Advertisement

Pollen Metabolome Dynamics: Biochemistry, Regulation and Analysis

Chapter

Abstract

The metabolome of an organism represents the readout of its biochemistry comprising numerous and tightly regulated metabolic pathways. Experimental analysis of the metabolome and its interpretation in a biochemically and physiologically meaningful context is focused by the research field of metabolomics which has become an integral part of many systems biological studies. Pollen development, germination and tube growth comprise numerous steps of metabolic regulation resulting in significant metabolome dynamics. To unravel involved regulatory molecular processes and to promote the understanding of developmental reprogramming and stress tolerance mechanisms in pollen, it is crucial to quantitatively resolve dynamics in the pollen metabolome. Since these dynamics affect various substance groups with different physico-chemical properties, different experimental platforms are needed for robust compound identification and quantification. It has been shown that developmentally and stress-induced metabolic reprogramming in pollen significantly affects the redox homeostasis as well as metabolism of carbohydrates, amino acids, lipids, polyamines, flavonoids and phytohormones. In this chapter, mechanisms of metabolic reprogramming are summarized and discussed in the context of pollen development and stress exposure. Finally, it is discussed how these metabolome dynamics can be resolved methodologically in order to unravel molecular physiological mechanisms of pollen development.

Keywords

Metabolomics Pollen development Biochemistry Metabolic network Primary metabolism Secondary metabolism 

Abbreviations

ABA

Abscisic acid

ATP

Adenosine triphosphate

GA

Gibberellic acid

GABA

γ-Aminobutyric acid

GC

Gas chromatography

HXK

Hexokinase

Inv

Invertase

LC

Liquid chromatography

MS

Mass spectrometry

NAD+/NADH+H+

Nicotinamide adenine dinucleotide (oxidized and reduced form)

