (2005) Gametophyte interaction and sexual reproduction: how plants make a zygote. Int J Dev Biol 49:615–632CrossRefPubMedGoogle Scholar
  8. Bodenstein C, Knoke B, Marhl M, Perc M, Schuster S (2010) Using Jensen’s inequality to explain the role of regular calcium oscillations in protein activation. Phys Biol 7:36009CrossRefGoogle Scholar
  9. Buzsáki G (2006) Rhythms of the brain. Oxford University Press, OxfordCrossRefGoogle Scholar
  10. Ciliberto A, Novak B, Tyson JJ (2005) Steady states and oscillations in the p53/Mdm2 network. Cell Cycle 4:488–493CrossRefPubMedGoogle Scholar
  11. Damineli DSC, Portes MT, Feijó JA (2017) Oscillatory signatures underlie growth regimes in Arabidopsis pollen tubes: computational methods to estimate tip location, periodicity, and synchronization in growing cells. J Exp Bot erx032Google Scholar
  12. Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T, Ehrhardt DW, Frommer WB, Sprunck S, Dresselhaus T, Grossmann G (2014) Male–female communication triggers calcium signatures during fertilization in Arabidopsis. Nat Commun 5:4645CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–3Google Scholar
  14. Edelstein-Keshet L, Holmes WR, Zajac M, Dutot M (2013) From simple to detailed models for cell polarization. Philos Trans R Soc B Biol Sci 368:20130003–20130003CrossRefGoogle Scholar
  15. Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, Xu Y, Pan M, Valekunja UK, Feeney KA, Maywood ES, Hastings MH, Baliga NS, Merrow M, Millar AJ, Johnson CH, Kyriacou CP, O’Neill JS, Reddy AB (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 489:590CrossRefGoogle Scholar
  16. Endersby J (2009) Lumpers and splitters: Darwin, Hooker, and the search for order. Science 326:1496–1499CrossRefPubMedGoogle Scholar
  17. Feijó JA (1999) The pollen tube oscillator: towards the molecular mechanism of tip growth? In: Cresti M, Cai G, Moscatelli A (eds) Fertilization in higher plants: molecular and cytological aspects. Springer, Berlin, pp 317–336Google Scholar
  18. Feijó JA, Sainhas J, Holdaway-Clarke T, Cordeiro MS, Kunkel JG, Hepler PK (2001) Cellular oscillations and the regulation of growth: the pollen tube paradigm. BioEssays 23:86–94CrossRefPubMedGoogle Scholar
  19. Forger DB, Kronauer RE (2002) Reconciling mathematical models of biological clocks by averaging on approximate manifolds. SIAM J Appl Math 62:1281–1296CrossRefGoogle Scholar
  20. Fu Y, Wu G, Yang Z (2001) Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J Cell Biol 152:1019–1032CrossRefPubMedPubMedCentralGoogle Scholar
  21. Garmendia-Torres C, Goldbeter A, Jacquet M (2007) Nucleocytoplasmic oscillations of the yeast transcription factor Msn2: evidence for periodic PKA activation. Curr Biol 17:1044–1049CrossRefPubMedGoogle Scholar
  22. Geitmann A, Cresti M (1998) Ca2+ channels control the rapid expansions in pulsating growth of Petunia hybrida pollen tubes. J Plant Physiol 152:439–447CrossRefGoogle Scholar
  23. Geitmann A, Li YQ, Cresti M (1996) The role of the cytoskeleton and dictyosome activity in the pulsatory growth of Nicotiana tabacum and Petunia hybrida pollen tubes. Bot Acta 109:102–109CrossRefGoogle Scholar
  24. Gibb S, Maroto M, Dale JK (2010) The segmentation clock mechanism moves up a notch. Trends Cell Biol 20:593–600CrossRefPubMedPubMedCentralGoogle Scholar
  25. Goldbeter A (1975) Mechanism for oscillatory synthesis of cyclic AMP in Dictyostelium discoideum. Nature 253:540–542CrossRefPubMedGoogle Scholar
  26. Goldbeter A (1995) A model for circadian oscillations in the Drosophila period protein (PER). Proc Biol Sci 261:319–324CrossRefPubMedGoogle Scholar
  27. Goldbeter A, Lefever R (1972) Dissipative structures for an allosteric model. Application to glycolytic oscillations. Biophys J 12:1302–1315CrossRefPubMedPubMedCentralGoogle Scholar
