Derivation and Use of Mathematical Models in Systems Biology



Systems Biology has brought together researchers from biology, mathematics, physics and computer science to illuminate our understanding of biological mechanisms. In this chapter, we provide an overview of numerical techniques and considerations required to construct useful models describing natural phenomena. Initially, we show how the dynamics of single molecules up to the development of tissues can be described mathematically over both temporal and spatial scales. Importantly, we discuss the issue of model selection whereby multiple models can describe the same phenomena. We then illustrate how reaction rates can be estimated from datasets and experimental observations as well as highlighting the “parameter identifiability problem”. Finally, we suggest ways in which mathematical models can be used to generate new hypotheses and aid researchers in uncovering the design principles regulating specific biological mechanisms. We hope that this chapter will provide an introduction to the ideas of mathematical modelling for those that wish to incorporate it into their research.


Hypothesis generation Mathematical modelling Model selection Parameter estimation 



Given the large field of mathematical modelling in biological systems we would like to apologise to any readers who feel that we have neglected important references. The references contained herein are those that the authors believe would provide a useful introduction to interested readers. RWS is funded by FP7 Marie Curie Initial Training Network grant agreement number 316723. CF is funded by HFSP Research grant RGP0025/2013.


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC-19:716–723CrossRefGoogle Scholar
  2. Alon U (2007) An introduction to systems biology: design principles of biological circuits. Chapman and Hall, LondonGoogle Scholar
  3. von Bertalanffy L (1968) General system theory: foundations, development, applications. George Braziller, New YorkGoogle Scholar
  4. Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Phillips R (2005) Transcriptional regulation by the numbers: models. Curr Opin Genet Dev 15:116–124CrossRefPubMedPubMedCentralGoogle Scholar
  5. Blumel M, Dally N, Jung C (2015) Flowering time regulation in crops – what did we learn from arabidopsis? Curr Opin Biotechnol 32:121–129CrossRefPubMedGoogle Scholar
  6. Brady SM, Benfey PN (2009) Development and systems biology: riding the genomics wave towards a systems understanding of root development. In: Annual plant reviews: plant systems biology. Wiley-Blackwell, Chichester, chap 11, pp 304–331Google Scholar
  7. Brigandt I (2013) Systems biology and the integration of mechanistic explanation and mathematical explanation. Stud Hist Philos Sci C 44:477–492Google Scholar
  8. De Caluwé J, Xiao Q, Hermans C, Verbruggen N, Leloup JC, Gonze D (2016) A compact model for the complex plant circadian clock. Front Plant Sci 7:74CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE (2012) Biomolecular Simulation: A Computational Microscope for Molecular Biology. Annu Rev Biophys 41:429–452CrossRefPubMedGoogle Scholar
  10. Edelstein-Keshet L (1988) Mathematical models in biology, vol 46. SIAM, PhiladelphiaGoogle Scholar
  11. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338CrossRefPubMedGoogle Scholar
  12. Fayant P, Girlanda O, Chebli Y, Aubin CE, Villemure I, Geitmann A (2010) Finite element model of polar growth in pollen tubes. Plant Cell 22:2579–2593CrossRefPubMedPubMedCentralGoogle Scholar
  13. Flamholz A, Noor E, Bar-Even A, Milo R (2012) equilibrator – the biochemical thermodynamics calculator. Nucleic Acids Res 40:D770–D775CrossRefPubMedGoogle Scholar
  14. Friel N, Pettitt AN (2008) Marginal likelihood estimation via power posteriors. J R Stat Soc Ser B Stat Methodol 70:589–607CrossRefGoogle Scholar