STP

Sugar transport protein

SuSy

Sucrose synthase

UV

Ultraviolet

References

  1. Alcázar R, Tiburcio AF (2016) Polyamines in stress protection: applications in agriculture. In: Abiotic stress response in plants. Wiley-VCH, Weinheim, pp 411–422CrossRefGoogle Scholar
  2. Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249PubMedCrossRefGoogle Scholar
  3. Aloisi I, Cai G, Tumiatti V, Minarini A, Del Duca S (2015) Natural polyamines and synthetic analogs modify the growth and the morphology of Pyrus communis pollen tubes affecting ROS levels and causing cell death. Plant Sci 239:92–105PubMedCrossRefGoogle Scholar
  4. Aloisi I, Cai G, Serafini-Fracassini D, Del Duca S (2016) Polyamines in pollen: from microsporogenesis to fertilization. Front Plant Sci 7:155. doi: 10.3389/fpls.2016.00155 PubMedPubMedCentralGoogle Scholar
  5. Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21:1453–1472PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baker HG, Baker I (1979) Starch in angiosperm pollen grains and its evolutionary significance. Am J Bot 66:591–600CrossRefGoogle Scholar
  7. Barnabas B, Fridvalszky L (1984) Adhesion and germination of differently treated maize pollen grains on the stigma. Acta Bot Hungar 30:329–332Google Scholar
  8. Biancucci M, Mattioli R, Forlani G, Funck D, Costantino P, Trovato M (2015) Role of proline and GABA in sexual reproduction of angiosperms. Front Plant Sci 6. doi: 10.3389/fpls.2015.00680
  9. Borg M, Brownfield L, Twell D (2009) Male gametophyte development: a molecular perspective. J Exp Bot 60:1465–1478PubMedCrossRefGoogle Scholar
  10. Bosco CD, Dovzhenko A, Liu X, Woerner N, Rensch T, Eismann M, Eimer S, Hegermann J, Paponov IA, Ruperti B (2012) The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. Plant J 71:860–870CrossRefGoogle Scholar
  11. Burbulis IE, Iacobucci M, Shirley BW (1996) A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell 8:1013–1025PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chen D, Zhao J (2008) Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum. Physiol Plant 134:202–215PubMedCrossRefGoogle Scholar
  14. Cheung AY, Wu H-M (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572PubMedCrossRefGoogle Scholar
  15. Cheung AY, Wu H-M (2016) Plant biology: LURE is bait for multiple receptors. Nature 531:178–180PubMedCrossRefGoogle Scholar
  16. Chhun T, Aya K, Asano K, Yamamoto E, Morinaka Y, Watanabe M, Kitano H, Ashikari M, Matsuoka M, Ueguchi-Tanaka M (2007) Gibberellin regulates pollen viability and pollen tube growth in rice. Plant Cell 19:3876–3888PubMedPubMedCentralCrossRefGoogle Scholar
  17. Claeys H, De Bodt S, Inzé D (2014) Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends Plant Sci 19:231–239PubMedCrossRefGoogle Scholar
  18. Clément C, Audran JC (1995) Anther wall layers control pollen sugar nutrition in Lilium. Protoplasma 187:172–181CrossRefGoogle Scholar
  19. Clement C, Burrus M, Audran J-C (1996) Floral organ growth and carbohydrate content during pollen development in Lilium. Am J Bot 83:459–469CrossRefGoogle Scholar
  20. Clément C, Mischler P, Burrus M, Audran J-C (1997) Characteristics of the photosynthetic apparatus and CO2-fixation in the flower bud of Lilium. II. Anther. Int J Plant Sci 158:801–810CrossRefGoogle Scholar
  21. Clément C, Laporte P, Audran J (1998) The loculus content and tapetum during pollen development in Lilium. Sex Plant Reprod 11:94–106CrossRefGoogle Scholar
  22. Datta R, Chamusco KC, Chourey PS (2002) Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiol 130:1645–1656PubMedPubMedCentralCrossRefGoogle Scholar
  23. David-Schwartz R, Weintraub L, Vidavski R, Zemach H, Murakhovsky L, Swartzberg D, Granot D (2013) The SIFRK4 promoter is active only during late stages of pollen and anther development. Plant Sci 199:61–70PubMedCrossRefGoogle Scholar