  28. Granada AE, Herzel H (2009) How to achieve fast entrainment? The timescale to synchronization. PLoS One 4:e7057CrossRefPubMedPubMedCentralGoogle Scholar
  29. Granada AE, Cambras T, Diez-Noguera A, Herzel H (2011) Circadian desynchronization. Interface Focus 1:153–166CrossRefPubMedGoogle Scholar
  30. Greenham K, McClung CR (2015) Integrating circadian dynamics with physiological processes in plants. Nat Rev Genet 16:598–610CrossRefPubMedGoogle Scholar
  31. Gu Y, Vernoud V, Fu Y, Yang Z (2003) ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot 54:93–101CrossRefPubMedGoogle Scholar
  32. Hamamura Y, Nishimaki M, Takeuchi H, Geitmann A, Kurihara D, Higashiyama T (2014) Live imaging of calcium spikes during double fertilization in Arabidopsis. Nat Commun 5:4722CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hepler PK, Rounds CM, Winship LJ (2013) Control of cell wall extensibility during pollen tube growth. Mol Plant 6:998–1017CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hoeller O, Toettcher JE, Cai H, Sun Y, Huang C-H, Freyre M, Zhao M, Devreotes PN, Weiner OD (2016) Gβ regulates coupling between actin oscillators for cell polarity and directional migration. PLOS Biol 14:e1002381CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hoffman DA, Sprengel R, Sakmann B (2002) Molecular dissection of hippocampal theta-burst pairing potentiation. Proc Natl Acad Sci USA 99:7740–7745CrossRefPubMedPubMedCentralGoogle Scholar
  36. Holdaway-Clarke TL, Hepler PK (2003) Control of pollen tube growth: role of ion gradients and fluxes. New Phytol 159:539–563CrossRefGoogle Scholar
  37. Holdaway-Clarke TL, Feijó JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9:1999–2010CrossRefPubMedPubMedCentralGoogle Scholar
  38. Holdaway-Clarke TL, Weddle NM, Kim S, Robi A, Parris C, Kunkel JG, Hepler PK (2003) Effect of extracellular calcium, pH and borate on growth oscillations in Lilium formosanum pollen tubes. J Exp Bot 54:65–72CrossRefPubMedGoogle Scholar
  39. Hotta CT, Gardner MJ, Hubbard KE, Baek SJ, Dalchau N, Suhita D, Dodd AN, Webb AAR (2007) Modulation of environmental responses of plants by circadian clocks. Plant Cell Environ 30:333–349CrossRefPubMedGoogle Scholar
  40. Huang C-H, Tang M, Shi C, Iglesias PA, Devreotes PN (2013) An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration. Nat Cell Biol 15:1307–1316CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hwang J-U (2005) Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol Biol Cell 16:5385–5399CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hwang J-U, Vernoud V, Szumlanski A, Nielsen E, Yang Z (2008) A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr Biol 18:1907–1916CrossRefPubMedPubMedCentralGoogle Scholar
  43. Iwano M, Entani T, Shiba H, Kakita M, Nagai T, Mizuno H, Miyawaki A, Shoji T, Kubo K, Isogai A, Takayama S (2009) Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth. Plant Physiol 150:1322–1334CrossRefPubMedPubMedCentralGoogle Scholar
  44. Iwano M, Ngo QA, Entani T, Shiba H, Nagai T, Miyawaki A, Isogai A, Grossniklaus U, Takayama S (2012) Cytoplasmic Ca2+ changes dynamically during the interaction of the pollen tube with synergid cells. Development 139:4202–4209CrossRefPubMedGoogle Scholar
  45. Kroeger J, Geitmann A (2011) Modeling pollen tube growth: feeling the pressure to deliver testifiable predictions. Plant Signal Behav 6:1828–1830Google Scholar
  46. Kroeger JH, Geitmann A (2012) Pollen tube growth: getting a grip on cell biology through modeling. Mech Res Commun 42:32–39CrossRefGoogle Scholar
  47. Kroeger JH, Geitmann A (2013) Pollen tubes with more viscous cell walls oscillate at lower frequencies. Math Model Nat Phenom 8:25–34CrossRefGoogle Scholar
  48. Kroeger JH, Geitmann A, Grant M (2008) Model for calcium dependent oscillatory growth in pollen tubes. J Theor Biol 253:363–374CrossRefPubMedGoogle Scholar