  15. Gabor A, Banga JR (2015) Robust and efficient parameter estimation in dynamic models of biological systems. BMC Syst Biol 9:74CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gardiner CW (2004) Handbook of stochastic methods for physics, chemistry and the natural sciences. Springer, HeidelbergCrossRefGoogle Scholar
  17. Gillespie DT (2000) The chemical Langevin equation. J Chem Phys 113:297–306CrossRefGoogle Scholar
  18. Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55CrossRefPubMedGoogle Scholar
  19. Gilson MK, Zhou HX (2007) Calculation of protein-ligand binding affinities. Annu Rev Biophys Biomol Struct 36:21–42CrossRefPubMedGoogle Scholar
  20. Goodwin BC (1965) Oscillatory behavior in enzymatic control processes. Adv Enzyme Regul 3:425–438CrossRefPubMedGoogle Scholar
  21. Goriely A, Tabor M (2008) Mathematical modeling of hyphal tip growth. Fungal Biol Rev 22:77–83CrossRefGoogle Scholar
  22. Grima R, Thomas P, Straube AV (2011) How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? J Chem Phys 135:084,103CrossRefGoogle Scholar
  23. Guerriero ML, Pokhilko A, Fernandez AP, Halliday KJ, Millar AJ, Hillston J (2012) Stochastic properties of the plant circadian clock. J R Soc Interface 9:744–756CrossRefPubMedGoogle Scholar
  24. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) Copasi – a complex pathway simulator. Bioinformatics 22:3067–3074CrossRefPubMedGoogle Scholar
  25. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H (2003) The systems biology markup language (sbml): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531CrossRefPubMedGoogle Scholar
  26. Jones GW, Chapman SJ (2012) Modeling growth in biological materials. SIAM Rev 54:52–118CrossRefGoogle Scholar
  27. van Kampen NG (1981) Ito versus stratonovich. J Stat Phys 24:175–187CrossRefGoogle Scholar
  28. Kato N, He H, Steger AP (2010) A systems model of vesicle trafficking in arabidopsis pollen tubes. Plant Physiol 152:590–601CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7:165–176CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kitano H (2002a) Computational systems biology. Nature 420:206–210CrossRefPubMedGoogle Scholar
  31. Kitano H (2002b) Systems biology: a brief overview. Science 295:1662–1664CrossRefPubMedGoogle Scholar
  32. Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2005) Systems biology in practice. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  33. Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329:1616–1620CrossRefPubMedGoogle Scholar
  34. Kroeger JH, Geitmann A, Grant M (2008) Model for calcium dependent oscillatory growth in pollen tubes. J Theor Biol 253:363–374CrossRefPubMedGoogle Scholar
  35. Locke JCW, Southern MM, Kozma-Bognar L, Hibberd V, Brown PE, Turner MS, Millar AJ (2005) Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol 2005.0013Google Scholar
  36. Locke JCW, Kozma-Bognar L, Gould PD, Feher B, Kevei E, Nagy F, Turner MS, Hall A, Millar AJ (2006) Experimental validation of a predicted feedback loop in the multi-oscillator clock of arabidopsis thaliana. Mol Syst Biol 2:59CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lotka AJ (1920) Analytical note on certain rhythmic relations in organic systems. Proc Natl Acad Sci USA 6:410–415CrossRefPubMedPubMedCentralGoogle Scholar
  38. MacDonald JT, Barnes C, Kitney RI, Freemont PS, Stan GBV (2011) Computational design approaches and tools for synthetic biology. Integr Biol 3:97–108CrossRefGoogle Scholar
  39. McClung CR (2014) Wheels within wheels: new transcriptional feedback loops in the arabidopsis circadian clock. F1000Prime Rep 6:2Google Scholar
  40. McKay MD, Beckman RJ, Conover WJ (2000) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42:55–61CrossRefGoogle Scholar
  41. Mogilner A, Allard J, Wollman R (2012) Cell polarity: quantitative modeling as a tool in cell biology. Science 336:175–179CrossRefPubMedGoogle Scholar
  42. Murray JD (2002a) Mathematical biology I: an introduction. Springer, New YorkGoogle Scholar
  43. Murray JD (2002b) Mathematical biology II: spatial models and biomedical applications. Springer, New YorkGoogle Scholar