  24. De Storme N, Geelen D (2014) The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell Environ 37:1–18PubMedCrossRefGoogle Scholar
  25. Dekkers BJ, Schuurmans JA, Smeekens SC (2008) Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. Plant Mol Biol 67:151–167PubMedPubMedCentralCrossRefGoogle Scholar
  26. Del Duca S, Serafini-Fracassini D, Bonner P, Cresti M, Cai G (2009) Effects of post-translational modifications catalysed by pollen transglutaminase on the functional properties of microtubules and actin filaments. Biochem J 418:651–664PubMedCrossRefGoogle Scholar
  27. Di Sandro A, Del Duca S, Verderio E, Hargreaves AJ, Scarpellini A, Cai G, Cresti M, Faleri C, Iorio RA, Hirose S (2010) An extracellular transglutaminase is required for apple pollen tube growth. Biochem J 429:261–271PubMedCrossRefGoogle Scholar
  28. Ding Z, Wang B, Moreno I, Duplakova N, Simon S, Carraro N, Reemmer J, Pencik A, Chen X, Tejos R, Skupa P, Pollmann S, Mravec J, Petrasek J, Zazimalova E, Honys D, Rolcik J, Murphy A, Orellana A, Geisler M, Friml J (2012) ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat Commun 3:941. doi: 10.1038/ncomms1941 PubMedCrossRefGoogle Scholar
  29. Doerfler H, Lyon D, Nägele T, Sun X, Fragner L, Hadacek F, Egelhofer V, Weckwerth W (2013) Granger causality in integrated GC-MS and LC-MS metabolomics data reveals the interface of primary and secondary metabolism. Metabolomics 9:564–574PubMedCrossRefGoogle Scholar
  30. Dorion S, Lalonde S, Saini HS (1996) Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiol 111:137–145PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dresselhaus T, Franklin-Tong N (2013) Male–female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol Plant 6:1018–1036PubMedCrossRefGoogle Scholar
  32. Du F, Ruan G, Liu H (2012) Analytical methods for tracing plant hormones. Anal Bioanal Chem 403:55–74PubMedCrossRefGoogle Scholar
  33. Dupl'akova N, Dobrev PI, Renak D, Honys D (2016) Rapid separation of Arabidopsis male gametophyte developmental stages using a Percoll gradient. Nat Protoc 11:1817–1832PubMedCrossRefGoogle Scholar
  34. Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19PubMedCrossRefGoogle Scholar
  35. Fellenberg C, Vogt T (2015) Evolutionarily conserved phenylpropanoid pattern on angiosperm pollen. Trends Plant Sci 20:212–218PubMedCrossRefGoogle Scholar
  36. Feng X-L, Ni W-M, Elge S, Mueller-Roeber B, Xu Z-H, Xue H-W (2006) Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Mol Biol 61:215–226PubMedCrossRefGoogle Scholar
  37. Fiehn O (2002) Metabolomics--the link between genotypes and phenotypes. Plant Mol Biol 48:155–171PubMedCrossRefGoogle Scholar
  38. Firon N, Nepi M, Pacini E (2012) Water status and associated processes mark critical stages in pollen development and functioning. Ann Bot 109:1201–1214PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fragner L, Furuhashi T, Weckwerth W (2014) Gas chromatography coupled to mass spectrometry for metabolomics research. In: Dettmer-Wilde K, Engewald W (eds) Practical gas chromatography. Springer, Berlin, pp 783–797Google Scholar
  40. Franklin-Tong VE (1999) Signaling and the modulation of pollen tube growth. Plant Cell 11:727–738PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fu J, Sun X, Wang J, Chu J, Yan C (2011) Progress in quantitative analysis of plant hormones. Chin Sci Bull 56:355–366CrossRefGoogle Scholar
  42. Gass N, Glagotskaia T, Mellema S, Stuurman J, Barone M, Mandel T, Roessner-Tunali U, Kuhlemeier C (2005) Pyruvate decarboxylase provides growing pollen tubes with a competitive advantage in Petunia. Plant Cell 17:2355–2368PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gibson SI (2004) Sugar and phytohormone response pathways: navigating a signalling network. J Exp Bot 55:253–264PubMedCrossRefGoogle Scholar