  49. Kroeger JH, Zerzour R, Geitmann A (2011) Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth. PLoS One 6:e18549CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lema MA, Golombek DA, Echave J (2000) Delay model of the circadian pacemaker. J Theor Biol 204:565–573CrossRefPubMedGoogle Scholar
  51. Lewis J (2003) Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr Biol 13:1398–1408CrossRefPubMedGoogle Scholar
  52. Liu J, Hussey P (2011) Towards the creation of a systems tip growth model for a pollen tube. Plant Signal Behav 6:520–522CrossRefPubMedPubMedCentralGoogle Scholar
  53. Liu J, Hussey PJ (2014) Dissecting the regulation of pollen tube growth by modeling the interplay of hydrodynamics, cell wall and ion dynamics. Front Plant Sci 5:392PubMedPubMedCentralGoogle Scholar
  54. Liu J, Grieson CS, Webb AA, Hussey PJ (2010) Modelling dynamic plant cells. Curr Opin Plant Biol 13:744–749CrossRefPubMedGoogle Scholar
  55. McClung CR (2000) Minireview: Circadian rhythms in plants: a millennial view. Physiol Plant 109:359–371CrossRefGoogle Scholar
  56. McClung CR (2001) Circadian rhythms in plants. Annu Rev Plant Physiol Plant Mol Biol 52:139–162CrossRefPubMedGoogle Scholar
  57. McClure AW, Lew DJ (2014) Cell polarity: netrin calms an excitable system. Curr Biol 24:R1050–R1052CrossRefPubMedGoogle Scholar
  58. Meinhardt H (1999) Orientation of chemotactic cells and growth cones: models and mechanisms. J Cell Sci 112:2867–2874PubMedGoogle Scholar
  59. Meyer T, Stryer L (1988) Molecular model for receptor-stimulated calcium spiking. Proc Natl Acad Sci USA 85:5051–5055CrossRefPubMedPubMedCentralGoogle Scholar
  60. Michard E, Dias P, Feijó JA (2008) Tobacco pollen tubes as cellular models for ion dynamics: improved spatial and temporal resolution of extracellular flux and free cytosolic concentration of calcium and protons using pHluorin and YC3.1 CaMeleon. Sex Plant Reprod 21:169–181CrossRefGoogle Scholar
  61. Michard E, Alves F, Feijó JA (2009) The role of ion fluxes in polarized cell growth and morphogenesis: the pollen tube as an experimental paradigm. Int J Dev Biol 53:1609–1622CrossRefPubMedGoogle Scholar
  62. Michard E, Lima PT, Borges F, Silva AC, Portes MT, Carvalho JE, Gilliham M, Liu L-H, Obermeyer G, Feijó JA (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332:434–437CrossRefPubMedGoogle Scholar
  63. Mogilner A, Allard J, Wollman R (2012) Cell polarity: quantitative modeling as a tool in cell biology. Science 336:175–179CrossRefPubMedGoogle Scholar
  64. Monk NAM (2003) Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays. Curr Biol 13:1409–1413CrossRefPubMedGoogle Scholar
  65. Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN (2010) Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329:1306–1311CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ngo QA, Vogler H, Lituiev DS, Nestorova A, Grossniklaus U (2014) A calcium dialog mediated by the FERONIA signal transduction pathway controls plant sperm delivery. Dev Cell 29:491–500CrossRefPubMedGoogle Scholar
  67. Novák B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9:981–991CrossRefPubMedPubMedCentralGoogle Scholar
  68. van Ooijen G, Millar AJ (2012) Non-transcriptional oscillators in circadian timekeeping. Trends Biochem Sci 37:484–492CrossRefPubMedGoogle Scholar
  69. Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95:8660–8664Google Scholar
  70. Parekh AB (2011) Decoding cytosolic Ca2+ oscillations. Trends Biochem Sci 36:78–87CrossRefPubMedGoogle Scholar
  71. Parton RM, Fischer-Parton S, Watahiki MK, Trewavas a J (2001) Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes. J Cell Sci 114: 2685–2695.Google Scholar
  72. Parton RM, Fischer-Parton S, Trewavas AJ, Watahiki MK (2003) Pollen tubes exhibit regular periodic membrane trafficking events in the absence of apical extension. J Cell Sci 116:2707–2719CrossRefPubMedGoogle Scholar