  44. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28:245–248CrossRefPubMedPubMedCentralGoogle Scholar
  45. Paulsson J (2004) Summing up the noise in gene networks. Nature 427:415–418CrossRefPubMedGoogle Scholar
  46. Phillips R, Kondev J, Theriot J, Garcia HG (2013) Physical biology of the cell, 2nd edn. Garland Science, New YorkGoogle Scholar
  47. Pokhilko A, Hodge SK, Stratford K, Knox K, Edwards KD, Thomson AW, Mizuno T, Millar AJ (2010) Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model. Mol Syst Biol 6:416CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pokhilko A, Fernandez AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ (2012) The clock gene circuit in arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol 8:574CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rao YVC (2004) An introduction to thermodynamics. Universities Press, TelanganaGoogle Scholar
  50. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25:1923–1929CrossRefPubMedGoogle Scholar
  51. Raue A, Karlsson J, Saccomani MP, Jirstrand M, Timmer J (2014) Comparison of approaches for parameter identifiability analysis of biological systems. Bioinformatics p doi:10.1093/bioinformatics/btu006Google Scholar
  52. Rausenberger J, Tscheuschler A, Nordmeier W, Wüst F, Timmer J, Schäfer E, Fleck C, Hiltbrunner A (2011) Photoconversion and nuclear trafficking cycles determine phytochrome A’s response profile to far-red light. Cell 146:813–825CrossRefPubMedGoogle Scholar
  53. Rybel BD, Adibi M, Breda AS, Wendrich JR, Smit ME, Novak O, Yamaguchi N, Yoshida S, van Isterdael G, Palovaara J, Nijsse B, Boekschoten MV, Hooiveld G, Beeckman T, Wagner D, Ljung K, Fleck C, Weijers D (2014) Integration of growth and patterning during vascular tissue formation in arabidopsis. Science 345:1255,215CrossRefGoogle Scholar
  54. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D (2004) Brenda, the enzyme database: updates and major developments. Nucleic Acids Res 32:D431–D433CrossRefPubMedPubMedCentralGoogle Scholar
  55. Seaton DD, Smith RW, Song YH, MacGregor DR, Stewart K, Steel G, Foreman J, Penfield S, Imaizumi T, Millar AJ, Halliday KJ (2015) Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature. Mol Syst Biol 11:776CrossRefPubMedPubMedCentralGoogle Scholar
  56. Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, Dekel E, Kavanagh K, Alon U (2012) Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space. Science 336:1157–1160CrossRefPubMedGoogle Scholar
  57. Simon D (2013) Evolutionary optimization algorithms: biologically inspired and population-based approaches to computer intelligence. Wiley, New JerseyGoogle Scholar
  58. Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T (2012) Fkf1 conveys timing information for constans stabilization in photoperiodic flowering. Science 336:1045–1049CrossRefPubMedPubMedCentralGoogle Scholar
  59. Thomas P, Matuschek H, Grima R (2013) How reliable is the linear noise approximation of gene regulatory networks? BMC Genomics 14((Suppl 4):S5)Google Scholar
  60. Vyshemirsky V, Girolami MA (2008) Bayesian ranking of biochemical system models. Bioinformatics 24:833–839CrossRefPubMedGoogle Scholar
  61. Westerhoff HV, Kell DB (2007) The methodologies of systems biology. Elsevier, AmsterdamCrossRefGoogle Scholar
  62. Wittig U, Kania R, Golebiewski M, Rey M, Shi L, Jong L, Algaa E, Weidemann A, Sauer-Danzwith H, Mir S, Krebs O, Bittkowski M, Wetsch E, Rojas I, Muller W (2012) Sabio-rk: the database for biochemical reaction kinetics. Nucleic Acids Res 40:D790–D796CrossRefPubMedGoogle Scholar
  63. Wolpert L (1996) One hundred years of positional information. Trends Genet 12:359–364CrossRefPubMedGoogle Scholar
  64. Zeilinger MN, Farre EM, Taylor SR, Kay SA, III FJD (2006) A novel computational model of the circadian clock in arabidopsis that incorporates PRR7 and PRR9. Mol Syst Biol 2:58CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratory of Systems and Synthetic BiologyWageningen URWageningenThe Netherlands

Personalised recommendations