  44. Goetz M, Godt DE, Guivarc'h A, Kahmann U, Chriqui D, Roitsch T (2001) Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci U S A 98:6522–6527PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hedhly A, Vogler H, Schmid MW, Pazmino D, Gagliardini V, Santelia D, Grossniklaus U (2016) Starch turnover and metabolism during flower and early embryo development. Plant Physiol 172:2388–2402PubMedCrossRefGoogle Scholar
  46. Heslop-Harrison J (1968) Pollen wall development. Science 161:230–237PubMedCrossRefGoogle Scholar
  47. Higashiyama T, Takeuchi H (2015) The mechanism and key molecules involved in pollen tube guidance. Annu Rev Plant Biol 66:393–413PubMedCrossRefGoogle Scholar
  48. Hiscock SJ, Allen AM (2008) Diverse cell signalling pathways regulate pollen-stigma interactions: the search for consensus. New Phytol 179:286–317PubMedCrossRefGoogle Scholar
  49. Hsieh K, Huang AH (2007) Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum–derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell 19:582–596PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ischebeck T (2016) Lipids in pollen – they are different. Biochim Biophys Acta 1861:1315–1328PubMedCrossRefGoogle Scholar
  51. Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jessen D, Olbrich A, Knüfer J, Krüger A, Hoppert M, Polle A, Fulda M (2011) Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis. Plant J 68:715–726PubMedCrossRefGoogle Scholar
  53. Ji X, Dong B, Shiran B, Talbot MJ, Edlington JE, Hughes T, White RG, Gubler F, Dolferus R (2011) Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol 156:647–662PubMedPubMedCentralCrossRefGoogle Scholar
  54. Jung K-H, Han M-J, Lee D-Y, Lee Y-S, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim Y-W (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18:3015–3032PubMedPubMedCentralCrossRefGoogle Scholar
  55. Keijzer C (1987) The processes of anther dehiscence and pollen dispersal. New Phytol 105:487–498CrossRefGoogle Scholar
  56. Kim Y, Song K, Cheong H (1996) Effects of flavonoids on pollen tube growth in Arabidopsis thaliana. J Plant Biol 39:273–278Google Scholar
  57. Kirichenko E, Krendeleva T, Kukarskikh G, Nizovskaya N (1993) Photochemical activity in chloroplasts of anthers and caryopsis pericarp in cereals. Russ Plant Physiol 40:229–233Google Scholar
  58. Labarca C, Loewus F (1973) The nutritional role of pistil exudate in pollen tube wall formation in Lilium longiflorum II. Production and utilization of exudate from stigma and stylar canal. Plant Physiol 52:87–92PubMedPubMedCentralCrossRefGoogle Scholar
  59. Liu J, Lindsey K, Hussey PJ (2014) Elucidating the regulation of complex signalling systems in plant cells. Biochem Soc Trans 42:219–223PubMedCrossRefGoogle Scholar
  60. Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5:1303–1314PubMedPubMedCentralCrossRefGoogle Scholar
  61. Mellema S, Eichenberger W, Rawyler A, Suter M, Tadege M, Kuhlemeier C (2002) The ethanolic fermentation pathway supports respiration and lipid biosynthesis in tobacco pollen. Plant J 30:329–336PubMedCrossRefGoogle Scholar
  62. Miller WB, Ranwala AP (1994) Characterization and localization of three soluble invertase forms from Lilium longiflorum flower buds. Physiol Plant 92:247–253CrossRefGoogle Scholar
  63. Misra BB, Assmann SM, Chen S (2014) Plant single-cell and single-cell-type metabolomics. Trends Plant Sci 19:637–646PubMedCrossRefGoogle Scholar
  64. Mo Y, Nagel C, Taylor LP (1992) Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci U S A 89:7213–7217PubMedPubMedCentralCrossRefGoogle Scholar
  65. Murase K, Hirano Y, T-p S, Hakoshima T (2008) Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459–463PubMedCrossRefGoogle Scholar
  66. Murphy D (2006) The extracellular pollen coat in members of the Brassicaceae: composition, biosynthesis, and functions in pollination. Protoplasma 228:31–39PubMedCrossRefGoogle Scholar