  73. Pierson ES, Li YQ, Zhang HQ, Willemse MTM, Linskens HF, Cresti M (1995) Pulsatory growth of pollen tubes: investigation of a possible relationship with the periodic distribution of cell wall components. Acta Bot Neerl 44:121–128CrossRefGoogle Scholar
  74. Pietruszka M (2013) Pressure–induced cell wall instability and growth oscillations in pollen tubes. PLoS One 8(11):e75803Google Scholar
  75. Pikovsky A, Rosenblum M, Kurths J (2003) Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, CambridgeGoogle Scholar
  76. Pokhilko A, Fernández AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ (2012) The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol 8:1–13CrossRefGoogle Scholar
  77. Pomerening JR, Kim SY, Ferrell JE (2005) Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell 122:565–578CrossRefPubMedGoogle Scholar
  78. Portes MT, Damineli DSC, Moreno N, Colaço R, Costa S, Feijó JA (2015) The pollen tube oscillator: integrating biophysics and biochemistry into cellular growth and morphogenesis. In: Mancuso S, Shabala S (eds) Rhythms in plants: dynamic responses in a dynamic environment. Springer, Cham, pp 121–156CrossRefGoogle Scholar
  79. Renvoize S (1991) Thamnocalamus spathaceus and its hundred year flowering cycle. Curtis’s Bot Mag 8:185–194CrossRefGoogle Scholar
  80. Roenneberg T, Merrow M (2001) Circadian systems: different levels of complexity. Philos Trans R Soc B Biol Sci 356:1687–1696CrossRefGoogle Scholar
  81. Roenneberg T, Merrow M (2005) Circadian clocks - the fall and rise of physiology. Mol Cell 6:965–971Google Scholar
  82. Rojas ER, Hotton S, Dumais J (2011) Chemically mediated mechanical expansion of the pollen tube cell wall. Biophys J 101:1844–1853CrossRefPubMedPubMedCentralGoogle Scholar
  83. Romero E, Augulis R, Novoderezhkin VI, Ferretti M, Thieme J, Zigmantas D, van Grondelle R (2014) Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat Phys 10:676–682CrossRefPubMedPubMedCentralGoogle Scholar
  84. Rounds CM, Hepler PK, Fuller SJ, Winship LJ (2010) Oscillatory growth in lily pollen tubes does not require aerobic energy metabolism. Plant Physiol 152:736–746CrossRefPubMedPubMedCentralGoogle Scholar
  85. Schuster S, Marhl M, Höfer T (2002) Modelling of simple and complex calcium oscillations. Eur J Biochem 269:1333–1355CrossRefPubMedGoogle Scholar
  86. Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456:516–519CrossRefPubMedGoogle Scholar
  87. Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Perseus Books, ReadingGoogle Scholar
  88. Tsai TY-C, Choi YS, Ma W, Pomerening JR, Tang C, Ferrell JE (2008) Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321:126–129CrossRefPubMedPubMedCentralGoogle Scholar
  89. Welsh DK, Takahashi JS, Kay S (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577CrossRefPubMedPubMedCentralGoogle Scholar
  90. Winfree AT (1975) Unclocklike behaviour of biological clocks. Nature 253:315–319CrossRefPubMedGoogle Scholar
  91. Winfree AT (2001) The geometry of biological time. Springer, New YorkCrossRefGoogle Scholar
  92. Wu CF, Lew DJ (2013) Beyond symmetry-breaking: competition and negative feedback in GTPase regulation. Trends Cell Biol 23:476–483CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wu M, Wu X, De Camilli P (2013) Calcium oscillations-coupled conversion of actin travelling waves to standing oscillations. Proc Natl Acad Sci USA 110:1339–1344CrossRefPubMedPubMedCentralGoogle Scholar
  94. Xiong Y, Huang C-H, Iglesias P, Devreotes PN (2010) Cells navigate with a local-excitation, global-inhibition-biased excitable network. Proc Natl Acad Sci USA 107:17079–17086CrossRefPubMedPubMedCentralGoogle Scholar
  95. Yan A, Xu G, Yang Z-B (2009) Calcium participates in feedback regulation of the oscillating ROP1 Rho GTPase in pollen tubes. Proc Natl Acad Sci USA 106:22002–22007CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUSA

Personalised recommendations