  67. Nägele T, Stutz S, Hörmiller I, Heyer AG (2012) Identification of a metabolic bottleneck for cold acclimation in Arabidopsis thaliana. Plant J 72:102–114PubMedCrossRefGoogle Scholar
  68. Napoli CA, Fahy D, Wang H-Y, Taylor LP (1999) White anther: a petunia mutant that abolishes pollen flavonol accumulation, induces male sterility, and is complemented by a chalcone synthase transgene. Plant Physiol 120:615–622PubMedPubMedCentralCrossRefGoogle Scholar
  69. Obermeyer G, Fragner L, Lang V, Weckwerth W (2013) Dynamic adaption of metabolic pathways during germination and growth of lily pollen tubes after inhibition of the electron transport chain. Plant Physiol 162:1822–1833PubMedPubMedCentralCrossRefGoogle Scholar
  70. Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48:1319–1330PubMedCrossRefGoogle Scholar
  71. Owen HA, Makaroff C (1995) Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma 185:7–21CrossRefGoogle Scholar
  72. Pacini E (2000) From anther and pollen ripening to pollen presentation. In: Pollen and pollination. Springer, Wien, pp 19–43CrossRefGoogle Scholar
  73. Pacini E, Hesse M (2005) Pollenkitt–its composition, forms and functions. Flora 200:399–415CrossRefGoogle Scholar
  74. Pacini E, Guarnieri M, Nepi M (2006) Pollen carbohydrates and water content during development, presentation, and dispersal: a short review. Protoplasma 228:73–77PubMedCrossRefGoogle Scholar
  75. Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59PubMedCrossRefGoogle Scholar
  76. Plackett AR, Ferguson AC, Powers SJ, Wanchoo-Kohli A, Phillips AL, Wilson ZA, Hedden P, Thomas SG (2014) DELLA activity is required for successful pollen development in the Columbia ecotype of Arabidopsis. New Phytol 201:825–836PubMedCrossRefGoogle Scholar
  77. Qin P, Tu B, Wang Y, Deng L, Quilichini TD, Li T, Wang H, Ma B, Li S (2013) ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. Plant Cell Physiol 54:138–154PubMedCrossRefGoogle Scholar
  78. Quilichini TD, Grienenberger E, Douglas CJ (2015) The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113:170–182PubMedCrossRefGoogle Scholar
  79. Ramesh SA, Tyerman SD, Xu B, Bose J, Kaur S, Conn V, Domingos P, Ullah S, Wege S, Shabala S, Feijó JA, Ryan PR, Gilliham M (2015) GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nat Commun 6:7879PubMedPubMedCentralCrossRefGoogle Scholar
  80. Reichler SA, Torres J, Rivera AL, Cintolesi VA, Clark G, Roux SJ (2009) Intersection of two signalling pathways: extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide. J Exp Bot 60:2129–2138PubMedPubMedCentralCrossRefGoogle Scholar
  81. Reznickova S (1983) Metabolism of reserve substances in the developing anther. In: Erdelska O (ed) Fertilization and embryogenesis in ovulated plants. Veda, Bratislava, pp 57–62Google Scholar
  82. Reznickova S, Dickinson H (1982) Ultrastructural aspects of storage lipid mobilization in the tapetum of Lilium hybrida var. enchantment. Planta 155:400–408PubMedCrossRefGoogle Scholar
  83. Reznickova S, Willemse M (1980) Formation of pollen in the anther of Lilium II. The function of the surrounding tissues in the formation of pollen and pollen wall. Acta Bot Neerl 29:141–156CrossRefGoogle Scholar
  84. Rottmann T, Zierer W, Subert C, Sauer N, Stadler R (2016) STP10 encodes a high-affinity monosaccharide transporter and is induced under low-glucose conditions in pollen tubes of Arabidopsis. J Exp Bot 67:2387–2399PubMedPubMedCentralCrossRefGoogle Scholar
  85. Rutley N, Twell D (2015) A decade of pollen transcriptomics. Plant Reprod 28:73–89PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sakata T, Oda S, Tsunaga Y, Shomura H, Kawagishi-Kobayashi M, Aya K, Saeki K, Endo T, Nagano K, Kojima M (2014) Reduction of gibberellin by low temperature disrupts pollen development in rice. Plant Physiol 164:2011–2019PubMedPubMedCentralCrossRefGoogle Scholar
  87. Šamaj J, Müller J, Beck M, Böhm N, Menzel D (2006) Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci 11:594–600PubMedCrossRefGoogle Scholar
  88. Scherling C, Roscher C, Giavalisco P, Schulze ED, Weckwerth W (2010) Metabolomics unravel contrasting effects of biodiversity on the performance of individual plant species. PLoS One 5:e12569. doi: 10.1371/journal.pone.0012569 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Schijlen EG, de Vos CR, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC, van Tunen AJ, Bovy AG (2007) RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol 144:1520–1530PubMedPubMedCentralCrossRefGoogle Scholar
  90. Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16(Suppl):S46–S60PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sekiguchi Y, Mitsuhashi N, Inoue Y, Yagisawa H, Mimura T (2004) Analysis of sugar phosphates in plants by ion chromatography on a titanium dioxide column with pulsed amperometric detection. J Chromatogr A 1039:71–76PubMedCrossRefGoogle Scholar
  92. Sengupta A, Chakraborty M, Saha J, Gupta B, Gupta K (2016) Polyamines: osmoprotectants in plant abiotic stress adaptation. In: Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi, pp 97–127CrossRefGoogle Scholar
  93. Sharma KD, Nayyar H (2016) Regulatory networks in pollen development under cold stress. Front Plant Sci 7:402. doi: 10.3389/fpls.2016.00402 PubMedPubMedCentralGoogle Scholar
  94. Shi J, Cui M, Yang L, Kim Y-J, Zhang D (2015) Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci 20:741–753PubMedCrossRefGoogle Scholar
  95. Singh MB, Knox RB (1984) Invertases of Lilium pollen: characterization and activity during in vitro germination. Plant Physiol 74:510–515PubMedPubMedCentralCrossRefGoogle Scholar
  96. Singh DP, Jermakow AM, Swain SM (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14:3133–3147PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sivitz AB, Reinders A, Ward JM (2008) Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation. Plant Physiol 147:92–100PubMedPubMedCentralCrossRefGoogle Scholar
  98. Speranza A, Calzoni G, Pacini E (1997) Occurrence of mono-or disaccharides and polysaccharide reserves in mature pollen grains. Sex Plant Reprod 10:110–115CrossRefGoogle Scholar
  99. Staiger D, Kappeler S, Müller M, Apel K (1994) The proteins encoded by two tapetum-specific transcripts, Satap35 and Satap44, from Sinapis alba L. are localized in the exine cell wall layer of developing microspores. Planta 192:221–231PubMedCrossRefGoogle Scholar
  100. Steinhorst L, Kudla J (2013) Calcium – a central regulator of pollen germination and tube growth. Biochim Biophys Acta 1833:1573–1581PubMedCrossRefGoogle Scholar
  101. Stobiecki M, Kachlicki P (2013) Liquid chromatographic–mass spectrometric analysis of flavonoids. In: The handbook of plant metabolomics. Wiley-VCH, Weinheim, pp 197–213CrossRefGoogle Scholar
  102. Sturm A (1996) Molecular characterization and functional analysis of sucrose-cleaving enzymes in carrot (Daucus carota L.) J Exp Bot 47:1187–1192PubMedCrossRefGoogle Scholar
  103. Sturm A (1999) Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 121:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  104. Székely G, Ábrahám E, Cséplő Á, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28PubMedCrossRefGoogle Scholar
  105. Tang R-S, Zheng J-C, Jin Z-Q, Zhang D-D, Huang Y-H, Chen L-G (2008) Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.). Plant Growth Regul 54:37–43Google Scholar
  106. Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323PubMedCrossRefGoogle Scholar
  107. Tymowska-Lalanne Z, Kreis M (1998) The plant invertases: physiology, biochemistry and molecular biology. Adv Bot Res 28:71–117CrossRefGoogle Scholar
  108. Valledor L, Escandón M, Meijón M, Nukarinen E, Cañal MJ, Weckwerth W (2014) A universal protocol for the combined isolation of metabolites, DNA, long RNAs, small RNAs, and proteins from plants and microorganisms. Plant J 79:173–180PubMedCrossRefGoogle Scholar
  109. Vogler F, Schmalzl C, Englhart M, Bircheneder M, Sprunck S (2014) Brassinosteroids promote Arabidopsis pollen germination and growth. Plant Reprod 27:153–167PubMedCrossRefGoogle Scholar
  110. Vu JCV, Yelenosky G, Bausher MG (1985) Photosynthetic activity in the flower buds of Valencia orange (Citrus sinensis [L.] Osbeck). Plant Physiol 78:420–423PubMedPubMedCentralCrossRefGoogle Scholar
  111. Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689PubMedCrossRefGoogle Scholar
  112. Weckwerth W (2011) Green systems biology – from single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteomics 75:284–305PubMedCrossRefGoogle Scholar
  113. Weckwerth W, Wenzel K, Fiehn O (2004) Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4:78–83PubMedCrossRefGoogle Scholar
  114. Wilhelmi LK, Preuss D (1996) Self-sterility in Arabidopsis due to defective pollen tube guidance. Science 274:1535–1537PubMedCrossRefGoogle Scholar
  115. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493PubMedPubMedCentralCrossRefGoogle Scholar
  116. Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223PubMedCrossRefGoogle Scholar
  117. Wolters-Arts M, Lush WM, Mariani C (1998) Lipids are required for directional pollen-tube growth. Nature 392:818–821PubMedCrossRefGoogle Scholar
  118. Wu J-Z, Lin Y, Zhang X-L, Pang D-W, Zhao J (2008) IAA stimulates pollen tube growth and mediates the modification of its wall composition and structure in Torenia fournieri. J Exp Bot 59:2529–2543PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wu J, Shang Z, Wu J, Jiang X, Moschou PN, Sun W, Roubelakis-Angelakis KA, Zhang S (2010) Spermidine oxidase-derived H2O2 regulates pollen plasma membrane hyperpolarization-activated Ca2+-permeable channels and pollen tube growth. Plant J 63:1042–1053PubMedCrossRefGoogle Scholar
  120. Wu L, Guan Y, Wu Z, Yang K, Lv J, Converse R, Huang Y, Mao J, Zhao Y, Wang Z (2014) OsABCG15 encodes a membrane protein that plays an important role in anther cuticle and pollen exine formation in rice. Plant Cell Rep 33:1881–1899PubMedPubMedCentralCrossRefGoogle Scholar
  121. Ylstra B, Busscher J, Franken J, Hollman PC, Mol JN, Tunen AJ (1994) Flavonols and fertilization in Petunia hybrida: localization and mode of action during pollen tube growth. Plant J 6:201–212CrossRefGoogle Scholar
  122. Ylstra B, Muskens M, Van Tunen AJ (1996) Flavonols are not essential for fertilization in Arabidopsis thaliana. Plant Mol Biol 32:1155–1158PubMedCrossRefGoogle Scholar
  123. Ylstra B, Garrido D, Busscher J, van Tunen AJ (1998) Hexose transport in growing petunia pollen tubes and characterization of a pollen-specific, putative monosaccharide transporter. Plant Physiol 118:297–304PubMedPubMedCentralCrossRefGoogle Scholar
  124. Yonekura-Sakakibara K, Nakabayashi R, Sugawara S, Tohge T, Ito T, Koyanagi M, Kitajima M, Takayama H, Saito K (2014) A flavonoid 3-O-glucoside: 2″-O-glucosyltransferase responsible for terminal modification of pollen-specific flavonols in Arabidopsis thaliana. Plant J 79:769–782PubMedPubMedCentralCrossRefGoogle Scholar
  125. Yu GH, Zou J, Feng J, Peng XB, Wu JY, Wu YL, Palanivelu R, Sun MX (2014) Exogenous gamma-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase. J Exp Bot 65:3235–3248PubMedPubMedCentralCrossRefGoogle Scholar
  126. Zhu W, Ma S, Zhang G, Liu H, Ba Q, Li Z, Song Y, Zhang P, Niu N, Wang J (2015) Carbohydrate metabolism and gene regulation during anther development disturbed by chemical hybridizing agent in wheat. Crop Sci 55:868–876CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Life Sciences, Department of Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
  2. 2.Vienna Metabolomics CenterUniversity of ViennaViennaAustria

Personalised recommendations